File size: 4,190 Bytes
f791355 ba26f45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# Dataset Metadata
dataset_info:
name: AgriField3D
description: >
AgriField3D is a curated dataset of 3D point clouds representing fully field-grown maize plants
from a diverse maize genetic panel. This dataset contains over 1,000 point clouds of maize plants,
collected using a Terrestrial Laser Scanner, and includes various versions of point clouds such as raw,
segmented, and reconstructed surfaces. It is designed to support advanced AI applications in agricultural
research, particularly maize phenotyping and plant structure analysis.
version: 1.0
license: CC-BY-NC-4.0
authors:
- Elvis Kimara
- Mozhgan Hadadi
- Jackson Godbersen
- Aditya Balu
- Zaki Jubery
- Adarsh Krishnamurthy
- Patrick Schnable
- Baskar Ganapathysubramanian
citation: >
@article{kimara2025AgriField3D,
title = "AgriField3D: A Curated 3D Point Cloud Dataset of Field-Grown Plants from a Maize Diversity Panel",
author = "Elvis Kimara, Mozhgan Hadadi, Jackson Godbersen, Aditya Balu, Zaki Jubery, Adarsh Krishnamurthy, Patrick Schnable, Baskar Ganapathysubramanian",
year = "2025"
}
intended_use:
- AI-based agricultural research
- Maize phenotyping
- Plant structure analysis
- 3D data-driven studies in agriculture
features:
- Point clouds: `.ply` format
- Resolutions: 100k, 50k, 10k points
- Data types: Raw, segmented, reconstructed surfaces
- Plant types: Various maize genetic backgrounds
- Segmentation: Individual leaves and stalks color-labeled
- Metadata: Quality of point clouds, leaf count, tassels, and maize cobs presence
dataset_size:
raw_point_clouds:
- "FielGrwon_ZeaMays_RawPCD_100k.zip: 1045 .ply files (100K points per plant)"
- "FielGrwon_ZeaMays_RawPCD_50k.zip: 1045 .ply files (50K points per plant)"
- "FielGrwon_ZeaMays_RawPCD_10k.zip: 1045 .ply files (10K points per plant)"
segmented_point_clouds:
- "FielGrwon_ZeaMays_SegmentedPCD_100k.zip: 520 .ply files (100K points per segmented plant)"
- "FielGrwon_ZeaMays_SegmentedPCD_50k.zip: 520 .ply files (50K points per segmented plant)"
- "FielGrwon_ZeaMays_SegmentedPCD_10k.zip: 520 .ply files (10K points per segmented plant)"
reconstructed_surfaces:
- "FielGrwon_ZeaMays_Reconstructed_Surface_stl.zip: 520 .ply files (reconstructed surfaces)"
- "FielGrwon_ZeaMays_Reconstructed_Surface_dat.zip: 520 .ply files (NURBS surface data)"
dependencies:
- Python 3.6+
- open3d (for visualization)
- MeshLab, CloudCompare (for additional point cloud manipulation)
- trimesh (for 3D mesh processing)
installation_instructions: |
To install the dataset, clone the repository and install the dependencies:
```bash
git clone https://huggingface.co/datasets/BGLab/AgriField3D
cd AgriField3D
pip install -r requirements.txt
```
download_instructions: |
1. Download the zipped files from the following links:
- FielGrwon_ZeaMays_RawPCD_100k.zip
- FielGrwon_ZeaMays_RawPCD_50k.zip
- FielGrwon_ZeaMays_RawPCD_10k.zip
- FielGrwon_ZeaMays_SegmentedPCD_100k.zip
- FielGrwon_ZeaMays_SegmentedPCD_50k.zip
- FielGrwon_ZeaMays_SegmentedPCD_10k.zip
- FielGrwon_ZeaMays_Reconstructed_Surface_stl.zip
- FielGrwon_ZeaMays_Reconstructed_Surface_dat.zip
2. Extract the `.zip` files:
```bash
unzip FielGrwon_ZeaMays_RawPCD_100k.zip
unzip FielGrwon_ZeaMays_RawPCD_50k.zip
unzip FielGrwon_ZeaMays_RawPCD_10k.zip
unzip FielGrwon_ZeaMays_SegmentedPCD_100k.zip
unzip FielGrwon_ZeaMays_SegmentedPCD_50k.zip
unzip FielGrwon_ZeaMays_SegmentedPCD_10k.zip
```
visualization_instructions: |
Use the following Python code to visualize the point clouds:
```python
import open3d as o3d
# Load and visualize a PLY file
pcd = o3d.io.read_point_cloud("FielGrwon_ZeaMays_RawPCD_100k/0001.ply")
o3d.visualization.draw_geometries([pcd])
```
repository_links:
- https://huggingface.co/datasets/BGLab/AgriField3D
- https://huggingface.co/docs/hub/datasets-cards
|