File size: 8,178 Bytes
17b9b62 f6a7dfc 17b9b62 f6a7dfc 17b9b62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from collections import defaultdict
import datasets
from datasets import load_dataset
import numpy as np
from scipy import stats
METADATA_FUNC = {
"abs": [
"mean_vmag",
"phot_g_mean_mag",
"phot_bp_mean_mag",
"phot_rp_mean_mag",
"j_mag",
"h_mag",
"k_mag",
"w1_mag",
"w2_mag",
"w3_mag",
"w4_mag",
],
"cos": ["l"],
"sin": ["b"],
"log": ["period"]
}
def preprocess_spectra(example):
"""
Preprocess spectral data. Steps:
- Interpolate flux and flux error to a fixed wavelength grid (3850 to 9000 Å).
- Normalize flux using mean and median absolute deviation (MAD).
- Append MAD as an auxiliary feature.
"""
spectra = example['spectra']
wavelengths = spectra[:, 0]
flux = spectra[:, 1]
flux_err = spectra[:, 2]
# Interpolate flux and flux error onto a fixed grid
new_wavelengths = np.arange(3850, 9000, 2)
flux = np.interp(new_wavelengths, wavelengths, flux)
flux_err = np.interp(new_wavelengths, wavelengths, flux_err)
# Normalize flux and flux error
mean = np.mean(flux)
mad = stats.median_abs_deviation(flux[flux != 0])
flux = (flux - mean) / mad
flux_err = flux_err / mad
aux_values = np.full_like(flux, np.log10(mad)) # Store MAD as an auxiliary feature
# Stack processed data into a single array
spectra = np.vstack([flux, flux_err, aux_values])
example['spectra'] = spectra
return example
def preprocess_lc(example):
"""
Preprocess photometry (light curve) data. Steps:
- Remove duplicate time entries.
- Sort by Heliocentric Julian Date (HJD).
- Normalize flux and flux error using mean and median absolute deviation (MAD).
- Scale time values between 0 and 1.
- Append auxiliary features (log MAD and time span delta_t).
"""
X = example['photometry']
aux_values = np.stack(list(example['metadata']['photo_cols'].values()))
# Remove duplicate entries
X = np.unique(X, axis=0)
# Sort based on HJD
sorted_indices = np.argsort(X[:, 0])
X = X[sorted_indices]
# Normalize flux and flux error
mean = X[:, 1].mean()
mad = stats.median_abs_deviation(X[:, 1])
X[:, 1] = (X[:, 1] - mean) / mad
X[:, 2] = X[:, 2] / mad
# Compute delta_t (time span of the light curve in years)
delta_t = (X[:, 0].max() - X[:, 0].min()) / 365
# Scale time from 0 to 1
X[:, 0] = (X[:, 0] - X[:, 0].min()) / (X[:, 0].max() - X[:, 0].min())
# Add MAD and delta_t to auxiliary metadata features
aux_values = np.concatenate((aux_values, [np.log10(mad), delta_t]))
# Add auxiliary features to the sequence
aux_values = np.tile(aux_values, (X.shape[0], 1))
X = np.concatenate((X, aux_values), axis=-1)
example['photometry'] = X
return example
def transform_metadata(example):
"""
Transforms the metadata of an example based on METADATA_FUNC.
"""
metadata = example["metadata"]
# Process 'abs' transformation on meta_cols:
# Note: This transformation uses 'parallax' from meta_cols.
for col in METADATA_FUNC["abs"]:
if col in metadata["meta_cols"]:
# Use np.where to avoid issues when parallax is non-positive.
metadata["meta_cols"][col] = (
metadata["meta_cols"][col]
- 10
+ 5 * np.log10(np.where(metadata["meta_cols"]["parallax"] <= 0, 1, metadata["meta_cols"]["parallax"]))
)
# Process 'cos' transformation on meta_cols:
for col in METADATA_FUNC["cos"]:
if col in metadata["meta_cols"]:
metadata["meta_cols"][col] = np.cos(np.radians(metadata["meta_cols"][col]))
# Process 'sin' transformation on meta_cols:
for col in METADATA_FUNC["sin"]:
if col in metadata["meta_cols"]:
metadata["meta_cols"][col] = np.sin(np.radians(metadata["meta_cols"][col]))
# Process 'log' transformation on photo_cols:
for col in METADATA_FUNC["log"]:
if col in metadata["photo_cols"]:
metadata["photo_cols"][col] = np.log10(metadata["photo_cols"][col])
# Update the example with the transformed metadata.
example["metadata"] = metadata
return example
def compute_metadata_stats(ds):
"""
Compute the mean and standard deviation for each column in meta_cols and photo_cols.
