--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 715028 num_examples: 10003 - name: test num_bytes: 204010 num_examples: 3080 download_size: 378619 dataset_size: 919038 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 3420 num_examples: 77 download_size: 4651 dataset_size: 3420 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* --- # banking77 This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset banking77 = Dataset.from_datasets("AutoIntent/banking77") ``` ## Source This dataset is taken from `PolyAI/banking77` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python """Convert events dataset to autointent internal format and scheme.""" import json import requests from datasets import Dataset as HFDataset from datasets import load_dataset from autointent import Dataset from autointent.schemas import Intent, Sample def get_intents_data(github_file: str | None = None) -> list[Intent]: """Load specific json from HF repo.""" github_file = github_file or "https://huggingface.co/datasets/PolyAI/banking77/resolve/main/dataset_infos.json" raw_text = requests.get(github_file, timeout=5).text dataset_description = json.loads(raw_text) intent_names = dataset_description["default"]["features"]["label"]["names"] return [Intent(id=i, name=name) for i, name in enumerate(intent_names)] def convert_banking77( banking77_split: HFDataset, intents_data: list[Intent], shots_per_intent: int | None = None ) -> list[Sample]: """Convert one split into desired format.""" all_labels = sorted(banking77_split.unique("label")) n_classes = len(intents_data) if all_labels != list(range(n_classes)): msg = "Something's wrong" raise ValueError(msg) classwise_samples = [[] for _ in range(n_classes)] for sample in banking77_split: target_list = classwise_samples[sample["label"]] if shots_per_intent is not None and len(target_list) >= shots_per_intent: continue target_list.append(Sample(utterance=sample["text"], label=sample["label"])) samples = [sample for samples_from_one_class in classwise_samples for sample in samples_from_one_class] print(f"{len(samples)=}") return samples if __name__ == "__main__": intents_data = get_intents_data() banking77 = load_dataset("PolyAI/banking77", trust_remote_code=True) train_samples = convert_banking77(banking77["train"], intents_data=intents_data) test_samples = convert_banking77(banking77["test"], intents_data=intents_data) banking77_converted = Dataset.from_dict( {"train": train_samples, "test": test_samples, "intents": intents_data} ) ```