|
import os |
|
import random |
|
from glob import glob |
|
import json |
|
|
|
|
|
import pyarrow as pa |
|
from astropy.io import fits |
|
import datasets |
|
from datasets import DatasetInfo, DownloadManager |
|
from fsspec.core import url_to_fs |
|
|
|
_DESCRIPTION = ( |
|
"GBI-16-4D is a dataset which is part of the AstroCompress project. It contains data " |
|
"assembled from the Sloan Digital SkySurvey (SDSS). Each FITS file contains a series " |
|
"of 800x800 pixel uint16 observations of the same portion of the Stripe82 field, " |
|
"taken in 5 bandpass filters (u, g, r, i, z) over time. The filenames give the " |
|
"starting run, field, camcol of the observations, the number of filtered images per " |
|
"timestep, and the number of timesteps. For example: " |
|
"`cube_center_run4203_camcol6_f44_35-5-800-800.fits` contains 35 frames of 800x800 " |
|
"pixel images in 5 bandpasses starting with run 4203, field 44, and camcol 6. " |
|
"The images are stored in the FITS standard." |
|
) |
|
|
|
_HOMEPAGE = "https://google.github.io/AstroCompress" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_URL = "https://huggingface.co/datasets/AstroCompress/GBI-16-4D/resolve/main/" |
|
|
|
_URLS = { |
|
"tiny": { |
|
"train": "./splits/tiny_train.jsonl", |
|
"test": "./splits/tiny_test.jsonl", |
|
}, |
|
"full": { |
|
"train": "./splits/full_train.jsonl", |
|
"test": "./splits/full_test.jsonl", |
|
} |
|
} |
|
|
|
class GBI_16_4D(datasets.GeneratorBasedBuilder): |
|
"""GBI-16-4D Dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="tiny", |
|
version=VERSION, |
|
description="A small subset of the data, to test downsteam workflows.", |
|
), |
|
datasets.BuilderConfig( |
|
name="full", |
|
version=VERSION, |
|
description="The full dataset", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "tiny" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(version=self.VERSION, **kwargs) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Array4D(shape=(None, 5, 800, 800), dtype="uint16"), |
|
"ra": datasets.Value("float64"), |
|
"dec": datasets.Value("float64"), |
|
"pixscale": datasets.Value("float64"), |
|
"ntimes": datasets.Value("int64"), |
|
"nbands": datasets.Value("int64"), |
|
"image_id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation="TBD", |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
|
|
ret = [] |
|
base_path = dl_manager._base_path |
|
|
|
|
|
|
|
_, path = url_to_fs(base_path) |
|
|
|
for split in ["train", "test"]: |
|
split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split])) |
|
split_file = dl_manager.download(split_file_location) |
|
with open(split_file, encoding="utf-8") as f: |
|
data_filenames = [] |
|
data_metadata = [] |
|
for line in f: |
|
item = json.loads(line) |
|
data_filenames.append(item["image"]) |
|
data_metadata.append({"ra": item["ra"], |
|
"dec": item["dec"], |
|
"pixscale": item["pixscale"], |
|
"ntimes": item["ntimes"], |
|
"nbands": item["nbands"], |
|
"image_id": item["image_id"]}) |
|
|
|
data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames] |
|
data_files = [dl_manager.download(data_url) for data_url in data_urls] |
|
ret.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST, |
|
gen_kwargs={"filepaths": data_files, |
|
"split_file": split_file, |
|
"split": split, |
|
"data_metadata": data_metadata}, |
|
), |
|
) |
|
return ret |
|
|
|
def _generate_examples(self, filepaths, split_file, split, data_metadata): |
|
"""Generate GBI-16-4D examples""" |
|
|
|
for idx, (filepath, item) in enumerate(zip(filepaths, data_metadata)): |
|
task_instance_key = f"{self.config.name}-{split}-{idx}" |
|
with fits.open(filepath, memmap=False) as hdul: |
|
image_data = hdul[0].data.tolist() |
|
yield task_instance_key, {**{"image": image_data}, **item} |
|
|
|
def make_split_jsonl_files(config_type="tiny", data_dir="./data", |
|
outdir="./splits", seed=42): |
|
""" |
|
Create jsonl files for the GBI-16-4D dataset. |
|
|
|
config_type: str, default="tiny" |
|
The type of split to create. Options are "tiny" and "full". |
|
data_dir: str, default="./data" |
|
The directory where the FITS files are located. |
|
outdir: str, default="./splits" |
|
The directory where the jsonl files will be created. |
|
seed: int, default=42 |
|
The seed for the random split. |
|
""" |
|
random.seed(seed) |
|
os.makedirs(outdir, exist_ok=True) |
|
|
|
fits_files = glob(os.path.join(data_dir, "*.fits")) |
|
random.shuffle(fits_files) |
|
if config_type == "tiny": |
|
train_files = fits_files[:2] |
|
test_files = fits_files[2:3] |
|
elif config_type == "full": |
|
split_idx = int(0.8 * len(fits_files)) |
|
train_files = fits_files[:split_idx] |
|
test_files = fits_files[split_idx:] |
|
else: |
|
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.") |
|
|
|
def create_jsonl(files, split_name): |
|
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl") |
|
with open(output_file, "w") as out_f: |
|
for file in files: |
|
print(file, flush=True, end="...") |
|
with fits.open(file, memmap=False) as hdul: |
|
image_id = os.path.basename(file).split(".fits")[0] |
|
ra = hdul[0].header.get('CRVAL1', 0) |
|
dec = hdul[0].header.get('CRVAL2', 0) |
|
pixscale = hdul[0].header.get('CD1_2', 0.396) |
|
ntimes = hdul[0].data.shape[0] |
|
nbands = hdul[0].data.shape[1] |
|
item = {"image_id": image_id, "image": file, "ra": ra, "dec": dec, |
|
"pixscale": pixscale, "ntimes": ntimes, "nbands": nbands} |
|
out_f.write(json.dumps(item) + "\n") |
|
|
|
create_jsonl(train_files, "train") |
|
create_jsonl(test_files, "test") |
|
|