Datasets:

ArXiv:
License:
BGLab commited on
Commit
1b9e8d7
·
verified ·
1 Parent(s): e04e0ee

Upload PointcloudDownSampler.py

Browse files
Files changed (1) hide show
  1. PointCloudDownsampler.py +110 -0
PointCloudDownsampler.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import open3d as o3d
3
+ import numpy as np
4
+ import shutil
5
+
6
+ class PointCloudDownsampler:
7
+ def __init__(self, input_dir, output_dir, temp_dir, N, voxel_start=0.0001, voxel_step=0.0005):
8
+ self.input_dir = input_dir
9
+ self.output_dir = output_dir
10
+ self.temp_dir = temp_dir
11
+ self.N = N
12
+ self.voxel_start = voxel_start
13
+ self.voxel_step = voxel_step
14
+
15
+ # Ensure output and temp directories exist
16
+ if not os.path.exists(self.output_dir):
17
+ os.makedirs(self.output_dir)
18
+ if not os.path.exists(self.temp_dir):
19
+ os.makedirs(self.temp_dir)
20
+
21
+ def downsample_point_cloud(self, point_cloud, voxel_size):
22
+ return point_cloud.voxel_down_sample(voxel_size)
23
+
24
+ def process_point_clouds(self):
25
+ for filename in os.listdir(self.input_dir):
26
+ if filename.endswith(".pcd") or filename.endswith(".ply"):
27
+ file_path = os.path.join(self.input_dir, filename)
28
+ pcd = o3d.io.read_point_cloud(file_path)
29
+ num_points = len(pcd.points)
30
+
31
+ voxel_size = self.voxel_start
32
+ best_voxel_size = None
33
+ best_num_points = num_points
34
+
35
+ print(f"Processing {filename} with {num_points} points")
36
+
37
+ while True:
38
+ downsampled_pcd = self.downsample_point_cloud(pcd, voxel_size)
39
+ downsampled_num_points = len(downsampled_pcd.points)
40
+
41
+ print(f"Trying voxel size: {voxel_size:.5f} -> {downsampled_num_points} points")
42
+
43
+ if downsampled_num_points < self.N:
44
+ if best_num_points > self.N:
45
+ print(f"Found optimal voxel size: {best_voxel_size:.5f} with {best_num_points} points")
46
+ break
47
+ print(f"Breaking at voxel size {voxel_size:.5f} with {downsampled_num_points} points")
48
+ break
49
+ else:
50
+ best_voxel_size = voxel_size
51
+ best_num_points = downsampled_num_points
52
+
53
+ voxel_size += self.voxel_step
54
+
55
+ if best_voxel_size:
56
+ optimal_pcd = self.downsample_point_cloud(pcd, best_voxel_size)
57
+ temp_path = os.path.join(self.temp_dir, filename)
58
+ o3d.io.write_point_cloud(temp_path, optimal_pcd)
59
+ print(f"Temporarily saved {filename} with {len(optimal_pcd.points)} points to {self.temp_dir}")
60
+
61
+ print("-" * 50)
62
+
63
+ def random_downsample_point_cloud(self, pcd, target_size):
64
+ num_points = len(pcd.points)
65
+ if num_points <= target_size:
66
+ print(f"No downsampling needed. Point cloud has {num_points} points, which is less than or equal to {target_size}.")
67
+ return pcd
68
+
69
+ indices = np.random.choice(num_points, target_size, replace=False)
70
+ downsampled_pcd = pcd.select_by_index(indices)
71
+
72
+ return downsampled_pcd
73
+
74
+ def downsample_all_to_target_size(self):
75
+ for filename in os.listdir(self.temp_dir):
76
+ if filename.endswith(".pcd") or filename.endswith(".ply"):
77
+ file_path = os.path.join(self.temp_dir, filename)
78
+ try:
79
+ pcd = o3d.io.read_point_cloud(file_path)
80
+ original_size = len(pcd.points)
81
+
82
+ print(f"Processing {filename}: Original size = {original_size} points")
83
+
84
+ downsampled_pcd = self.random_downsample_point_cloud(pcd, self.N)
85
+ downsampled_size = len(downsampled_pcd.points)
86
+
87
+ output_path = os.path.join(self.output_dir, f"{filename}")
88
+ o3d.io.write_point_cloud(output_path, downsampled_pcd)
89
+
90
+ print(f"Downsampled {filename}: New size = {downsampled_size} points")
91
+ print(f"Saved downsampled point cloud to {output_path}")
92
+ print("-" * 50)
93
+
94
+ except Exception as e:
95
+ print(f"Failed to process {filename}: {e}")
96
+
97
+ # Clean up the temp directory
98
+ shutil.rmtree(self.temp_dir)
99
+ print(f"Temporary files in {self.temp_dir} have been deleted.")
100
+
101
+
102
+ input_dir = "/path/to/input/directory"
103
+ output_dir = "/path/to/output/directory"
104
+ temp_dir = "/path/to/temp/directory"
105
+ N = 50000 # Target number of points
106
+
107
+ processor = PointCloudDownsampler(input_dir, output_dir, temp_dir, N)
108
+ processor.process_point_clouds()
109
+ processor.downsample_all_to_target_size()
110
+