"""
meta_vals = defaultdict(list)
photo_vals = defaultdict(list)
# Accumulate values for each column
for example in ds:
meta = example["metadata"]["meta_cols"]
photo = example["metadata"]["photo_cols"]
for col, value in meta.items():
meta_vals[col].append(value)
for col, value in photo.items():
photo_vals[col].append(value)
# Compute mean and standard deviation for each column
stats = {"meta_cols": {}, "photo_cols": {}}
for col, values in meta_vals.items():
arr = np.stack(values)
stats["meta_cols"][col] = {"mean": arr.mean(), "std": arr.std()}
for col, values in photo_vals.items():
arr = np.stack(values)
stats["photo_cols"][col] = {"mean": arr.mean(), "std": arr.std()}
return stats
def normalize_metadata(example, info):
"""
Normalize metadata values using z-score normalization:
(value - mean) / std.
The 'stats' parameter should be a dictionary with computed means and stds for both meta_cols and photo_cols.
"""
metadata = example["metadata"]
# Normalize meta_cols
for col, value in metadata["meta_cols"].items():
mean = info["meta_cols"][col]["mean"]
std = info["meta_cols"][col]["std"]
metadata["meta_cols"][col] = (metadata["meta_cols"][col] - mean) / std
# Normalize photo_cols
for col, value in metadata["photo_cols"].items():
mean = info["photo_cols"][col]["mean"]
std = info["photo_cols"][col]["std"]
metadata["photo_cols"][col] = (metadata["photo_cols"][col] - mean) / std
example["metadata"] = metadata
return example
def preprocess_metadata(example):
"""
Extract the values from 'meta_cols' and stack them into a numpy array.
"""
example["metadata"] = np.stack(list(example["metadata"]["meta_cols"].values()))
return example
def main():
"""
Main function for processing and uploading datasets.
- Loads each dataset based on subset and random seed.
- Applies preprocessing for spectra, photometry, and metadata.
- Casts columns to appropriate feature types.
- Pushes the processed dataset to Hugging Face Hub.
"""
for sub in ["sub10", "sub25", "sub50", "full"]:
for seed in [42, 66, 0, 12, 123]:
name = f"{sub}_{seed}"
print(f"Processing: {name}")
# Load dataset from Hugging Face Hub
ds = load_dataset('AstroMLCore/AstroM3Dataset', name=name, trust_remote_code=True, num_proc=16)
ds = ds.with_format('numpy')
# Transform and normalize metadata
ds = ds.map(transform_metadata, num_proc=16)
info = compute_metadata_stats(ds['train'])
ds = ds.map(lambda example: normalize_metadata(example, info))
# Transform spectra
ds = ds.map(preprocess_spectra, num_proc=16)
ds = ds.cast_column('spectra', datasets.Array2D(shape=(3, 2575), dtype='float32'))
# Transform photometry
ds = ds.map(preprocess_lc, num_proc=16)
ds = ds.cast_column('photometry', datasets.Array2D(shape=(None, 9), dtype='float32'))
# Stack metadata into one numpy array
ds = ds.map(preprocess_metadata, num_proc=16)
ds = ds.cast_column('metadata', datasets.Sequence(feature=datasets.Value('float32'), length=34))
# Change label type
ds = ds.cast_column('label', datasets.ClassLabel(
names=['DSCT', 'EA', 'EB', 'EW', 'HADS', 'M', 'ROT', 'RRAB', 'RRC', 'SR']))
# Upload processed dataset to Hugging Face Hub
ds.push_to_hub('AstroMLCore/AstroM3Processed', config_name=name)
if __name__ == '__main__':
main()
|