rithwiks commited on
Commit
2382d98
Β·
1 Parent(s): 89a696f

filtering code

Browse files
Files changed (1) hide show
  1. utils/keck_filtering.ipynb +251 -0
utils/keck_filtering.ipynb ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 71,
6
+ "id": "b4c4c986",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import os\n",
11
+ "from tqdm import tqdm\n",
12
+ "import glob\n",
13
+ "from astropy.io import fits\n",
14
+ "import os\n",
15
+ "from astropy.io import fits\n",
16
+ "from astropy.wcs import WCS\n",
17
+ "from spherical_geometry.polygon import SphericalPolygon\n",
18
+ "import os\n",
19
+ "from astropy.io import fits\n",
20
+ "from astropy.wcs import WCS\n",
21
+ "from spherical_geometry.polygon import SphericalPolygon\n",
22
+ "from sklearn.cluster import AgglomerativeClustering\n",
23
+ "import matplotlib.pyplot as plt\n",
24
+ "import pandas as pd\n",
25
+ "from astropy.io import fits\n",
26
+ "import pandas as pd\n",
27
+ "import matplotlib.pyplot as plt\n",
28
+ "import numpy as np\n",
29
+ "import shutil\n",
30
+ "\n",
31
+ "def get_all_fits_files(root_dir):\n",
32
+ " # Use glob to recursively find all .fits files\n",
33
+ " pattern = os.path.join(root_dir, '**', '*LR*.fits')\n",
34
+ " fits_files = glob.glob(pattern, recursive=True)\n",
35
+ " return fits_files"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": 56,
41
+ "id": "ba3bf5f7",
42
+ "metadata": {},
43
+ "outputs": [
44
+ {
45
+ "data": {
46
+ "text/plain": [
47
+ "1014"
48
+ ]
49
+ },
50
+ "execution_count": 56,
51
+ "metadata": {},
52
+ "output_type": "execute_result"
53
+ }
54
+ ],
55
+ "source": [
56
+ "valid_fits_paths = get_all_fits_files('./GBI-16-2D/prelim_data')\n",
57
+ "len(valid_fits_paths)"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": 57,
63
+ "id": "a9a90d18",
64
+ "metadata": {},
65
+ "outputs": [
66
+ {
67
+ "name": "stdout",
68
+ "output_type": "stream",
69
+ "text": [
70
+ "1014\n",
71
+ "861\n"
72
+ ]
73
+ }
74
+ ],
75
+ "source": [
76
+ "df_test = pd.read_json('./GBI-16-2D/splits/full_test.jsonl', lines=True)\n",
77
+ "df_train = pd.read_json('./GBI-16-2D/splits/full_train.jsonl', lines=True)\n",
78
+ "\n",
79
+ "df = pd.concat([df_train, df_test])\n",
80
+ "\n",
81
+ "print(len(df))\n",
82
+ "df = df[df['exposure_time'] >= 30]\n",
83
+ "print(len(df))"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": 58,
89
+ "id": "f965da24",
90
+ "metadata": {},
91
+ "outputs": [
92
+ {
93
+ "name": "stdout",
94
+ "output_type": "stream",
95
+ "text": [
96
+ "Symmetric?\n",
97
+ "True\n",
98
+ "(861, 861)\n"
99
+ ]
100
+ }
101
+ ],
102
+ "source": [
103
+ "latitudes = list(df['dec'])\n",
104
+ "longitudes = list(df['ra'])\n",
105
+ "\n",
106
+ "n_points = len(latitudes)\n",
107
+ "\n",
108
+ "# Repeat each point n_points times for lat1, lon1\n",
109
+ "lat1 = np.repeat(latitudes, n_points)\n",
110
+ "lon1 = np.repeat(longitudes, n_points)\n",
111
+ "\n",
112
+ "# Tile the whole array n_points times for lat2, lon2\n",
113
+ "lat2 = np.tile(latitudes, n_points)\n",
114
+ "lon2 = np.tile(longitudes, n_points)\n",
115
+ "\n",
116
+ "# Calculates angular separation between two spherical coords\n",
117
+ "# This can be lat/lon or ra/dec\n",
118
+ "# Taken from astropy\n",
119
+ "def angular_separation_deg(lon1, lat1, lon2, lat2):\n",
120
+ " lon1 = np.deg2rad(lon1)\n",
121
+ " lon2 = np.deg2rad(lon2)\n",
122
+ " lat1 = np.deg2rad(lat1)\n",
123
+ " lat2 = np.deg2rad(lat2)\n",
124
+ " \n",
125
+ " sdlon = np.sin(lon2 - lon1)\n",
126
+ " cdlon = np.cos(lon2 - lon1)\n",
127
+ " slat1 = np.sin(lat1)\n",
128
+ " slat2 = np.sin(lat2)\n",
129
+ " clat1 = np.cos(lat1)\n",
