[
{
"id": "Chemistry_877",
"problem": "常温下, 通过下列实验探究 $\\mathrm{H}_{2} \\mathrm{~S} 、 \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液的性质。\n\n实验 1:向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~S}$ 溶液中通入一定体积 $\\mathrm{NH}_{3}$, 测得溶液 $\\mathrm{pH}$ 为 7。\n\n实验 2: 向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~S}$ 溶液中滴加等体积同浓度的 $\\mathrm{NaOH}$ 溶液, 充分反应后再滴入 2 滴酚酞,溶液呈红色。\n\n实验 3:向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中逐滴滴加等体积同浓度的盐酸, 无明显现象。\n\n实验 4: 取 $5 \\mathrm{~mL}$ 实验 3 后的溶液, 滴加等体积的饱和氯水, 充分反应后溶液变浑浊。\n\n下列说法正确的是\nA: 实验 1 得到的溶液中存在 $c\\left(\\mathrm{NH}_{4}^{+}\\right)=2 \\mathrm{c}\\left(\\mathrm{S}^{2-}\\right)$\nB: 由实验 2 可得出: $\\mathrm{K}_{\\mathrm{w}}<\\mathrm{K}_{\\mathrm{a} 1}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right) \\cdot \\mathrm{K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$\nC: 实验 3 得到的溶液中存在 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)-\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{S}^{2}\\right)-\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$\nD: 实验 4 发生反应的离子方程式为: $\\mathrm{S}^{2-}+\\mathrm{Cl}_{2}=\\mathrm{S} \\downarrow+2 \\mathrm{Cl}^{-}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n常温下, 通过下列实验探究 $\\mathrm{H}_{2} \\mathrm{~S} 、 \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液的性质。\n\n实验 1:向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~S}$ 溶液中通入一定体积 $\\mathrm{NH}_{3}$, 测得溶液 $\\mathrm{pH}$ 为 7。\n\n实验 2: 向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~S}$ 溶液中滴加等体积同浓度的 $\\mathrm{NaOH}$ 溶液, 充分反应后再滴入 2 滴酚酞,溶液呈红色。\n\n实验 3:向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中逐滴滴加等体积同浓度的盐酸, 无明显现象。\n\n实验 4: 取 $5 \\mathrm{~mL}$ 实验 3 后的溶液, 滴加等体积的饱和氯水, 充分反应后溶液变浑浊。\n\n下列说法正确的是\n\nA: 实验 1 得到的溶液中存在 $c\\left(\\mathrm{NH}_{4}^{+}\\right)=2 \\mathrm{c}\\left(\\mathrm{S}^{2-}\\right)$\nB: 由实验 2 可得出: $\\mathrm{K}_{\\mathrm{w}}<\\mathrm{K}_{\\mathrm{a} 1}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right) \\cdot \\mathrm{K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$\nC: 实验 3 得到的溶液中存在 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)-\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{S}^{2}\\right)-\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$\nD: 实验 4 发生反应的离子方程式为: $\\mathrm{S}^{2-}+\\mathrm{Cl}_{2}=\\mathrm{S} \\downarrow+2 \\mathrm{Cl}^{-}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"C"
],
"solution": "【详解】A. 实验 1 得到的溶液中 $\\mathrm{pH}$ 为 7 , 则 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}(\\mathrm{OH})$, 根据电荷守恒可知, 存在 $\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{HS}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{S}^{2-}\\right), \\quad \\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)>2 \\mathrm{c}\\left(\\mathrm{S}^{2-}\\right), \\quad \\mathrm{A}$ 错误;\n\nB. 向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~S}$ 溶液中滴加等体积同浓度的 $\\mathrm{NaOH}$ 溶液, 充分反应后得到 $\\mathrm{NaHS}$,再滴入 2 滴酚酞, 溶液呈红色, 溶液显碱性, 则 $\\mathrm{NaHS}$ 水解大于电离, $\\mathrm{K}_{\\mathrm{h}}=\\frac{\\mathrm{K}_{\\mathrm{w}}}{\\mathrm{K}_{\\mathrm{a} 1}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)}>\\mathrm{K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$, 则 $\\mathrm{K}_{\\mathrm{w}}>\\mathrm{K}_{\\mathrm{a} 1}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right) \\cdot \\mathrm{K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$, B 错误;\n\nC. 