File size: 9,554 Bytes
9fa663b 18edf24 9fa663b 9c3c821 9fa663b 88109f2 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 4f8ca91 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 8b8c6d0 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 9fa663b 9c3c821 88109f2 9c3c821 88109f2 9c3c821 88109f2 ca06ac5 88109f2 d9e8f74 88109f2 9c3c821 d9e8f74 88109f2 d9e8f74 88109f2 9c3c821 ca06ac5 07ab3e6 88109f2 d9e8f74 88109f2 d9e8f74 88109f2 d9e8f74 88109f2 d9e8f74 9c3c821 9fa663b 88109f2 9fa663b 9c3c821 fec059c 88109f2 d9e8f74 9fa663b 88109f2 9c3c821 9fa663b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from io import BytesIO
import datasets
import pandas as pd
import numpy as np
import json
from astropy.io import fits
from .utils import ParallelZipFile
_DESCRIPTION = (
"AstroM3 is a multi-modal time-series astronomy dataset containing photometry, spectra, "
"and metadata features for variable stars. The dataset consists of multiple subsets "
"('full', 'sub10', 'sub25', 'sub50') and supports different random seeds (42, 66, 0, 12, 123). "
"\n\nEach sample includes:\n"
"- **Photometry**: Time-series light curve data with shape `(N, 3)` representing time, flux, "
"and flux uncertainty.\n"
"- **Spectra**: Spectral observations with shape `(M, 3)` containing wavelength, flux, and flux uncertainty.\n"
"- **Metadata**: Auxiliary astrophysical and photometric parameters (e.g., magnitudes, parallax, motion data) "
"stored as a dictionary.\n"
"- **Label**: The classification of the star as a string."
)
_HOMEPAGE = "https://huggingface.co/datasets/AstroM3"
_LICENSE = "CC BY 4.0"
_URL = "https://huggingface.co/datasets/MeriDK/AstroM3Dataset/resolve/main"
_VERSION = datasets.Version("1.0.0")
_CITATION = """
@article{rizhko2024astrom,
title={AstroM $\^{} 3$: A self-supervised multimodal model for astronomy},
author={Rizhko, Mariia and Bloom, Joshua S},
journal={arXiv preprint arXiv:2411.08842},
year={2024}
}
"""
_PHOTO_COLS = ['amplitude', 'period', 'lksl_statistic', 'rfr_score']
_METADATA_COLS = [
'mean_vmag', 'phot_g_mean_mag', 'e_phot_g_mean_mag', 'phot_bp_mean_mag', 'e_phot_bp_mean_mag', 'phot_rp_mean_mag',
'e_phot_rp_mean_mag', 'bp_rp', 'parallax', 'parallax_error', 'parallax_over_error', 'pmra', 'pmra_error', 'pmdec',
'pmdec_error', 'j_mag', 'e_j_mag', 'h_mag', 'e_h_mag', 'k_mag', 'e_k_mag', 'w1_mag', 'e_w1_mag',
'w2_mag', 'e_w2_mag', 'w3_mag', 'w4_mag', 'j_k', 'w1_w2', 'w3_w4', 'pm', 'ruwe', 'l', 'b'
]
_ALL_COLS = _PHOTO_COLS + _METADATA_COLS
_METADATA_FUNC = {
"abs": [
"mean_vmag",
"phot_g_mean_mag",
"phot_bp_mean_mag",
"phot_rp_mean_mag",
"j_mag",
"h_mag",
"k_mag",
"w1_mag",
"w2_mag",
"w3_mag",
"w4_mag",
],
"cos": ["l"],
"sin": ["b"],
"log": ["period"]
}
class AstroM3Dataset(datasets.GeneratorBasedBuilder):
"""Hugging Face dataset for AstroM3, a multi-modal variable star dataset."""
# Default configuration (used if no config is specified)
DEFAULT_CONFIG_NAME = "full_42"
# Define dataset configurations (subsets, seeds, and normalization variants)
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=f"{sub}_{seed}{norm}", version=_VERSION)
for sub in ["full", "sub10", "sub25", "sub50"]
for seed in [42, 66, 0, 12, 123]
for norm in ["", "_norm"]
]
def _info(self):
"""Defines the dataset schema, including features and metadata."""
