conll2003job / conll2003job.py
BahAdoR0101's picture
Upload conll2003job.py
62eaed1
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition",
author = "Tjong Kim Sang, Erik F. and
De Meulder, Fien",
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003",
year = "2003",
url = "https://www.aclweb.org/anthology/W03-0419",
pages = "142--147",
}
"""
_DESCRIPTION = """\
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do
not belong to the previous three groups.
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2
tagging scheme, whereas the original dataset uses IOB1.
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419
"""
_URL = "https://raw.githubusercontent.com/bahador14/dataset/main/conll2003job.zip"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "valid.txt"
_TEST_FILE = "test.txt"
class Conll2003JobConfig(datasets.BuilderConfig):
"""BuilderConfig for Conll2003Job"""
def __init__(self, **kwargs):
"""BuilderConfig forConll2003Job.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Conll2003JobConfig, self).__init__(**kwargs)
class Conll2003Job(datasets.GeneratorBasedBuilder):
"""Conll2003Job dataset."""
BUILDER_CONFIGS = [
Conll2003JobConfig(name="conll2003job", version=datasets.Version("1.0.0"), description="Conll2003Job dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'"',
"''",
"#",
"$",
"(",
")",
",",
".",
":",
"``",
"CC",
"CD",
"DT",
"EX",
"FW",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NN",
"NNP",
"NNPS",
"NNS",
"NN|SYM",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WP$",
"WRB",
]
)
),
"chunk_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-ADJP",
"I-ADJP",
"B-ADVP",
"I-ADVP",
"B-CONJP",
"I-CONJP",
"B-INTJ",
"I-INTJ",
"B-LST",
"I-LST",
"B-NP",
"I-NP",
"B-PP",
"I-PP",
"B-PRT",
"I-PRT",
"B-SBAR",
"I-SBAR",
"B-UCP",
"I-UCP",
"B-VP",
"I-VP",
]
)
),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-MISC",
"I-MISC",
"B-JOB_TITLE",
"I-JOB_TITLE",
]
)
),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/W03-0419/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract(_URL)
data_files = {
"train": os.path.join(downloaded_file, _TRAINING_FILE),
"dev": os.path.join(downloaded_file, _DEV_FILE),
"test": os.path.join(downloaded_file, _TEST_FILE),
}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
pos_tags = []
chunk_tags = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
"chunk_tags": chunk_tags,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
pos_tags = []
chunk_tags = []
ner_tags = []
else:
# conll2003job tokens are space separated
splits = line.split(" ")
tokens.append(splits[0])
pos_tags.append(splits[1])
chunk_tags.append(splits[2])
ner_tags.append(splits[3].rstrip())
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
"chunk_tags": chunk_tags,
"ner_tags": ner_tags,
}