alexander2618 commited on
Commit
09b4620
·
1 Parent(s): a030632

update metadata

Browse files
Files changed (1) hide show
  1. README.md +20 -55
README.md CHANGED
@@ -7,7 +7,7 @@ task_categories:
7
  - text-retrieval
8
  - other
9
  pretty_name: BioKGBench
10
- size_categories: 1G<n<100G
11
  annotations_creators:
12
  - expert-generated
13
  - machine-generated
@@ -38,21 +38,26 @@ configs:
38
  path: kgqa/dev.json
39
  - split: test
40
  path: kgqa/test.json
41
- - config_name: scv
42
  data_files:
43
  - split: corpus
44
  path: scv/merged_corpus.jsonl
 
 
45
  - split: dev
46
  path: scv/dev.jsonl
47
  - split: test
48
  path: scv/test.jsonl
49
  - config_name: biokg
50
  data_files:
51
- - split: data
52
- path: bioKG/*/*.tsv
 
 
53
  tags:
54
  - agent
55
  - medical
 
56
  ---
57
 
58
  # Agent4S-BioKG
@@ -62,7 +67,7 @@ A Knowledge Graph Checking Benchmark of AI Agent for Biomedical Science.
62
  <img src="https://img.shields.io/badge/license-MIT-blue" /></a>
63
 
64
  <a href="https://github.com/westlake-autolab/Agent4S-BioKG" alt="license">
65
- Github </a>
66
  </p>
67
 
68
  ## Introduction
@@ -72,58 +77,23 @@ In contrast to traditional evaluation benchmark that only focuses on factual QA,
72
 
73
  ## Overview
74
  <details open>
75
- <summary>Tasks</summary>
76
 
 
77
  * **KGCheck**: Given a knowledge graph and a scientific claim, the agent needs to check whether the claim is supported by the knowledge graph. The agent can interact with the knowledge graph by asking questions and receiving answers.
 
 
 
78
  * **KGQA**: Given a knowledge graph and a question, the agent needs to answer the question based on the knowledge graph.
 
 
79
  * **SCV**: Given a scientific claim and a research paper, the agent needs to check whether the claim is supported by the research paper.
 
 
 
80
 
81
  </details>
82
 
83
- <details open>
84
- <summary>Code Structure</summary>
85
- </details>
86
-
87
- <details open>
88
- <summary>Baseline</summary>
89
- </details>
90
-
91
- <details open>
92
- <summary>Dataset</summary>
93
- </details>
94
-
95
- ## News and Updates
96
- [2024-06-06] `BioKGBench` v0.1.0 is released.
97
-
98
- ## Installation
99
- This project has provided an environment setting file of conda, users can easily reproduce the environment by the following commands:
100
- ```bash
101
- conda create -n agent4s-biokg python=3.10
102
- conda activate agent4s-biokg
103
- pip install -r requirements.txt
104
- ```
105
-
106
- ## Getting Started
107
-
108
- **Obtaining dataset**:
109
- The dataset can be found in the [release]. The dataset is divided into three parts: `KGCheck`, `KGQA`, and `SCV`, every part is split into `Dev` and `Test`.
110
-
111
- **Running Baseline**:
112
-
113
- * `KGCheck`:
114
- ```bash
115
- ```
116
- * `KGQA`:
117
- ```bash
118
- ```
119
- * `SCV`:
120
- ```bash
121
- ```
122
-
123
- ## Acknowledgement
124
-
125
- `BioKGBench` is an open-source project for Agent evaluation created by researchers in **Westlake Auto Lab** and **CAIRI Lab**. We encourage researchers interested in LLM Agent and other related fields to contribute to this project!
126
-
127
  ## Citation
128
 
129
  ## Contact
@@ -133,8 +103,3 @@ For adding new features, looking for helps, or reporting bugs associated with `B
133
  - Siqi Ma([email protected]), Westlake University
134
  - Junjie Shan([email protected]), Westlake University
135
  - Xiaojing Zhang([email protected]), Westlake University
136
-
137
- ## TODO
138
-
139
- 1. Update dataset
140
- 2. Support pip installation
 
7
  - text-retrieval
8
  - other
9
  pretty_name: BioKGBench
10
+ size_categories: 10K<n<100K
11
  annotations_creators:
12
  - expert-generated
13
  - machine-generated
 
38
  path: kgqa/dev.json
39
  - split: test
40
  path: kgqa/test.json
41
+ - config_name: scv-corpus
42
  data_files:
43
  - split: corpus
44
  path: scv/merged_corpus.jsonl
45
+ - config_name: scv
46
+ data_files:
47
  - split: dev
48
  path: scv/dev.jsonl
49
  - split: test
50
  path: scv/test.jsonl
51
  - config_name: biokg
52
  data_files:
53
+ - split: datasets
54
+ path: bioKG/datasets/*.tsv
55
+ - split: ontologies
56
+ path: bioKG/ontologies/*.tsv
57
  tags:
58
  - agent
59
  - medical
60
+ arxiv: 2407.00466
61
  ---
62
 
63
  # Agent4S-BioKG
 
67
  <img src="https://img.shields.io/badge/license-MIT-blue" /></a>
68
 
69
  <a href="https://github.com/westlake-autolab/Agent4S-BioKG" alt="license">
70
+ <img src="/assets/img/github-mark.png" /> Github </a>
71
  </p>
72
 
73
  ## Introduction
 
77
 
78
  ## Overview
79
  <details open>
80
+ <summary>Dataset(Need to <a href="https://huggingface.co/datasets/AutoLab-Westlake/BioKGBench-Dataset">download</a> from huggingface)</summary>
81
 
82
+ * **bioKG**: The knowledge graph used in the dataset.
83
  * **KGCheck**: Given a knowledge graph and a scientific claim, the agent needs to check whether the claim is supported by the knowledge graph. The agent can interact with the knowledge graph by asking questions and receiving answers.
84
+ * **Dev**: 20 samples
85
+ * **Test**: 205 samples
86
+ * **corpus**: 51 samples
87
  * **KGQA**: Given a knowledge graph and a question, the agent needs to answer the question based on the knowledge graph.
88
+ * **Dev**: 60 samples
89
+ * **Test**: 638 samples
90
  * **SCV**: Given a scientific claim and a research paper, the agent needs to check whether the claim is supported by the research paper.
91
+ * **Dev**: 120 samples
92
+ * **Test**: 1265 samples
93
+ * **corpus**: 5664 samples
94
 
95
  </details>
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ## Citation
98
 
99
  ## Contact
 
103
  - Siqi Ma([email protected]), Westlake University
104
  - Junjie Shan([email protected]), Westlake University
105
  - Xiaojing Zhang([email protected]), Westlake University