Datasets:
BAAI
/

Languages:
code
ArXiv:
Tags:
code
License:
bowen92 commited on
Commit
7b12245
1 Parent(s): 1c63810

Delete taco.py

Browse files
Files changed (1) hide show
  1. taco.py +0 -145
taco.py DELETED
@@ -1,145 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """APPS dataset."""
16
-
17
- import json
18
- import datasets
19
-
20
-
21
- _REPO_NAME = "BAAI/TACO"
22
-
23
- _CITATION = """
24
- """
25
-
26
- _DESCRIPTION = """
27
- TACO is a benchmark for Python code generation, it includes 25443 problems and 1000 problems for train and test splits.
28
- """
29
-
30
- _HOMEPAGE = "https://github.com/FlagOpen/TACO"
31
- _DIFFICULTY = ["EASY", "MEDIUM", "MEDIUM_HARD", "HARD", "VERY_HARD"]
32
- _DIFFICULTY_CONFIGS = ["ALL"] + _DIFFICULTY
33
- _SKILL = ['Data structures', 'Sorting', 'Range queries', 'Complete search', 'Amortized analysis', 'Dynamic programming', 'Bit manipulation', 'Greedy algorithms']
34
- _SKILL_CONFIGS = ["ALL"] + _SKILL
35
- _URLS = {
36
- "train": ['train/data-00000-of-00009.arrow', 'train/data-00001-of-00009.arrow', 'train/data-00002-of-00009.arrow', 'train/data-00003-of-00009.arrow', 'train/data-00004-of-00009.arrow', 'train/data-00005-of-00009.arrow', 'train/data-00006-of-00009.arrow', 'train/data-00007-of-00009.arrow', 'train/data-00008-of-00009.arrow'],
37
- "test": ['test/data-00000-of-00001.arrow'],
38
- }
39
-
40
-
41
- class TACOConfig(datasets.BuilderConfig):
42
- """BuilderConfig for the TACO dataset."""
43
-
44
- def __init__(self, *args, difficulties=["ALL"], skills=["ALL"], **kwargs):
45
- """BuilderConfig for the APPS Code dataset.
46
-
47
- Args:
48
- difficulties (:obj:`List[str]`): List of problem difficulty levels to load.
49
- skills (:obj:`List[str]`): List of algorithm skills of problems to load.
50
- **kwargs: keyword arguments forwarded to super.
51
- """
52
- if "ALL" in difficulties:
53
- assert len(difficulties) == 1
54
- self.filter_difficulties = False
55
- else:
56
- self.filter_difficulties = True
57
- if "ALL" in skills:
58
- assert len(skills) == 1
59
- self.filter_skills = False
60
- else:
61
- self.filter_skills = True
62
-
63
- if self.filter_difficulties:
64
- subset_name = '+'.join(sorted(difficulties))
65
- assert not self.filter_skills, "Not supported to filter difficulties and skills together."
66
- elif self.filter_skills:
67
- subset_name = '+'.join(sorted(skills))
68
- else:
69
- subset_name = 'ALL'
70
-
71
- super().__init__(
72
- *args,
73
- name=subset_name,
74
- **kwargs,
75
- )
76
-
77
- self.subsets = {"difficulties": difficulties, "skills": skills}
78
-
79
-
80
- class TACO(datasets.GeneratorBasedBuilder):
81
- """TACO dataset."""
82
-
83
- VERSION = datasets.Version("1.0.0")
84
-
85
- BUILDER_CONFIG_CLASS = TACOConfig
86
- BUILDER_CONFIGS = [
87
- TACOConfig(difficulties=[level]) for level in _DIFFICULTY_CONFIGS
88
- ] + [
89
- TACOConfig(skills=[skill]) for skill in _SKILL_CONFIGS if skill!='ALL'
90
- ]
91
- DEFAULT_CONFIG_NAME = "ALL"
92
-
93
- def _info(self):
94
- return datasets.DatasetInfo(
95
- description=_DESCRIPTION,
96
- features=datasets.Features({
97
- 'question': datasets.Value(dtype='string', id=None),
98
- 'solutions': datasets.Value(dtype='string', id=None),
99
- 'starter_code': datasets.Value(dtype='string', id=None),
100
- 'input_output': datasets.Value(dtype='string', id=None),
101
- 'difficulty': datasets.Value(dtype='string', id=None),
102
- 'raw_tags': datasets.Value(dtype='string', id=None),
103
- 'name': datasets.Value(dtype='string', id=None),
104
- 'source': datasets.Value(dtype='string', id=None),
105
- 'tags': datasets.Value(dtype='string', id=None),
106
- 'skill_types': datasets.Value(dtype='string', id=None),
107
- 'url': datasets.Value(dtype='string', id=None),
108
- 'Expected Auxiliary Space': datasets.Value(dtype='string', id=None),
109
- 'time_limit': datasets.Value(dtype='string', id=None),
110
- 'date': datasets.Value(dtype='string', id=None),
111
- 'picture_num': datasets.Value(dtype='string', id=None),
112
- 'memory_limit': datasets.Value(dtype='string', id=None),
113
- 'Expected Time Complexity': datasets.Value(dtype='string', id=None),
114
- }),
115
- supervised_keys=None,
116
- citation=_CITATION,
117
- homepage=_HOMEPAGE,
118
- license="MIT License",
119
-
120
- )
121
-
122
- def _split_generators(self, dl_manager):
123
-
124
- downloaded_files = _URLS
125
-
126
- return [
127
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
128
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
129
- ]
130
-
131
- def _generate_examples(self, filepath):
132
- key = 0
133
- dataset = datasets.concatenate_datasets([datasets.Dataset.from_file(file) for file in filepath])
134
- for idx, data in enumerate(dataset):
135
- difficulty = data['difficulty']
136
- skills = eval(data['skill_types'])
137
- if self.config.filter_difficulties and not difficulty in self.config.subsets['difficulties']:
138
- continue
139
- if self.config.filter_skills:
140
- valid_skills = self.config.subsets['skills']
141
- if not bool(set(valid_skills) & set(skills)):
142
- continue
143
-
144
- yield key, {k:v for k, v in data.items() if k!='eval_topic'}
145
- key += 1