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
"spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
"metadata": {
"meta_cols": {el: datasets.Value("float32") for el in _METADATA_COLS},
"photo_cols": {el: datasets.Value("float32") for el in _PHOTO_COLS},
},
"label": datasets.Value("string"),
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _get_photometry(self, file_name):
"""Loads photometric light curve data from a compressed file."""
csv = BytesIO()
file_name = file_name.replace(' ', '') # Ensure filenames are correctly formatted
data_path = f'vardb_files/{file_name}.dat'
# Read the photometry file from the compressed ZIP
csv.write(self.reader_v.read(data_path))
csv.seek(0)
# Read light curve data
lc = pd.read_csv(csv, sep=r'\s+', skiprows=2, names=['HJD', 'MAG', 'MAG_ERR', 'FLUX', 'FLUX_ERR'],
dtype={'HJD': float, 'MAG': float, 'MAG_ERR': float, 'FLUX': float, 'FLUX_ERR': float})
return lc[['HJD', 'FLUX', 'FLUX_ERR']].values
@staticmethod
def _get_spectra(file_name):
"""Loads spectral data from a FITS file."""
hdulist = fits.open(file_name)
len_list = len(hdulist)
if len_list == 1:
head = hdulist[0].header
scidata = hdulist[0].data
coeff0 = head['COEFF0']
coeff1 = head['COEFF1']
pixel_num = head['NAXIS1']
specflux = scidata[0,]
ivar = scidata[1,]
wavelength = np.linspace(0, pixel_num - 1, pixel_num)
wavelength = np.power(10, (coeff0 + wavelength * coeff1))
hdulist.close()
elif len_list == 2:
head = hdulist[0].header
scidata = hdulist[1].data
wavelength = scidata[0][2]
ivar = scidata[0][1]
specflux = scidata[0][0]
else:
raise ValueError(f'Wrong number of fits files. {len_list} should be 1 or 2')
return np.vstack((wavelength, specflux, ivar)).T
@staticmethod
def transform(df):
"""Applies transformations to metadata."""
for transformation_type, value in _METADATA_FUNC.items():
if transformation_type == "abs":
for col in value:
df[col] = (
df[col] - 10 + 5 * np.log10(np.where(df["parallax"] <= 0, 1, df["parallax"]))
)
elif transformation_type == "cos":
for col in value:
df[col] = np.cos(np.radians(df[col]))
elif transformation_type == "sin":
for col in value:
df[col] = np.sin(np.radians(df[col]))
elif transformation_type == "log":
for col in value:
df[col] = np.log10(df[col])
def _split_generators(self, dl_manager):
"""Defines dataset splits and downloads required files."""
# Get subset and seed info from the name
name = self.config.name.split("_")
sub, seed = name[0], name[1]
# Load the splits and info files
urls = {
"train": f"splits/{sub}/{seed}/train.csv",
"val": f"splits/{sub}/{seed}/val.csv",
"test": f"splits/{sub}/{seed}/test.csv",
"info": f"splits/{sub}/{seed}/info.json",
}
extracted_path = dl_manager.download(urls)
# Download all spectra files
spectra_urls = {}
for split in ("train", "val", "test"):
df = pd.read_csv(extracted_path[split])
for _, row in df.iterrows():
spectra_urls[row["spec_filename"]] = f"spectra/{row['target']}/{row['spec_filename']}"
spectra_files = dl_manager.download(spectra_urls)
# Download photometry data and initialize ZIP reader
photometry_path = dl_manager.download(f"photometry.zip")
self.reader_v = ParallelZipFile(photometry_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"csv_path": extracted_path["train"],
"info_path": extracted_path["info"],
"spectra_files": spectra_files,
"split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"csv_path": extracted_path["val"],
"info_path": extracted_path["info"],
"spectra_files": spectra_files,
"split": "val"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"csv_path": extracted_path["test"],
"info_path": extracted_path["info"],
"spectra_files": spectra_files,
"split": "test"}
),
]
def _generate_examples(self, csv_path, info_path, spectra_files, split):
"""Yields individual dataset examples."""
df = pd.read_csv(csv_path)
with open(info_path) as f:
info = json.loads(f.read())
if "norm" in self.config.name:
# Apply metadata transformations
self.transform(df)
# Normalize using precomputed mean and standard deviation
df[_ALL_COLS] = (df[_ALL_COLS] - info["mean"]) / info["std"]
for idx, row in df.iterrows():
photometry = self._get_photometry(row["name"])
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
yield idx, {
"photometry": photometry,
"spectra": spectra,
"metadata": {
"meta_cols": {el: row[el] for el in _METADATA_COLS},
"photo_cols": {el: row[el] for el in _PHOTO_COLS},
},
"label": row["target"],
}
|