samundraaaa commited on
Commit
044bfcc
Β·
1 Parent(s): 00ebba9

add readme and croissant

Browse files
Files changed (2) hide show
  1. README.md +191 -47
  2. croissant.json +0 -0
README.md CHANGED
@@ -1,47 +1,191 @@
1
- # Example: Downloading a Folder from Our Repository
2
-
3
- **License:** cc-by-nc-4.0
4
-
5
- Below is an example of downloading a folder from our repository.
6
-
7
- ## Installation
8
-
9
- To run the example code, you need to install the following package:
10
-
11
- ```bash
12
- pip install huggingface_hub
13
- ```
14
-
15
- ## Example Code
16
-
17
- The following script demonstrates how to download a directory from the Hugging Face Hub:
18
-
19
- ```python
20
- from huggingface_hub import HfApi, hf_hub_download
21
- import os
22
- import shutil
23
-
24
- REPO_ID = "BGLab/FlowBench"
25
- DIRECTORY = "LDC_NS_2D"
26
-
27
- # Initialize the Hugging Face API
28
- api = HfApi()
29
-
30
- # List files in the directory
31
- files_list = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
32
-
33
- # Filter the files in the specified directory
34
- files_to_download = [f for f in files_list if f.startswith(DIRECTORY)]
35
-
36
- # Create local directory if it doesn't exist
37
- os.makedirs(DIRECTORY, exist_ok=True)
38
-
39
- # Download each file
40
- for file in files_to_download:
41
- file_path = hf_hub_download(repo_id=REPO_ID, filename=file, repo_type="dataset")
42
- # Copy the file to the local directory using shutil.copy2
43
- shutil.copy2(file_path, os.path.join(DIRECTORY, os.path.basename(file_path)))
44
-
45
- print("Files downloaded successfully.")
46
-
47
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ **Overview**
2
+
3
+ Simulating fluid flow around arbitrary shapes is key to solving various engineering problems. However, simulating flow physics across complex geometries remains numerically challenging and computationally resource-intensive, particularly when using conventional PDE solvers. Machine learning methods offer attractive opportunities to create fast and adaptable PDE solvers. However, benchmark datasets to measure the performance of such methods are scarce, especially for flow physics across complex geometries. We introduce FlowBench, a benchmark for neural simulators with over 10K samples, which is larger than any publicly available flow physics dataset. FlowBench contains flow simulation data across complex geometries (*parametric vs. non-parametric*), spanning a range of flow conditions (*Reynolds number and Grashoff number*), capturing a diverse array of flow phenomena (*steady vs. transient; forced vs. free convection*), and for both 2D and 3D. FlowBench contains over 10K data samples, with each sample the outcome of a fully resolved, direct numerical simulation using a well-validated simulator framework designed for modeling transport phenomena in complex geometries. For each sample, we include velocity, pressure, and temperature field data at 3 different resolutions and several summary statistics features of engineering relevance (such as coefficients of lift and drag, and Nusselt numbers).
4
+
5
+ We envision that FlowBench will enable evaluating the interplay between complex geometry, coupled flow phenomena, and data sufficiency on the performance of current, and future, neural PDE solvers. We enumerate several evaluation metrics to help rank order the performance of current (and future) neural PDE solvers. We benchmark the performance of three baseline methods: Fourier Neural Operators (FNO), Convolutional Neural Operators (CNO), and DeepONets. This dataset will be a valuable resource for evaluating neural PDE solvers that model complex fluid dynamics around 2D and 3D objects.
6
+
7
+
8
+ **FlowBench dataset**
9
+ ```
10
+ FlowBench consists of over 10K samples of scientific models
11
+ ```
12
+
13
+ **Dataset Information**
14
+ ```
15
+ ```
16
+
17
+ **License**
18
+ ```
19
+ CC-BY-NC-4.0
20
+ ```
21
+
22
+ **Usage**
23
+
24
+ To run the example code, you need to install the following package:
25
+
26
+ ```bash
27
+ pip install huggingface_hub
28
+ ```
29
+
30
+ The following script demonstrates how to download a directory from the Hugging Face Hub:
31
+
32
+ ```python
33
+ from huggingface_hub import HfApi, hf_hub_download
34
+ import os
35
+ import shutil
36
+
37
+ REPO_ID = "BGLab/FlowBench"
38
+ DIRECTORY = "LDC_NS_2D"
39
+
40
+ # Initialize the Hugging Face API
41
+ api = HfApi()
42
+
43
+ # List files in the directory
44
+ files_list = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
45
+
46
+ # Filter the files in the specified directory
47
+ files_to_download = [f for f in files_list if f.startswith(DIRECTORY)]
48
+
49
+ # Create local directory if it doesn't exist
50
+ os.makedirs(DIRECTORY, exist_ok=True)
51
+
52
+ # Download each file
53
+ for file in files_to_download:
54
+ file_path = hf_hub_download(repo_id=REPO_ID, filename=file, repo_type="dataset")
55
+ # Copy the file to the local directory using shutil.copy2
56
+ shutil.copy2(file_path, os.path.join(DIRECTORY, os.path.basename(file_path)))
57
+
58
+ print("Files downloaded successfully.")
59
+
60
+ ```
61
+
62
+ **Directory Structure**
63
+ ```
64
+ main/
65
+ β”œβ”€β”€ FPO_NS_2D_1024x256/
66
+ β”‚ β”œβ”€β”€ harmonics/
67
+ β”‚ β”‚ β”œβ”€β”€ 1/*.npz
68
+ β”‚ β”‚ β”œβ”€β”€ 2/*.npz
69
+ β”‚ β”‚ β”œβ”€β”€ 3/*.npz
70
+ β”‚ β”‚ β”œβ”€β”€ .
