jbloom commited on
Commit
48ee9d4
·
1 Parent(s): a4bd7d7

update README and remote usage

Browse files
Files changed (2) hide show
  1. GBI-16-4D.py +16 -10
  2. README.md +59 -1
GBI-16-4D.py CHANGED
@@ -2,12 +2,12 @@ import os
2
  import random
3
  from glob import glob
4
  import json
 
5
 
6
 
7
- import pyarrow as pa
8
  from astropy.io import fits
9
  import datasets
10
- from datasets import DatasetInfo, DownloadManager
11
  from fsspec.core import url_to_fs
12
 
13
  _DESCRIPTION = (
@@ -39,6 +39,8 @@ _URLS = {
39
  }
40
  }
41
 
 
 
42
  class GBI_16_4D(datasets.GeneratorBasedBuilder):
43
  """GBI-16-4D Dataset"""
44
 
@@ -86,14 +88,15 @@ class GBI_16_4D(datasets.GeneratorBasedBuilder):
86
 
87
  ret = []
88
  base_path = dl_manager._base_path
89
- #if base_path.startswith(datasets.config.HF_ENDPOINT):
90
- # base_path = base_path[len(datasets.config.HF_ENDPOINT):].replace("/resolve/", "@", 1)
91
- # base_path = "hf://" + base_path.lstrip("/")
92
  _, path = url_to_fs(base_path)
93
 
94
  for split in ["train", "test"]:
95
- split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split]))
96
- split_file = dl_manager.download(split_file_location)
 
 
 
97
  with open(split_file, encoding="utf-8") as f:
98
  data_filenames = []
99
  data_metadata = []
@@ -106,9 +109,12 @@ class GBI_16_4D(datasets.GeneratorBasedBuilder):
106
  "ntimes": item["ntimes"],
107
  "nbands": item["nbands"],
108
  "image_id": item["image_id"]})
109
-
110
- data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames]
111
- data_files = [dl_manager.download(data_url) for data_url in data_urls]
 
 
 
112
  ret.append(
113
  datasets.SplitGenerator(
114
  name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
 
2
  import random
3
  from glob import glob
4
  import json
5
+ from huggingface_hub import hf_hub_download
6
 
7
 
 
8
  from astropy.io import fits
9
  import datasets
10
+ from datasets import DownloadManager
11
  from fsspec.core import url_to_fs
12
 
13
  _DESCRIPTION = (
 
39
  }
40
  }
41
 
42
+ _REPO_ID = "AstroCompress/GBI-16-4D"
43
+
44
  class GBI_16_4D(datasets.GeneratorBasedBuilder):
45
  """GBI-16-4D Dataset"""
46
 
 
88
 
89
  ret = []
90
  base_path = dl_manager._base_path
91
+ locally_run = not base_path.startswith(datasets.config.HF_ENDPOINT)
 
 
92
  _, path = url_to_fs(base_path)
93
 
94
  for split in ["train", "test"]:
95
+ if locally_run:
96
+ split_file_location = os.path.normpath(os.path.join(path, _URLS[self.config.name][split]))
97
+ split_file = dl_manager.download_and_extract(split_file_location)
98
+ else:
99
+ split_file = hf_hub_download(repo_id=_REPO_ID, filename=_URLS[self.config.name][split], repo_type="dataset")
100
  with open(split_file, encoding="utf-8") as f:
101
  data_filenames = []
102
  data_metadata = []
 
109
  "ntimes": item["ntimes"],
110
  "nbands": item["nbands"],
111
  "image_id": item["image_id"]})
112
+ if locally_run:
113
+ data_urls = [os.path.normpath(os.path.join(path,data_filename)) for data_filename in data_filenames]
114
+ data_files = [dl_manager.download(data_url) for data_url in data_urls]
115
+ else:
116
+ data_urls = data_filenames
117
+ data_files = [hf_hub_download(repo_id=_REPO_ID, filename=data_url, repo_type="dataset") for data_url in data_urls]
118
  ret.append(
119
  datasets.SplitGenerator(
120
  name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
README.md CHANGED
@@ -36,4 +36,62 @@ dataset_info:
36
  download_size: 908845172
37
  dataset_size: 911075540
38
  ---
39
- GBI-16-4D Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  download_size: 908845172
37
  dataset_size: 911075540
38
  ---
39
+
40
+ # GBI-16-4D Dataset
41
+
42
+ GBI-16-4D is a dataset which is part of the AstroCompress project. It contains data assembled from the Sloan Digital SkySurvey (SDSS). Each FITS file contains a series of 800x800 pixel uint16 observations of the same portion of the Stripe82 field, taken in 5 bandpass filters (u, g, r, i, z) over time. The filenames give the
43
+ starting run, field, camcol of the observations, the number of filtered images per timestep, and the number of timesteps. For example:
44
+
45
+ ```cube_center_run4203_camcol6_f44_35-5-800-800.fits```
46
+
47
+ contains 35 frames of 800x800 pixel images in 5 bandpasses starting with run 4203, field 44, and camcol 6. The images are stored in the FITS standard.
48
+
49
+ # Usage
50
+
51
+ You first need to install the `datasets` and `astropy` packages:
52
+
53
+ ```bash
54
+ pip install datasets satrapy
55
+ ```
56
+
57
+ There are two datasets: `tiny` and `full`, each with `train` and `test` splits. The `tiny` dataset has 2 4D images in the `train` and 1 in the `test`. The `full` dataset contains all the images in the `data/` directory.
58
+
59
+ ## Use from Huggingface Directly
60
+
61
+ To directly use from this data from Huggingface, you'll want to log in on the command line before starting python:
62
+
63
+ ```bash
64
+ huggingface-cli login
65
+ ```
66
+
67
+ Then in your python script:
68
+
69
+ ```python
70
+ from datasets import load_dataset
71
+ dataset = load_dataset('AstroCompress/GBI-16-4D', 'tiny')
72
+ ds = dataset.with_format("np")
73
+ ```
74
+
75
+ ## Local Use
76
+
77
+ Alternatively, you can clone this repo and use directly without connecting to hf:
78
+
79
+ ```bash
80
+ git clone https://huggingface.co/datasets/AstroCompress/GBI-16-4D
81
+ ```
82
+
83
+ Then `cd GBI-16-4D` and start python like:
84
+
85
+ ```python
86
+ from datasets import load_dataset
87
+ dataset = load_dataset('./GBI-16-4D.py', 'tiny', data_dir="./data/")
88
+ ds = dataset.with_format("np")
89
+ ```
90
+
91
+ Now you should be able to use the `ds` variable like:
92
+
93
+ ```python
94
+ ds["test"][0]["image"].shape # -> (55, 5, 800, 800)
95
+ ```
96
+
97
+ Note of course that it will take a long time to download and convert the images in the local cache for the `full` dataset. Afterward, the usage should be quick as the files are memory-mapped from disk.