MeriDK commited on
Commit
352a93a
·
1 Parent(s): 1215fb7

Updated loading logic

Browse files
AstroM3Dataset.py CHANGED
@@ -1,4 +1,3 @@
1
- import os
2
  from io import BytesIO
3
  import datasets
4
  import pandas as pd
@@ -6,7 +5,7 @@ import numpy as np
6
  import json
7
  from astropy.io import fits
8
 
9
- from utils.parallelzipfile import ParallelZipFile as ZipFile
10
 
11
  _DESCRIPTION = (
12
  "AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
@@ -49,8 +48,8 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
49
  description=_DESCRIPTION,
50
  features=datasets.Features(
51
  {
52
- "photometry": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
53
- "spectra": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
54
  "metadata": datasets.Sequence(datasets.Value("float32"), length=38),
55
  "label": datasets.Value("string"),
56
  }
@@ -100,6 +99,29 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
100
 
101
  return np.vstack((wavelength, specflux, ivar)).T
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  def _split_generators(self, dl_manager):
104
  """Returns SplitGenerators for train, val, and test."""
105
 
@@ -128,7 +150,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
128
 
129
  # Load photometry and init reader
130
  photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
131
- self.reader_v = ZipFile(photometry_path)
132
 
133
  return [
134
  datasets.SplitGenerator(
@@ -159,10 +181,29 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
159
  with open(info_path) as f:
160
  info = json.loads(f.read())
161
 
162
- for idx, row in df.iterrows():
163
  photometry = self._get_photometry(row["name"])
164
  spectra = self._get_spectra(spectra_files[row["spec_filename"]])
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
  yield idx, {
167
  "photometry": photometry,
168
  "spectra": spectra,
 
 
1
  from io import BytesIO
2
  import datasets
3
  import pandas as pd
 
5
  import json
6
  from astropy.io import fits
7
 
8
+ from utils import ParallelZipFile
9
 
10
  _DESCRIPTION = (
11
  "AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
 
48
  description=_DESCRIPTION,
49
  features=datasets.Features(
50
  {
51
+ "photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
52
+ "spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
53
  "metadata": datasets.Sequence(datasets.Value("float32"), length=38),
54
  "label": datasets.Value("string"),
55
  }
 
99
 
100
  return np.vstack((wavelength, specflux, ivar)).T
101
 
102
+ @staticmethod
103
+ def _transform_metadata(row, info):
104
+ row_copy = row.copy(deep=True)
105
+
106
+ for transformation_type, value in info["metadata_func"].items():
107
+ if transformation_type == "abs":
108
+ for col in value:
109
+ row_copy[col] = (
110
+ row_copy[col] - 10 + 5 * np.log10(np.where(row_copy["parallax"] <= 0, 1, row_copy["parallax"]))
111
+ )
112
+ elif transformation_type == "cos":
113
+ for col in value:
114
+ row_copy[col] = np.cos(np.radians(row_copy[col]))
115
+ elif transformation_type == "sin":
116
+ for col in value:
117
+ row_copy[col] = np.sin(np.radians(row_copy[col]))
118
+ elif transformation_type == "log":
119
+ for col in value:
120
+ row_copy[col] = np.log10(row_copy[col])
121
+
122
+ row_copy = (row_copy - info["mean"]) / info["std"]
123
+ return row_copy
124
+
125
  def _split_generators(self, dl_manager):
126
  """Returns SplitGenerators for train, val, and test."""
127
 
 
150
 
151
  # Load photometry and init reader
152
  photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
153
+ self.reader_v = ParallelZipFile(photometry_path)
154
 
155
  return [
156
  datasets.SplitGenerator(
 
181
  with open(info_path) as f:
182
  info = json.loads(f.read())
183
 
184
+ for i, (idx, row) in enumerate(df.iterrows()):
185
  photometry = self._get_photometry(row["name"])
186
  spectra = self._get_spectra(spectra_files[row["spec_filename"]])
187
 
188
+ metadata = row[info["all_cols"]]
189
+ # metadata_norm = self._transform_metadata(metadata, info)
190
+
191
+ # yield idx, {
192
+ # "photometry": photometry,
193
+ # "spectra": spectra,
194
+ # "metadata": {
195
+ # "original": {
196
+ # "photometry": metadata[info["photo_cols"]].to_dict(),
197
+ # "metadata": metadata[info["meta_cols"]].to_dict()
198
+ # },
199
+ # "transformed": {
200
+ # "photometry": metadata_norm[info["photo_cols"]].to_dict(),
201
+ # "metadata": metadata_norm[info["meta_cols"]].to_dict()
202
+ # }
203
+ # },
204
+ # "label": row["target"],
205
+ # }
206
+
207
  yield idx, {
208
  "photometry": photometry,
209
  "spectra": spectra,
utils/parallelzipfile.py → utils.py RENAMED
File without changes
utils/__init__.py DELETED
File without changes