new utils and splits
Browse files- SBI_16_2D.py → SBI-16-2D.py +0 -0
- splits/full_test.jsonl +0 -0
- splits/full_train.jsonl +0 -0
- splits/tiny_test.jsonl +1 -1
- splits/tiny_train.jsonl +2 -2
- utils/__init__.py +0 -0
- utils/create_splits.py +121 -0
SBI_16_2D.py → SBI-16-2D.py
RENAMED
File without changes
|
splits/full_test.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
splits/full_train.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
splits/tiny_test.jsonl
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"image_id": "jdrz11n7q_raw", "image": "../data/jdrz11n7q_raw.fits", "ra": 4.608953170523, "dec": 30.08292391635, "pixscale": 0.05008251063628878, "footprint": [[4.596537292754619, 30.114743173326985, 4.551509758403926, 30.071884367648646, 4.574426433594073, 30.05121263351455, 4.619454495882632, 30.09406362790967], [4.57446707043176, 30.093260596142066, 4.531317302276631, 30.051542448993004, 4.553651889505143, 30.030857573994318, 4.596802061267953, 30.072568429035663]]}
|
splits/tiny_train.jsonl
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
{"
|
2 |
-
{"
|
|
|
1 |
+
{"image_id": "jdne07fnq_raw", "image": "../data/jdne07fnq_raw.fits", "ra": 58.15894870986, "dec": 35.69119598576, "pixscale": 0.05011143018356258, "footprint": [[58.14032335605238, 35.66121385345633, 58.211555242689485, 35.66350683314965, 58.212584136362814, 35.69214259312979, 58.14132664729774, 35.68985021861018], [58.17565225163017, 35.66268076088015, 58.24449094130459, 35.6652962486248, 58.24598074938274, 35.6935841665628, 58.17711759640468, 35.690969525771244]]}
|
2 |
+
{"image_id": "j9fc57s3q_raw", "image": "../data/j9fc57s3q_raw.fits", "ra": 194.5182600318, "dec": 47.0326648271, "pixscale": 0.050102208663596326, "footprint": [[194.56725398623578, 47.029107445340784, 194.53407080188407, 47.08243223084805, 194.4943150205125, 47.07306667853927, 194.527532100821, 47.01975336809004], [194.5503582969605, 47.05544175524446, 194.5176842457192, 47.10682001922871, 194.47820028351606, 47.097913156369316, 194.51090691984348, 47.04654611406288]]}
|
utils/__init__.py
ADDED
File without changes
|
utils/create_splits.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from glob import glob
|
4 |
+
import json
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from tqdm import tqdm
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from astropy.io import fits
|
10 |
+
from astropy.wcs import WCS
|
11 |
+
import datasets
|
12 |
+
from datasets import DownloadManager
|
13 |
+
from fsspec.core import url_to_fs
|
14 |
+
|
15 |
+
def get_fits_footprint(fits_path):
|
16 |
+
"""
|
17 |
+
Process a FITS file to extract WCS information and calculate the footprint.
|
18 |
+
|
19 |
+
Parameters:
|
20 |
+
fits_path (str): Path to the FITS file.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
tuple: A tuple containing the WCS footprint coordinates.
|
24 |
+
"""
|
25 |
+
with fits.open(fits_path) as hdul:
|
26 |
+
wcs = WCS(hdul[1].header)
|
27 |
+
shape = sorted(tuple(wcs.pixel_shape))[:2]
|
28 |
+
footprint = wcs.calc_footprint(axes=shape)
|
29 |
+
coords1 = list(footprint.flatten())
|
30 |
+
|
31 |
+
wcs = WCS(hdul[4].header)
|
32 |
+
shape = sorted(tuple(wcs.pixel_shape))[:2]
|
33 |
+
footprint = wcs.calc_footprint(axes=shape)
|
34 |
+
coords2 = list(footprint.flatten())
|
35 |
+
|
36 |
+
return coords1, coords2
|
37 |
+
|
38 |
+
|
39 |
+
def calculate_pixel_scale(header):
|
40 |
+
"""
|
41 |
+
Calculate the pixel scale separately for X and Y directions and return the mean pixel scale from a FITS header.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
header: A FITS header object containing CD1_1, CD1_2, CD2_1, and CD2_2.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
mean_pixscale: The mean pixel scale in arcseconds per pixel.