向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中逐滴滴加等体积同浓度的盐酸, 无明显现象, 反应生成等量的 $\\mathrm{NaHS}$ 和 $\\mathrm{NaCl}$, 根据物料守恒可知, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)=2 \\mathrm{c}\\left(\\mathrm{S}^{2}\\right)+2 \\mathrm{c}\\left(\\mathrm{HS}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)$ ,由电荷守恒可知, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{HS}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{S}^{2-}\\right)=2 \\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)$, 则存在 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{S}^{2-}\\right), \\quad \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)-\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{S}^{2}\\right)-\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~S}\\right), \\quad \\mathrm{C}$ 正确;\n\nD. 实验 4 发生反应为硫氢根离子和氯气生成硫单质和氯离子, 离子方程式为: $\\mathrm{HS}^{-}+\\mathrm{Cl}_{2}=\\mathrm{S} \\downarrow+2 \\mathrm{Cl}^{-}+\\mathrm{H}^{+}, \\quad \\mathrm{D}$ 错误;故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_1148",
"problem": "This question is about benzene and its isomers\n\nWorking out the structure of benzene, $\\mathrm{C}_{6} \\mathrm{H}_{6}$, was one of the great achievements of $19^{\\text {th }}$ century chemists. The carcinogenic hydrocarbon was first discovered by Michael Faraday at the Royal Institution in 1825 during the repeated fractional distillation of some oil residues.\n\nFaraday analysed the pure benzene by passing its vapour over heated copper(II) oxide to produce carbon dioxide, water and copper. He collected and measured the volume of liquid water and gaseous $\\mathrm{CO}_{2}$ produced from a given mass of benzene.\n\nCalculate the maximum mass of water that could be formed from $0.644 \\mathrm{mmol}$ of benzene using Faraday's method.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nThis question is about benzene and its isomers\n\nWorking out the structure of benzene, $\\mathrm{C}_{6} \\mathrm{H}_{6}$, was one of the great achievements of $19^{\\text {th }}$ century chemists. The carcinogenic hydrocarbon was first discovered by Michael Faraday at the Royal Institution in 1825 during the repeated fractional distillation of some oil residues.\n\nFaraday analysed the pure benzene by passing its vapour over heated copper(II) oxide to produce carbon dioxide, water and copper. He collected and measured the volume of liquid water and gaseous $\\mathrm{CO}_{2}$ produced from a given mass of benzene.\n\nCalculate the maximum mass of water that could be formed from $0.644 \\mathrm{mmol}$ of benzene using Faraday's method.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of g, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"0.0348"
],
