Datasets:
File size: 5,317 Bytes
e45e100 c377fc1 9f4a861 c377fc1 9f4a861 c377fc1 685a40d d59959b 92bede6 d59959b 92bede6 d59959b 92bede6 d11ec71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
task_categories:
- image-classification
- image-segmentation
- image-to-text
tags:
- OCR
- Text-Image Pairs
size_categories:
- 10M<n<100M
---
# Atlas PDF to Image Cluster Dataset
https://github.com/atlasunified/PDF-to-Image-Cluster
# Dataset Description
This dataset is a collection of text extracted from PDF files, originating from various online resources. The dataset was generated using a series of Python scripts forming a robust pipeline that automated the tasks of downloading, converting, and managing the data.
# Dataset Summary
![Sample Image 1](./PDF-to-Image-Cluster/Images/00205489.jpg)
```
Bounding box: [[0.10698689956331878, 0.008733624454148471], [0.7336244541484717, 0.008733624454148471], [0.7336244541484717, 0.06986899563318777], [0.10698689956331878, 0.06986899563318777]], Text: the Simchas Bais
Bounding box: [[0.013100436681222707, 0.12663755458515283], [0.7314410480349345, 0.12663755458515283], [0.7314410480349345, 0.1965065502183406], [0.013100436681222707, 0.1965065502183406]], Text: they are engaged in
Bounding box: [[0.0, 0.2445414847161572], [0.7379912663755459, 0.23580786026200873], [0.7379912663755459, 0.31222707423580787], [0.0, 0.31877729257641924]], Text: hey could become
Bounding box: [[0.008733624454148471, 0.36026200873362446], [0.7336244541484717, 0.36026200873362446], [0.7336244541484717, 0.425764192139738], [0.008733624454148471, 0.425764192139738]], Text: evil inclination still
Bounding box: [[0.004366812227074236, 0.48034934497816595], [0.31004366812227074, 0.4847161572052402], [0.31004366812227074, 0.5567685589519651], [0.004366812227074236, 0.5502183406113537]], Text: certainly
Bounding box: [[0.36899563318777295, 0.4890829694323144], [0.5480349344978166, 0.4890829694323144], [0.5480349344978166, 0.5524017467248908], [0.36899563318777295, 0.5524017467248908]], Text: men
Bounding box: [[0.5851528384279476, 0.4781659388646288], [0.740174672489083, 0.4781659388646288], [0.740174672489083, 0.5524017467248908], [0.5851528384279476, 0.5524017467248908]], Text: and
Bounding box: [[0.008733624454148471, 0.6004366812227074], [0.7336244541484717, 0.6004366812227074], [0.7336244541484717, 0.6681222707423581], [0.008733624454148471, 0.6681222707423581]], Text: e in separate areas.
Bounding box: [[0.9454148471615721, 0.6157205240174672], [0.9978165938864629, 0.6157205240174672], [0.9978165938864629, 0.6877729257641921], [0.9454148471615721, 0.6877729257641921]], Text: T
Bounding box: [[0.9519650655021834, 0.7532751091703057], [0.9978165938864629, 0.7532751091703057], [0.9978165938864629, 0.8078602620087336], [0.9519650655021834, 0.8078602620087336]], Text: 0
Bounding box: [[0.9475982532751092, 0.851528384279476], [0.9978165938864629, 0.851528384279476], [0.9978165938864629, 0.9235807860262009], [0.9475982532751092, 0.9235807860262009]], Text: fl\n
```
![Sample Image 2](./PDF-to-Image-Cluster/Images/00260498.jpg)
```
Bounding box: [[0.011570247933884297, 0.428099173553719], [0.9867768595041322, 0.428099173553719], [0.9867768595041322, 0.4677685950413223], [0.011570247933884297, 0.4677685950413223]], Text: tural person subiect to the reguirements laic
Bounding box: [[0.0049586776859504135, 0.5173553719008265], [0.9884297520661157, 0.5140495867768595], [0.9884297520661157, 0.5636363636363636], [0.0049586776859504135, 0.5669421487603306]], Text: priate, the provisions of sections 43 and 44;
Bounding box: [[0.009917355371900827, 0.6082644628099173], [0.9900826446280991, 0.6082644628099173], [0.9900826446280991, 0.6528925619834711], [0.009917355371900827, 0.6528925619834711]], Text: section 3. A person with no municipality of r
Bounding box: [[0.009917355371900827, 0.7041322314049587], [0.9917355371900827, 0.7041322314049587], [0.9917355371900827, 0.743801652892562], [0.009917355371900827, 0.743801652892562]], Text: ied by the authorities in their country of resi
Bounding box: [[0.0049586776859504135, 0.7917355371900826], [0.9917355371900827, 0.7950413223140496], [0.9917355371900827, 0.8396694214876033], [0.0049586776859504135, 0.8347107438016529]], Text: firearm or firearm component in question ir
```
![Sample Image 3](./PDF-to-Image-Cluster/Images/00301564.jpg)
```
Bounding box: [[0.19349005424954793, 0.5334538878842676], [0.7902350813743219, 0.5370705244122965], [0.7902350813743219, 0.5822784810126582], [0.19349005424954793, 0.5786618444846293]], Text: Generic Drug Description
Bounding box: [[0.19529837251356238, 0.6274864376130199], [0.9909584086799277, 0.6274864376130199], [0.9909584086799277, 0.6708860759493671], [0.19529837251356238, 0.6708860759493671]], Text: Carboxymethylcellulose Sodium (
```
# Supported Tasks and Use Cases
The primary use case of this dataset is to serve as training data for machine learning models that operate on text data. This may include, but is not limited to, text classification, information extraction, named entity recognition, and machine translation tasks.
# Dataset Creation
This dataset was generated through a multi-stage Python pipeline designed to handle the downloading, conversion, and management of large datasets.
# Data Fields
As the dataset contains text extracted from PDF files, the data fields primarily include the extracted text, alongside metadata about the source PDF, such as file size, number of pages, and bounding box information. |