71
+ β”‚ β”‚ β”œβ”€β”€ .
72
+ β”‚ β”‚ └── 100/*.npz
73
+ β”‚ β”œβ”€β”€ nurbs/
74
+ β”‚ β”‚ β”œβ”€β”€ 1/*.npz
75
+ β”‚ β”‚ β”œβ”€β”€ 2/*.npz
76
+ β”‚ β”‚ β”œβ”€β”€ 3/*.npz
77
+ β”‚ β”‚ β”œβ”€β”€ .
78
+ β”‚ β”‚ β”œβ”€β”€ .
79
+ β”‚ β”‚ └── 100/*.npz
80
+ β”‚ └── skelneton/
81
+ β”‚ β”‚ β”œβ”€β”€ 1/*.npz
82
+ β”‚ β”‚ β”œβ”€β”€ 2/*.npz
83
+ β”‚ β”‚ β”œβ”€β”€ 3/*.npz
84
+ β”‚ β”‚ β”œβ”€β”€ .
85
+ β”‚ β”‚ β”œβ”€β”€ .
86
+ β”‚ β”‚ └── 100/*.npz
87
+ β”œβ”€β”€ FPO_NS_2D_1024x256/
88
+ β”‚ β”œβ”€β”€ harmonics/
89
+ β”‚ β”‚ β”œβ”€β”€ 1/*.npz
90
+ β”‚ β”‚ β”œβ”€β”€ 2/*.npz
91
+ β”‚ β”‚ β”œβ”€β”€ 3/*.npz
92
+ β”‚ β”‚ β”œβ”€β”€ .
93
+ β”‚ β”‚ β”œβ”€β”€ .
94
+ β”‚ β”‚ └── 100/*.npz
95
+ β”‚ β”œβ”€β”€ nurbs/
96
+ β”‚ β”‚ β”œβ”€β”€ 1/*.npz
97
+ β”‚ β”‚ β”œβ”€β”€ 2/*.npz
98
+ β”‚ β”‚ β”œβ”€β”€ 3/*.npz
99
+ β”‚ β”‚ β”œβ”€β”€ .
100
+ β”‚ β”‚ β”œβ”€β”€ .
101
+ β”‚ β”‚ └── 100/*.npz
102
+ β”‚ └── skelneton/
103
+ β”‚ β”‚ β”œβ”€β”€ 1/*.npz
104
+ β”‚ β”‚ β”œβ”€β”€ 2/*.npz
105
+ β”‚ β”‚ β”œβ”€β”€ 3/*.npz
106
+ β”‚ β”‚ β”œβ”€β”€ .
107
+ β”‚ β”‚ β”œβ”€β”€ .
108
+ β”‚ β”‚ └── 100/*.npz
109
+ β”œβ”€β”€ LDC_NSHT_2D_constant-Re/
110
+ β”‚ β”œβ”€β”€ 128x128/
111
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
112
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
113
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
114
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
115
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
116
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
117
+ β”‚ β”œβ”€β”€ 256x256/
118
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
119
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
120
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
121
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
122
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
123
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
124
+ β”‚ └── 512x512/
125
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
126
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
127
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
128
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
129
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
130
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
131
+ β”œβ”€β”€ LDC_NSHT_2D_variable-Re/
132
+ β”‚ β”œβ”€β”€ 128x128/
133
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
134
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
135
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
136
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
137
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
138
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
139
+ β”‚ β”œβ”€β”€ 256x256/
140
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
141
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
142
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
143
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
144
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
145
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
146
+ β”‚ └── 512x512/
147
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
148
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
149
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
150
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
151
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
152
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
153
+ β”œβ”€β”€ LDC_NS_2D/
154
+ β”‚ β”œβ”€β”€ 128x128/
155
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
156
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
157
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
158
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
159
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
160
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
161
+ β”‚ β”œβ”€β”€ 256x256/
162
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
163
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
164
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
165
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
166
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
167
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
168
+ β”‚ └── 512x512/
169
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
170
+ β”‚ β”‚ β”œβ”€β”€ harmonics_lid_driven_cavity_X.npz
171
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
172
+ β”‚ β”‚ β”œβ”€β”€ nurbs_lid_driven_cavity_X.npz
173
+ β”‚ β”‚ β”œβ”€β”€ skelneton_lid_driven_cavity_X.npz
174
+ β”‚ β”‚ └── skelneton_lid_driven_cavity_X.npz
175
+ β”œβ”€β”€ LDC_NS_3D/
176
+ β”‚ β”œβ”€β”€ LDC_3D_X.npz
177
+ β”‚ β”œβ”€β”€ LDC_3D_Y.npz
178
+ β”œβ”€β”€ README.md
179
+ β”œβ”€β”€ .gitattributes
180
+ └── info.txt
181
+ ```
182
+
183
+ **Citation**
184
+ If you find this dataset useful in your research, please consider citing our paper:
185
+ ```
186
+ @article{tali2024flowBench,
187
+ title = "FlowBench: A Large Scale Benchmark for Flow Simulation over Complex Geometries",
188
+ author = "Tali, Ronak and Rabeh, Ali and Yang, Cheng-Hau and Shadkhah, Mehdi and Karki, Samundra and Upadhyaya, Abhisek and Dhakshinamoorthy, Suriya and Saadati, Marjan and Sarkar, Soumik and Krishnamurthy, Adarsh and Hegde, Chinmay and Balu, Aditya and Ganapathysubramanian, Baskar"
189
+ year = "2024"
190
+ }
191
+ ```
croissant.json ADDED
The diff for this file is too large to render. See raw diff