"solution": "Maximum mass formed:\n\n1 mole of benzene will form 3 moles of water.\n\n$0.644 \\mathrm{mmol}$ of benzene will form $3 \\times 0.644=1.932 \\mathrm{mmol}$ water\n\nmass $\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)=$ moles $\\left(\\mathrm{H}_{2} \\mathrm{O}\\right) \\times \\mathrm{M}_{\\mathrm{r}}\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)$\n\n$$\n=0.001932 \\mathrm{~mol}\n$$\n\n$$\n\\begin{aligned}\n& =0.001932 \\times 18.016 \\\\\n& =0.0348 \\mathrm{~g} \n\\end{aligned}\n$$",
"answer_type": "NV",
"unit": [
"g"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_726",
"problem": "膜技术原理在化工生产中有着广泛的应用。有人设想利用电化学原理制备少量硫酸和绿色硝化剂 $\\mathrm{N}_{2} \\mathrm{O}_{5}$, 装置图如下。下列说法不正确的是\n\n[图1]\nA: $\\mathrm{X}$ 是原电池\nB: Y 池能够生产 $\\mathrm{N}_{2} \\mathrm{O}_{5}$\nC: 电路中电子流向为 $\\mathrm{a} \\rightarrow \\mathrm{d} \\rightarrow \\mathrm{c} \\rightarrow \\mathrm{b} \\rightarrow \\mathrm{a}$ ,形成闭合回路\nD: $\\mathrm{X} 、 \\mathrm{Y}$ 中 $\\mathrm{H}^{+}$均从右边迁移到左边\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n膜技术原理在化工生产中有着广泛的应用。有人设想利用电化学原理制备少量硫酸和绿色硝化剂 $\\mathrm{N}_{2} \\mathrm{O}_{5}$, 装置图如下。下列说法不正确的是\n\n[图1]\n\nA: $\\mathrm{X}$ 是原电池\nB: Y 池能够生产 $\\mathrm{N}_{2} \\mathrm{O}_{5}$\nC: 电路中电子流向为 $\\mathrm{a} \\rightarrow \\mathrm{d} \\rightarrow \\mathrm{c} \\rightarrow \\mathrm{b} \\rightarrow \\mathrm{a}$ ,形成闭合回路\nD: $\\mathrm{X} 、 \\mathrm{Y}$ 中 $\\mathrm{H}^{+}$均从右边迁移到左边\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8e75292c6204fb2a9e3ag-66.jpg?height=383&width=1243&top_left_y=588&top_left_x=338"
],
"answer": [
"C",
"D"
],
"solution": "【详解】 $\\mathrm{A}$. 由装置图可知 $\\mathrm{X}$ 为燃料电池即原电池, $\\mathrm{SO}_{2}$ 为负极, $\\mathrm{O}_{2}$ 为正极, 故 $\\mathrm{A}$ 正确:\n\nB. $\\mathrm{Y}$ 为电解池, $\\mathrm{c}$ 是阳极, $\\mathrm{N}_{2} \\mathrm{O}_{4}$ 失去电子生成 $\\mathrm{N}_{2} \\mathrm{O}_{5}, \\mathrm{~d}$ 是阴极, 硝酸得到电子生成 $\\mathrm{NO}_{2}$ ,故 B 正确;\n\nC. 电路中电子的流向为 $\\mathrm{a} \\rightarrow \\mathrm{d}, \\mathrm{c} \\rightarrow \\mathrm{b}$, 溶液中无电子移动, 故 $\\mathrm{C}$ 错误;\n\nD. 原电池中阳离子移向正极 (电极 $\\mathrm{b}$ ), 电解池中阳离子移向阴极(电极 $\\mathrm{d}$ ), 因此 $\\mathrm{H}^{+}$均从左边迁移到右边, 故 D 错误;\n\n故选 CD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1510",
"problem": "When an atom $\\mathrm{X}$ absorbs radiation with a photon energy greater than the ionization energy of the atom, the atom is ionized to generate an ion $\\mathrm{X}^{+}$and the electron (called a photoelectron) is ejected at the same time. In this event, the energy is conserved as shown in Figure 1, that is,\n\nPhoton energy $(h v)=$ ionization energy (IE) of $X+$ kinetic energy of photoelectron.\n\nWhen a molecule, for example, $\\mathrm{H}_{2}$, absorbs short-wavelength light, the photoelectron is ejected and an $\\mathrm{H}_{2}{ }^{+}$ion with a variety of vibrational states is produced. A photoelectron spectrum is a plot of the number of photoelectrons as a function of the kinetic energy of the photoelectrons. Figure 2 shows a typical photoelectron spectrum when $\\mathrm{H}_{2}$ in the lowest vibrational level is irradiated by monochromatic light of $21.2 \\mathrm{eV}$. No photoelectrons are detected above $6.0 \\mathrm{eV}$. (eV is a unit of energy and $1.0 \\mathrm{eV}$ is equal to $1.6 \\cdot 10^{-19} \\mathrm{~J}$.)\n\n[figure1]\n\nFigure 1. Schematic diagram of photoelectron spectroscopy.