File size: 5,449 Bytes
86d3fd8
 
 
 
 
 
e4903da
86d3fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36283fe
86d3fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7b8c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import random
from glob import glob
import json
from huggingface_hub import hf_hub_download
from tqdm import tqdm
import numpy as np

from astropy.io import fits
from astropy.wcs import WCS
import datasets
from datasets import DownloadManager
from fsspec.core import url_to_fs


_DESCRIPTION = (
"GBI-16-4D is a dataset which is part of the AstroCompress project. It contains data "
"assembled from the Sloan Digital SkySurvey (SDSS). Each FITS file contains a series "
"of 800x800 pixel uint16 observations of the same portion of the Stripe82 field, "
"taken in 5 bandpass filters (u, g, r, i, z) over time. The filenames give the "
"starting run, field, camcol of the observations, the number of filtered images per "
"timestep, and the number of timesteps. For example: "
"`cube_center_run4203_camcol6_f44_35-5-800-800.fits` contains 35 frames of 800x800 "
"pixel images in 5 bandpasses starting with run 4203, field 44, and camcol 6. "
"The images are stored in the FITS standard."
)

_HOMEPAGE = "https://google.github.io/AstroCompress"

_LICENSE = "CC BY 4.0"

_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-4D/resolve/main/"

_URLS = {
    "tiny": {
        "train": "./splits/tiny_train.jsonl",
        "test": "./splits/tiny_test.jsonl",
    },
    "full": {
        "train": "./splits/full_train.jsonl",
        "test": "./splits/full_test.jsonl",
    }
}

_REPO_ID = "AstroCompress/GBI-16-4D"

class GBI_16_4D(datasets.GeneratorBasedBuilder):
    """GBI-16-4D Dataset"""

    VERSION = datasets.Version("1.0.3")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="tiny",
            version=VERSION,
            description="A small subset of the data, to test downsteam workflows.",
        ),
        datasets.BuilderConfig(
            name="full",
            version=VERSION,
            description="The full dataset",
        ),
    ]

    DEFAULT_CONFIG_NAME = "tiny"

    def __init__(self, **kwargs):
        super().__init__(version=self.VERSION, **kwargs)

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Array4D(shape=(None, 5, 800, 800), dtype="uint16"),
                    "ra": datasets.Value("float64"),
                    "dec": datasets.Value("float64"),
                    "pixscale": datasets.Value("float64"),
                    "ntimes": datasets.Value("int64"),
                    "nbands": datasets.Value("int64"),
                    "image_id": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation="TBD",
        )

    def _split_generators(self, dl_manager: DownloadManager):

        ret = []
        base_path = dl_manager._base_path
        locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT) 
        _, path = url_to_fs(base_path)

        for split in ["train", "test"]:
            if locally_run:
                split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split]))
                split_file = dl_manager.download_and_extract(split_file_location)
            else:
                split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset")
            with open(split_file, encoding="utf-8") as f:
                data_filenames = []
                data_metadata = []
                for line in f:
                    item = json.loads(line)
                    data_filenames.append(item["image"])
                    data_metadata.append({"ra": item["ra"], 
                                          "dec": item["dec"], 
                                          "pixscale": item["pixscale"], 
                                          "ntimes": item["ntimes"], 
                                          "nbands": item["nbands"],
                                          "image_id": item["image_id"]})
                if locally_run:
                    data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames]
                    data_files = [dl_manager.download(data_url) for data_url in data_urls]
                else:
                    data_urls = data_filenames
                    data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls]
            ret.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
                    gen_kwargs={"filepaths": data_files,
                                "split_file": split_file,
                                "split": split, 
                                "data_metadata": data_metadata},
                ),
            )
        return ret

    def _generate_examples(self, filepaths, split_file, split, data_metadata):
        """Generate GBI-16-4D examples"""

        for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)):
            task_instance_key = f"{self.config.name}-{split}-{idx}"
            with fits.open(filepath, memmap=False, ignore_missing_simple=True) as hdul:
                image_data = hdul[0].data.tolist()
                yield task_instance_key, {**{"image": image_data}, **item}