|
--- |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: utterance |
|
dtype: string |
|
- name: label |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2163109 |
|
num_examples: 16077 |
|
download_size: 444270 |
|
dataset_size: 2177768.2414629594 |
|
- config_name: intents |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regexp_full_match |
|
sequence: 'null' |
|
- name: regexp_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: 'null' |
|
splits: |
|
- name: intents |
|
num_bytes: 387 |
|
num_examples: 13 |
|
download_size: 3096 |
|
dataset_size: 387 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- config_name: intents |
|
data_files: |
|
- split: intents |
|
path: intents/intents-* |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
--- |
|
|
|
# dstc3 |
|
|
|
This is a text classification dataset. It is intended for machine learning research and experimentation. |
|
|
|
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). |
|
|
|
## Usage |
|
|
|
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from autointent import Dataset |
|
|
|
dstc3 = Dataset.from_datasets("AutoIntent/dstc3") |
|
``` |
|
|
|
## Source |
|
|
|
This dataset is taken from `marcel-gohsen/dstc3` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from datasets import load_dataset |
|
from autointent import Dataset |
|
|
|
# load original data |
|
dstc3 = load_dataset("marcel-gohsen/dstc3") |
|
|
|
# extract intent names |
|
dstc3["test"] = dstc3["test"].filter(lambda example: example["transcript"] != "") |
|
intent_names = sorted(set(name for intents in dstc3["test"]["intent"] for name in intents)) |
|
intent_names.remove("reqmore") |
|
dstc3["test"].filter(lambda example: "reqmore" in example["intent"]) |
|
name_to_id = {name: i for i, name in enumerate(intent_names)} |
|
|
|
# parse complicated dstc format |
|
def transform(example: dict): |
|
return { |
|
"utterance": example["transcript"], |
|
"label": [name_to_id[intent_name] for intent_name in example["intent"] if intent_name != "reqmore"], |
|
} |
|
dstc_converted = dstc3["test"].map(transform, remove_columns=dstc3["test"].features.keys()) |
|
|
|
# format to autointent.Dataset |
|
intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)] |
|
utterances = [] |
|
oos_utterances = [] |
|
for rec in dstc_converted.to_list(): |
|
if len(rec["label"]) == 0: |
|
rec.pop("label") |
|
oos_utterances.append(rec["utterance"]) |
|
else: |
|
utterances.append(rec) |
|
oos_records = [{"utterance": ut} for ut in set(oos_utterances)] |
|
dstc_converted = Dataset.from_dict({"intents": intents, "train": utterances + oos_records}) |
|
``` |
|
|