\n\n[figure2]\n\nFigure 2. Photoelectron spectrum of $\\mathrm{H}_{2}$. The energy of the incident light is $21.2 \\mathrm{eV}$.Determine the energy difference $\\Delta E_{\\mathrm{Al}}(\\mathrm{eV})$ between $\\mathrm{H}_{2}(v=0)$ and $\\mathrm{H}_{2}^{+}\\left(v_{\\text {ion }}=0\\right)$ to the first decimal place. $v$ and $v$ ion denote the vibrational quantum numbers of $\\mathrm{H}_{2}$ and $\\mathrm{H}_{2}^{+}$, respectively.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\nHere is some context information for this question, which might assist you in solving it:\nWhen an atom $\\mathrm{X}$ absorbs radiation with a photon energy greater than the ionization energy of the atom, the atom is ionized to generate an ion $\\mathrm{X}^{+}$and the electron (called a photoelectron) is ejected at the same time. In this event, the energy is conserved as shown in Figure 1, that is,\n\nPhoton energy $(h v)=$ ionization energy (IE) of $X+$ kinetic energy of photoelectron.\n\nWhen a molecule, for example, $\\mathrm{H}_{2}$, absorbs short-wavelength light, the photoelectron is ejected and an $\\mathrm{H}_{2}{ }^{+}$ion with a variety of vibrational states is produced. A photoelectron spectrum is a plot of the number of photoelectrons as a function of the kinetic energy of the photoelectrons. Figure 2 shows a typical photoelectron spectrum when $\\mathrm{H}_{2}$ in the lowest vibrational level is irradiated by monochromatic light of $21.2 \\mathrm{eV}$. No photoelectrons are detected above $6.0 \\mathrm{eV}$. (eV is a unit of energy and $1.0 \\mathrm{eV}$ is equal to $1.6 \\cdot 10^{-19} \\mathrm{~J}$.)\n\n[figure1]\n\nFigure 1. Schematic diagram of photoelectron spectroscopy.\n\n[figure2]\n\nFigure 2. Photoelectron spectrum of $\\mathrm{H}_{2}$. The energy of the incident light is $21.2 \\mathrm{eV}$.\n\nproblem:\nDetermine the energy difference $\\Delta E_{\\mathrm{Al}}(\\mathrm{eV})$ between $\\mathrm{H}_{2}(v=0)$ and $\\mathrm{H}_{2}^{+}\\left(v_{\\text {ion }}=0\\right)$ to the first decimal place. $v$ and $v$ ion denote the vibrational quantum numbers of $\\mathrm{H}_{2}$ and $\\mathrm{H}_{2}^{+}$, respectively.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of eV, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_d067913db7e87f3acbf3g-072.jpg?height=639&width=643&top_left_y=1505&top_left_x=224",
"https://cdn.mathpix.com/cropped/2024_03_14_d067913db7e87f3acbf3g-072.jpg?height=671&width=940&top_left_y=1549&top_left_x=935"
],
"answer": [
"15.4"
],
"solution": "The spectral peak at $5.8 \\mathrm{eV}$ in Fig. 2 corresponds to the electron with the highest kinetic energy, which is generated by the reaction\n\n$\\mathrm{H}_{2}(v=0) \\rightarrow \\mathrm{H}_{2}^{+}\\left(v_{\\text {ion }}=0\\right)+\\mathrm{e}$.\n\nAccordingly,\n\n$\\Delta E_{\\mathrm{A} 1}=21.2 \\mathrm{eV}-5.8 \\mathrm{eV}=15.4 \\mathrm{eV}$",
"answer_type": "NV",
"unit": [
"eV"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_490",
