Updated loading logic
Browse files- AstroM3Dataset.py +47 -6
- utils/parallelzipfile.py → utils.py +0 -0
- utils/__init__.py +0 -0
AstroM3Dataset.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
from io import BytesIO
|
3 |
import datasets
|
4 |
import pandas as pd
|
@@ -6,7 +5,7 @@ import numpy as np
|
|
6 |
import json
|
7 |
from astropy.io import fits
|
8 |
|
9 |
-
from utils
|
10 |
|
11 |
_DESCRIPTION = (
|
12 |
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
|
@@ -49,8 +48,8 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
49 |
description=_DESCRIPTION,
|
50 |
features=datasets.Features(
|
51 |
{
|
52 |
-
"photometry": datasets.
|
53 |
-
"spectra": datasets.
|
54 |
"metadata": datasets.Sequence(datasets.Value("float32"), length=38),
|
55 |
"label": datasets.Value("string"),
|
56 |
}
|
@@ -100,6 +99,29 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
100 |
|
101 |
return np.vstack((wavelength, specflux, ivar)).T
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def _split_generators(self, dl_manager):
|
104 |
"""Returns SplitGenerators for train, val, and test."""
|
105 |
|
@@ -128,7 +150,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
128 |
|
129 |
# Load photometry and init reader
|
130 |
photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
|
131 |
-
self.reader_v =
|
132 |
|
133 |
return [
|
134 |
datasets.SplitGenerator(
|
@@ -159,10 +181,29 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
159 |
with open(info_path) as f:
|
160 |
info = json.loads(f.read())
|
161 |
|
162 |
-
for idx, row in df.iterrows():
|
163 |
photometry = self._get_photometry(row["name"])
|
164 |
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
yield idx, {
|
167 |
"photometry": photometry,
|
168 |
"spectra": spectra,
|
|
|
|
|
1 |
from io import BytesIO
|
2 |
import datasets
|
3 |
import pandas as pd
|
|
|
5 |
import json
|
6 |
from astropy.io import fits
|
7 |
|
8 |
+
from utils import ParallelZipFile
|
9 |
|
10 |
_DESCRIPTION = (
|
11 |
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
|
|
|
48 |
description=_DESCRIPTION,
|
49 |
features=datasets.Features(
|
50 |
{
|
51 |
+
"photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
52 |
+
"spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
|
53 |
"metadata": datasets.Sequence(datasets.Value("float32"), length=38),
|
54 |
"label": datasets.Value("string"),
|
55 |
}
|
|
|
99 |
|
100 |
return np.vstack((wavelength, specflux, ivar)).T
|
101 |
|
102 |
+
@staticmethod
|
103 |
+
def _transform_metadata(row, info):
|
104 |
+
row_copy = row.copy(deep=True)
|
105 |
+
|
106 |
+
for transformation_type, value in info["metadata_func"].items():
|
107 |
+
if transformation_type == "abs":
|
108 |
+
for col in value:
|
109 |
+
row_copy[col] = (
|
110 |
+
row_copy[col] - 10 + 5 * np.log10(np.where(row_copy["parallax"] <= 0, 1, row_copy["parallax"]))
|
111 |
+
)
|
112 |
+
elif transformation_type == "cos":
|
113 |
+
for col in value:
|
114 |
+
row_copy[col] = np.cos(np.radians(row_copy[col]))
|
115 |
+
elif transformation_type == "sin":
|
116 |
+
for col in value:
|
117 |
+
row_copy[col] = np.sin(np.radians(row_copy[col]))
|
118 |
+
elif transformation_type == "log":
|
119 |
+
for col in value:
|
120 |
+
row_copy[col] = np.log10(row_copy[col])
|
121 |
+
|
122 |
+
row_copy = (row_copy - info["mean"]) / info["std"]
|
123 |
+
return row_copy
|
124 |
+
|
125 |
def _split_generators(self, dl_manager):
|
126 |
"""Returns SplitGenerators for train, val, and test."""
|
127 |
|
|
|
150 |
|
151 |
# Load photometry and init reader
|
152 |
photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
|
153 |
+
self.reader_v = ParallelZipFile(photometry_path)
|
154 |
|
155 |
return [
|
156 |
datasets.SplitGenerator(
|
|
|
181 |
with open(info_path) as f:
|
182 |
info = json.loads(f.read())
|
183 |
|
184 |
+
for i, (idx, row) in enumerate(df.iterrows()):
|
185 |
photometry = self._get_photometry(row["name"])
|
186 |
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
187 |
|
188 |
+
metadata = row[info["all_cols"]]
|
189 |
+
# metadata_norm = self._transform_metadata(metadata, info)
|
190 |
+
|
191 |
+
# yield idx, {
|
192 |
+
# "photometry": photometry,
|
193 |
+
# "spectra": spectra,
|
194 |
+
# "metadata": {
|
195 |
+
# "original": {
|
196 |
+
# "photometry": metadata[info["photo_cols"]].to_dict(),
|
197 |
+
# "metadata": metadata[info["meta_cols"]].to_dict()
|
198 |
+
# },
|
199 |
+
# "transformed": {
|
200 |
+
# "photometry": metadata_norm[info["photo_cols"]].to_dict(),
|
201 |
+
# "metadata": metadata_norm[info["meta_cols"]].to_dict()
|
202 |
+
# }
|
203 |
+
# },
|
204 |
+
# "label": row["target"],
|
205 |
+
# }
|
206 |
+
|
207 |
yield idx, {
|
208 |
"photometry": photometry,
|
209 |
"spectra": spectra,
|
utils/parallelzipfile.py → utils.py
RENAMED
File without changes
|
utils/__init__.py
DELETED
File without changes
|