130
+ " clat2 = np.cos(lat2)\n",
131
+ "\n",
132
+ " num1 = clat2 * sdlon\n",
133
+ " num2 = clat1 * slat2 - slat1 * clat2 * cdlon\n",
134
+ " denominator = slat1 * slat2 + clat1 * clat2 * cdlon\n",
135
+ "\n",
136
+ " return np.rad2deg(np.arctan2(np.hypot(num1, num2), denominator))\n",
137
+ "\n",
138
+ "# Compute the pairwise angular separations\n",
139
+ "angular_separations = angular_separation_deg(lon1, lat1, lon2, lat2)\n",
140
+ "\n",
141
+ "# Reshape the result into a matrix form\n",
142
+ "angular_separations_matrix = angular_separations.reshape(n_points, n_points)\n",
143
+ "\n",
144
+ "def check_symmetric(a, rtol=1e-05, atol=1e-07):\n",
145
+ " return np.allclose(a, a.T, rtol=rtol, atol=atol)\n",
146
+ "\n",
147
+ "print(\"Symmetric?\")\n",
148
+ "print(check_symmetric(angular_separations_matrix))\n",
149
+ "print(angular_separations_matrix.shape)"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": 59,
155
+ "id": "6670e994",
156
+ "metadata": {},
157
+ "outputs": [],
158
+ "source": [
159
+ "KECK_DEG_PER_PIXEL = 3.75e-5\n",
160
+ "KECK_FOV = 3768 * KECK_DEG_PER_PIXEL\n",
161
+ "THRESH = KECK_FOV * 2\n",
162
+ "\n",
163
+ "clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
164
+ "labels = clustering.fit_predict(angular_separations_matrix)"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": 60,
170
+ "id": "ec592fb5",
171
+ "metadata": {},
172
+ "outputs": [
173
+ {
174
+ "name": "stderr",
175
+ "output_type": "stream",
176
+ "text": [
177
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆοΏ½οΏ½οΏ½β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 137/137 [00:00<00:00, 1211.58it/s]"
178
+ ]
179
+ },
180
+ {
181
+ "name": "stdout",
182
+ "output_type": "stream",
183
+ "text": [
184
+ "Max subset with minimum distance: 137\n"
185
+ ]
186
+ },
187
+ {
188
+ "name": "stderr",
189
+ "output_type": "stream",
190
+ "text": [
191
+ "\n"
192
+ ]
193
+ }
194
+ ],
195
+ "source": [
196
+ "RA_NAME = 'ra'\n",
197
+ "DEC_NAME = 'dec'\n",
198
+ "\n",
199
+ "def max_subset_with_min_distance(points, min_distance):\n",
200
+ " subset = []\n",
201
+ " for i, row in points.iterrows():\n",
202
+ " if all(angular_separation_deg(row[RA_NAME], row[DEC_NAME], existing_point[RA_NAME], existing_point[DEC_NAME]) >= min_distance for existing_point in subset):\n",
203
+ " subset.append(row)\n",
204
+ " return subset\n",
205
+ "\n",
206
+ "all_subsets = []\n",
207
+ "\n",
208
+ "for label in tqdm(np.unique(labels)):\n",
209
+ " cds = df[labels == label]\n",
210
+ " subset = max_subset_with_min_distance(cds, THRESH)\n",
211
+ " all_subsets.extend(subset)\n",
212
+ "\n",
213
+ "print(\"Max subset with minimum distance:\", len(all_subsets))\n",
214
+ "\n",
215
+ "locations = pd.DataFrame(all_subsets)"
216
+ ]
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "execution_count": 74,
221
+ "id": "b141c2e9",
222
+ "metadata": {},
223
+ "outputs": [],
224
+ "source": [
225
+ "for path in [\"./GBI-16-2D/prelim_data/\" + s.split('/')[-1] for s in locations['image']]:\n",
226
+ " shutil.move(path, path.replace(\"prelim_data\", \"data\"))"
227
+ ]
228
+ }
229
+ ],
230
+ "metadata": {
231
+ "kernelspec": {
232
+ "display_name": "Python 3 (ipykernel)",
233
+ "language": "python",
234
+ "name": "python3"
235
+ },
236
+ "language_info": {
237
+ "codemirror_mode": {
238
+ "name": "ipython",
239
+ "version": 3
240
+ },
241
+ "file_extension": ".py",
242
+ "mimetype": "text/x-python",
243
+ "name": "python",
244
+ "nbconvert_exporter": "python",
245
+ "pygments_lexer": "ipython3",
246
+ "version": "3.10.13"
247
+ }
248
+ },
249
+ "nbformat": 4,
250
+ "nbformat_minor": 5
251
+ }