"problem": "在两个容积均为 $1 \\mathrm{~L}$ 密闭容器中以不同的氢碳比 $\\left[\\mathrm{n}\\left(\\mathrm{H}_{2}\\right) / \\mathrm{n}\\left(\\mathrm{CO}_{2}\\right)\\right]$ 充入 $\\mathrm{H}_{2}$ 和 $\\mathrm{CO}_{2}$, 在一定条件下发生反应 $2 \\mathrm{CO}_{2}(\\mathrm{~g})+6 \\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{C}_{2} \\mathrm{H}_{4}(\\mathrm{~g})+4 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g}) \\Delta \\mathrm{H} \\circ \\mathrm{CO}_{2}$ 的平衡转化率 $\\alpha\\left(\\mathrm{CO}_{2}\\right)$ 与温度的关系如下图所示。\n\n[图1]\n\n下列说法正确的是\nA: 该反应的 $\\Delta \\mathrm{H}>0$\nB: 氢碳比: $\\mathrm{X}<2.0$\nC: 在氢碳比为 2.0 时, $\\mathrm{Q}$ 点 $\\mathrm{v}$ (逆)小于 $\\mathrm{P}$ 点的 $\\mathrm{v}($ 逆)\nD: P 点温度下, 反应的平衡常数为 512\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n在两个容积均为 $1 \\mathrm{~L}$ 密闭容器中以不同的氢碳比 $\\left[\\mathrm{n}\\left(\\mathrm{H}_{2}\\right) / \\mathrm{n}\\left(\\mathrm{CO}_{2}\\right)\\right]$ 充入 $\\mathrm{H}_{2}$ 和 $\\mathrm{CO}_{2}$, 在一定条件下发生反应 $2 \\mathrm{CO}_{2}(\\mathrm{~g})+6 \\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{C}_{2} \\mathrm{H}_{4}(\\mathrm{~g})+4 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g}) \\Delta \\mathrm{H} \\circ \\mathrm{CO}_{2}$ 的平衡转化率 $\\alpha\\left(\\mathrm{CO}_{2}\\right)$ 与温度的关系如下图所示。\n\n[图1]\n\n下列说法正确的是\n\nA: 该反应的 $\\Delta \\mathrm{H}>0$\nB: 氢碳比: $\\mathrm{X}<2.0$\nC: 在氢碳比为 2.0 时, $\\mathrm{Q}$ 点 $\\mathrm{v}$ (逆)小于 $\\mathrm{P}$ 点的 $\\mathrm{v}($ 逆)\nD: P 点温度下, 反应的平衡常数为 512\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-010.jpg?height=722&width=900&top_left_y=1478&top_left_x=338"
],
"answer": [
"C"
],
"solution": "A. 由图可知, 随温度升高 $\\mathrm{CO}_{2}$ 的平衡转化率减小, 说明升高温度平衡逆向移试卷第 10 页,共 108 页\n动, 升高温度平衡向吸热反应越大, 则正反应为放热反应, 故 $\\triangle \\mathrm{H}<0$, 错误;\n\nB. 氢碳比 $\\frac{n\\left(\\mathrm{H}_{2}\\right)}{n\\left(\\mathrm{CO}_{2}\\right)}$ 越大, 二氧化碳的转化率越大, 故氢碳比: $\\mathrm{X}>2.0$, 错误;\n\nC. 相同温度下, $\\mathrm{Q}$ 点二氧化碳转化率小于平衡时的转化率, 说明 $\\mathrm{Q}$ 点未到达平衡, 反应向正反应进行, 逆反应速率增大到平衡状态 $\\mathrm{P}$, 故在氢碳比为 2.0 时, $\\mathrm{Q}$ 点 $\\mathrm{V}$ (逆)小于 $\\mathrm{P}$ 点的 $\\mathrm{v}$ (逆), 故 C 正确;\n\nD. 由图可知, $\\mathrm{P}$ 点平衡时二氧化碳转化率为 0.5 , 氢碳比 $\\frac{n\\left(\\mathrm{H}_{2}\\right)}{n\\left(\\mathrm{CO}_{2}\\right)}=2$, 设起始时氢气为 $2 \\mathrm{amol} / \\mathrm{L}$ 、二氧化碳为 $\\mathrm{amol} / \\mathrm{L}$, 则二氧化碳浓度变化量为 $0.5 \\mathrm{~mol} / \\mathrm{L}$, 则:\n\n$2 \\mathrm{CO}_{2}(\\mathrm{~g})+6 \\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{C}_{2} \\mathrm{H}_{4}(\\mathrm{~g})+4 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g})$\n\n起始浓度 $(\\mathrm{mol} / \\mathrm{L}):$ a $\\quad 2 \\mathrm{a} \\quad 0 \\quad 0$\n\n变化浓度 $(\\mathrm{mol} / \\mathrm{L}): 0.5 \\mathrm{a} \\quad 1.5 \\mathrm{a} \\quad 0.25 \\mathrm{a} \\quad \\mathrm{a}$\n\n平衡浓度 $(\\mathrm{mol} / \\mathrm{L}): 0.5 \\mathrm{a} \\quad 0.5 \\mathrm{a} \\quad 0.25 \\mathrm{a} \\quad \\mathrm{a}$\n\n平衡常数 $K=\\frac{c\\left(\\mathrm{C}_{2} \\mathrm{H}_{4}\\right) \\cdot c^{4}\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)}{c^{2}\\left(\\mathrm{CO}_{2}\\right) \\cdot c^{6}\\left(\\mathrm{H}_{2}\\right)}=\\frac{0.25 a \\times a^{4}}{(0.5 a)^{2} \\times(0.5 a)^{6}}=\\frac{64}{a^{3}}$, 错误。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_416",
