"""This module defines a HuggingFace dataset builder for the QT30 dataset used in the DialAM-2024 shared task. See http://dialam.arg.tech/ for more information about the DialAM-2024 shared task. Unfortunately, there are some nodesets that are not suitable for conversion to documents. These nodesets are excluded from the dataset. The following nodesets are excluded: - excluded by the organizers (23): 24255, 24807, 24808, 24809, 24903, 24905, 24992, 25045, 25441, 25442, 25443, 25444, 25445, 25452, 25461, 25462, 25463, 25465, 25468, 25472, 25473, 25474, 25475 - excluded because of warning (6): "Could not align I-node (dummy-L-node was selected)": 21083, 18888, 23701, 18484, 17938, 19319 - excluded because of error "could not determine direction of RA-nodes ... because there is no TA relation between any combination of anchoring I-nodes!" (26): 25411, 25510, 25516, 25901, 25902, 25904, 25906, 25907, 25936, 25937, 25938, 25940, 26066, 26067, 26068, 26087, 17964, 18459, 19091, 19146, 19149, 19757, 19761, 19908, 21449, 23749 - excluded because of error "S-node arguments are not unique!" (7): 25552, 19165, 22969, 21342, 25400, 21681, 23710 - excluded because of error "direction of RA-node 587841 is ambiguous!" (16): 19059, 19217, 19878, 20479, 20507, 20510, 20766, 20844, 20888, 20992, 21401, 21477, 21588, 23114, 23766, 23891 - excluded because of error "I-node texts are not unique!" (1): 19911 - still problematic (19): 19897, 18321, 18877, 18874, 19174, 23552, 23799, 23517, 20729, 25691, 21023, 23144, 23120, 23560, 23892, 23959, 19173, 19918, 25511 """ import glob import json import logging import os import datasets from datasets import Features, GeneratorBasedBuilder logger = logging.getLogger(__name__) DATA_URL = "http://dialam.arg.tech/res/files/dataset.zip" SUBDIR = "dataset" NODESET_BLACKLIST = [ "24255", "24807", "24808", "24809", "24903", "24905", "24992", "25045", "25441", "25442", "25443", "25444", "25445", "25452", "25461", "25462", "25463", "25465", "25468", "25472", "25473", "25474", "25475", "21083", "18888", "23701", "18484", "17938", "19319", "25411", "25510", "25516", "25901", "25902", "25904", "25906", "25907", "25936", "25937", "25938", "25940", "26066", "26067", "26068", "26087", "17964", "18459", "19091", "19146", "19149", "19757", "19761", "19908", "21449", "23749", "25552", "19165", "22969", "21342", "25400", "21681", "23710", "19059", "19217", "19878", "20479", "20507", "20510", "20766", "20844", "20888", "20992", "21401", "21477", "21588", "23114", "23766", "23891", "19911", "19897", "18321", "18877", "18874", "19174", "23552", "23799", "23517", "20729", "25691", "21023", "23144", "23120", "23560", "23892", "23959", "19173", "19918", "25511", ] def is_blacklisted(nodeset_filename: str) -> bool: nodeset_id = get_node_id_from_filename(nodeset_filename) return nodeset_id in NODESET_BLACKLIST def get_node_id_from_filename(filename: str) -> str: """Get the ID of a nodeset from a filename.""" return filename.split("nodeset")[1].split(".json")[0] class DialAM2024(GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="dialam_2024", version=datasets.Version("1.0.0"), description="DialAM-2024 dataset" ), ] def _info(self): return datasets.DatasetInfo( features=Features( { "id": datasets.Value("string"), "nodes": datasets.Sequence( { "nodeID": datasets.Value("string"), "text": datasets.Value("string"), "type": datasets.Value("string"), "timestamp": datasets.Value("string"), # Since optional fields are not supported in HuggingFace datasets, we exclude the # scheme and schemeID fields from the dataset. Note that the scheme field has the # same value as the text field where it is present. # "scheme": datasets.Value("string"), # "schemeID": datasets.Value("string"), } ), "edges": datasets.Sequence( { "edgeID": datasets.Value("string"), "fromID": datasets.Value("string"), "toID": datasets.Value("string"), "formEdgeID": datasets.Value("string"), } ), "locutions": datasets.Sequence( { "nodeID": datasets.Value("string"), "personID": datasets.Value("string"), "timestamp": datasets.Value("string"), "start": datasets.Value("string"), "end": datasets.Value("string"), "source": datasets.Value("string"), } ), } ) ) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles.""" if dl_manager.manual_dir is None: data_dir = os.path.join(dl_manager.download_and_extract(DATA_URL), SUBDIR) else: # make absolute path of the manual_dir data_dir = os.path.abspath(dl_manager.manual_dir) # collect all json files in the data_dir with glob file_names = glob.glob(os.path.join(data_dir, "*.json")) file_names_filtered = [fn for fn in file_names if not is_blacklisted(fn)] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_names": file_names_filtered}, ) ] def _generate_examples(self, file_names): idx = 0 for file_name in file_names: with open(file_name, encoding="utf-8", errors=None) as f: data = json.load(f) data["id"] = get_node_id_from_filename(file_name) # delete optional node fields: scheme, schemeID for node in data["nodes"]: node.pop("scheme", None) node.pop("schemeID", None) yield idx, data idx += 1