|
import os |
|
import open3d as o3d |
|
import numpy as np |
|
import shutil |
|
|
|
class PointCloudDownsampler: |
|
def __init__(self, input_dir, output_dir, temp_dir, N, voxel_start=0.0001, voxel_step=0.0005): |
|
self.input_dir = input_dir |
|
self.output_dir = output_dir |
|
self.temp_dir = temp_dir |
|
self.N = N |
|
self.voxel_start = voxel_start |
|
self.voxel_step = voxel_step |
|
|
|
|
|
if not os.path.exists(self.output_dir): |
|
os.makedirs(self.output_dir) |
|
if not os.path.exists(self.temp_dir): |
|
os.makedirs(self.temp_dir) |
|
|
|
def downsample_point_cloud(self, point_cloud, voxel_size): |
|
return point_cloud.voxel_down_sample(voxel_size) |
|
|
|
def process_point_clouds(self): |
|
for filename in os.listdir(self.input_dir): |
|
if filename.endswith(".pcd") or filename.endswith(".ply"): |
|
file_path = os.path.join(self.input_dir, filename) |
|
pcd = o3d.io.read_point_cloud(file_path) |
|
num_points = len(pcd.points) |
|
|
|
voxel_size = self.voxel_start |
|
best_voxel_size = None |
|
best_num_points = num_points |
|
|
|
print(f"Processing {filename} with {num_points} points") |
|
|
|
while True: |
|
downsampled_pcd = self.downsample_point_cloud(pcd, voxel_size) |
|
downsampled_num_points = len(downsampled_pcd.points) |
|
|
|
print(f"Trying voxel size: {voxel_size:.5f} -> {downsampled_num_points} points") |
|
|
|
if downsampled_num_points < self.N: |
|
if best_num_points > self.N: |
|
print(f"Found optimal voxel size: {best_voxel_size:.5f} with {best_num_points} points") |
|
break |
|
print(f"Breaking at voxel size {voxel_size:.5f} with {downsampled_num_points} points") |
|
break |
|
else: |
|
best_voxel_size = voxel_size |
|
best_num_points = downsampled_num_points |
|
|
|
voxel_size += self.voxel_step |
|
|
|
if best_voxel_size: |
|
optimal_pcd = self.downsample_point_cloud(pcd, best_voxel_size) |
|
temp_path = os.path.join(self.temp_dir, filename) |
|
o3d.io.write_point_cloud(temp_path, optimal_pcd) |
|
print(f"Temporarily saved {filename} with {len(optimal_pcd.points)} points to {self.temp_dir}") |
|
|
|
print("-" * 50) |
|
|
|
def random_downsample_point_cloud(self, pcd, target_size): |
|
num_points = len(pcd.points) |
|
if num_points <= target_size: |
|
print(f"No downsampling needed. Point cloud has {num_points} points, which is less than or equal to {target_size}.") |
|
return pcd |
|
|
|
indices = np.random.choice(num_points, target_size, replace=False) |
|
downsampled_pcd = pcd.select_by_index(indices) |
|
|
|
return downsampled_pcd |
|
|
|
def downsample_all_to_target_size(self): |
|
for filename in os.listdir(self.temp_dir): |
|
if filename.endswith(".pcd") or filename.endswith(".ply"): |
|
file_path = os.path.join(self.temp_dir, filename) |
|
try: |
|
pcd = o3d.io.read_point_cloud(file_path) |
|
original_size = len(pcd.points) |
|
|
|
print(f"Processing {filename}: Original size = {original_size} points") |
|
|
|
downsampled_pcd = self.random_downsample_point_cloud(pcd, self.N) |
|
downsampled_size = len(downsampled_pcd.points) |
|
|
|
output_path = os.path.join(self.output_dir, f"{filename}") |
|
o3d.io.write_point_cloud(output_path, downsampled_pcd) |
|
|
|
print(f"Downsampled {filename}: New size = {downsampled_size} points") |
|
print(f"Saved downsampled point cloud to {output_path}") |
|
print("-" * 50) |
|
|
|
except Exception as e: |
|
print(f"Failed to process {filename}: {e}") |
|
|
|
|
|
shutil.rmtree(self.temp_dir) |
|
print(f"Temporary files in {self.temp_dir} have been deleted.") |
|
|
|
|
|
input_dir = "/path/to/input/directory" |
|
output_dir = "/path/to/output/directory" |
|
temp_dir = "/path/to/temp/directory" |
|
N = 50000 |
|
|
|
processor = PointCloudDownsampler(input_dir, output_dir, temp_dir, N) |
|
processor.process_point_clouds() |
|
processor.downsample_all_to_target_size() |
|
|
|
|