|
48 |
+
"""
|
49 |
+
# Extract CD matrix elements
|
50 |
+
CD1_1 = header['CD1_1']
|
51 |
+
CD1_2 = header['CD1_2']
|
52 |
+
CD2_1 = header['CD2_1']
|
53 |
+
CD2_2 = header['CD2_2']
|
54 |
+
|
55 |
+
# Calculate pixel scales
|
56 |
+
pixscale_x = (CD1_1**2 + CD1_2**2)**0.5 * 3600 # Convert from degrees to arcseconds
|
57 |
+
pixscale_y = (CD2_1**2 + CD2_2**2)**0.5 * 3600 # Convert from degrees to arcseconds
|
58 |
+
|
59 |
+
# Calculate mean pixel scale
|
60 |
+
mean_pixscale = (pixscale_x + pixscale_y) / 2
|
61 |
+
|
62 |
+
return mean_pixscale
|
63 |
+
|
64 |
+
|
65 |
+
def make_split_jsonl_files(
|
66 |
+
config_type="tiny", data_dir="../data", outdir="../splits", seed=42
|
67 |
+
):
|
68 |
+
"""
|
69 |
+
Create jsonl files for the SBI-16-2D dataset.
|
70 |
+
|
71 |
+
config_type: str, default="tiny"
|
72 |
+
The type of split to create. Options are "tiny" and "full".
|
73 |
+
data_dir: str, default="./data"
|
74 |
+
The directory where the FITS files are located.
|
75 |
+
outdir: str, default="./splits"
|
76 |
+
The directory where the jsonl files will be created.
|
77 |
+
seed: int, default=42
|
78 |
+
The seed for the random split.
|
79 |
+
"""
|
80 |
+
random.seed(seed)
|
81 |
+
os.makedirs(outdir, exist_ok=True)
|
82 |
+
|
83 |
+
fits_files = glob(os.path.join(data_dir, "*.fits"))
|
84 |
+
random.shuffle(fits_files)
|
85 |
+
if config_type == "tiny":
|
86 |
+
train_files = fits_files[:2]
|
87 |
+
test_files = fits_files[2:3]
|
88 |
+
elif config_type == "full":
|
89 |
+
split_idx = int(0.8 * len(fits_files))
|
90 |
+
train_files = fits_files[:split_idx]
|
91 |
+
test_files = fits_files[split_idx:]
|
92 |
+
else:
|
93 |
+
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
|
94 |
+
|
95 |
+
def create_jsonl(files, split_name):
|
96 |
+
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
|
97 |
+
with open(output_file, "w") as out_f:
|
98 |
+
for file in tqdm(files):
|
99 |
+
#print(file, flush=True, end="...")
|
100 |
+
with fits.open(file, memmap=False) as hdul:
|
101 |
+
image_id = os.path.basename(file).split(".fits")[0]
|
102 |
+
ra = hdul["SCI"].header.get("CRVAL1", 0)
|
103 |
+
dec = hdul["SCI"].header.get("CRVAL2", 0)
|
104 |
+
pixscale = calculate_pixel_scale(hdul[1].header)
|
105 |
+
footprint = get_fits_footprint(file)
|
106 |
+
item = {
|
107 |
+
"image_id": image_id,
|
108 |
+
"image": file,
|
109 |
+
"ra": ra,
|
110 |
+
"dec": dec,
|
111 |
+
"pixscale": pixscale,
|
112 |
+
"footprint": footprint
|
113 |
+
}
|
114 |
+
out_f.write(json.dumps(item) + "\n")
|
115 |
+
|
116 |
+
create_jsonl(train_files, "train")
|
117 |
+
create_jsonl(test_files, "test")
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
make_split_jsonl_files("tiny")
|
121 |
+
make_split_jsonl_files("full")
|