"problem": "$25^{\\circ} \\mathrm{C}$ 时某些弱酸的电离平衡常数 $\\mathrm{Ka}$ 如下表, 下列说法正确的是\n\n| 化学式 | $\\mathrm{CH}_{3} \\mathrm{COOH}$ | $\\mathrm{HClO}$ | $\\mathrm{H}_{2} \\mathrm{CO}_{3}$ |\n| :--- | :--- | :--- | :--- |\n| $\\mathrm{K}_{\\mathrm{a}}$ | $\\mathrm{K}_{\\mathrm{a}}=1.8 \\times 10^{-5}$ | $\\mathrm{~K}_{\\mathrm{a}}=3.0 \\times 10^{-8}$ | $\\mathrm{~K}_{\\mathrm{a} 1}=4.1 \\times 10^{-7}$ |\n| | | | $\\mathrm{~K}_{\\mathrm{a} 2}=5.6 \\times 10^{-11}$ |\nA: 相同 $\\mathrm{pH}$ 的三种酸溶液, 物质的量浓度由大到小的顺序为: $\\mathrm{c}(\\mathrm{HClO})>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$ $$ >\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right) $$\nB: 在相同物质的量浓度的 $\\mathrm{Na}_{2} \\mathrm{CO}_{3} 、 \\mathrm{NaClO} 、 \\mathrm{NaHCO}_{3}$ 与 $\\mathrm{CH}_{3} \\mathrm{COONa}$ 四种钠盐中加水稀释, 水解程度均增大, 碱性均增强\nC: 等物质的量浓度的 $\\mathrm{NaClO}$ 和 $\\mathrm{NaHCO}_{3}$ 混合溶液中: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)=\\mathrm{c}(\\mathrm{HClO})+\\mathrm{c}\\left(\\mathrm{ClO}^{-}\\right)+$ $\\mathrm{c}\\left(\\mathrm{HCO}_{3}{ }^{-}\\right)+\\mathrm{c}\\left(\\mathrm{CO}_{3}{ }^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)$\nD: 向次氯酸钠溶液中通入少量二氧化碳气体的离子方程式为: $2 \\mathrm{ClO}^{-}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n$25^{\\circ} \\mathrm{C}$ 时某些弱酸的电离平衡常数 $\\mathrm{Ka}$ 如下表, 下列说法正确的是\n\n| 化学式 | $\\mathrm{CH}_{3} \\mathrm{COOH}$ | $\\mathrm{HClO}$ | $\\mathrm{H}_{2} \\mathrm{CO}_{3}$ |\n| :--- | :--- | :--- | :--- |\n| $\\mathrm{K}_{\\mathrm{a}}$ | $\\mathrm{K}_{\\mathrm{a}}=1.8 \\times 10^{-5}$ | $\\mathrm{~K}_{\\mathrm{a}}=3.0 \\times 10^{-8}$ | $\\mathrm{~K}_{\\mathrm{a} 1}=4.1 \\times 10^{-7}$ |\n| | | | $\\mathrm{~K}_{\\mathrm{a} 2}=5.6 \\times 10^{-11}$ |\n\nA: 相同 $\\mathrm{pH}$ 的三种酸溶液, 物质的量浓度由大到小的顺序为: $\\mathrm{c}(\\mathrm{HClO})>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$ $$ >\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right) $$\nB: 在相同物质的量浓度的 $\\mathrm{Na}_{2} \\mathrm{CO}_{3} 、 \\mathrm{NaClO} 、 \\mathrm{NaHCO}_{3}$ 与 $\\mathrm{CH}_{3} \\mathrm{COONa}$ 四种钠盐中加水稀释, 水解程度均增大, 碱性均增强\nC: 等物质的量浓度的 $\\mathrm{NaClO}$ 和 $\\mathrm{NaHCO}_{3}$ 混合溶液中: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)=\\mathrm{c}(\\mathrm{HClO})+\\mathrm{c}\\left(\\mathrm{ClO}^{-}\\right)+$ $\\mathrm{c}\\left(\\mathrm{HCO}_{3}{ }^{-}\\right)+\\mathrm{c}\\left(\\mathrm{CO}_{3}{ }^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)$\nD: 向次氯酸钠溶液中通入少量二氧化碳气体的离子方程式为: $2 \\mathrm{ClO}^{-}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"C"
],
"solution": "【详解】A.相同浓度下, 酸的酸性越强, 溶液的 $\\mathrm{pH}$ 越小, 因此相同 $\\mathrm{pH}$ 的三种酸溶液,越弱的酸浓度越大, 则三种酸的物质的量浓度由大到小的顺序为: $\\mathrm{c}(\\mathrm{HClO})>\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)$ $>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$, 错误;\n\nB. 在相同物质的量浓度的 $\\mathrm{Na}_{2} \\mathrm{CO}_{3} 、 \\mathrm{NaClO} 、 \\mathrm{NaHCO}_{3}$ 与 $\\mathrm{CH}_{3} \\mathrm{COONa}$ 四种钠盐中加水稀释, 水解程度均增大, 但是稀释作用使离子浓度减小的趋势大于平衡移动使离子浓度增大的趋势,因此溶液的碱性均减弱,错误;\n\nC. 等物质的量浓度的 $\\mathrm{NaClO}$ 和 $\\mathrm{NaHCO}_{3}$ 混合溶液, 根据物料守恒可得 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)=\\mathrm{c}(\\mathrm{HClO})$ $+\\mathrm{c}\\left(\\mathrm{ClO}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{HCO}_{3}{ }^{-}\\right)+\\mathrm{c}\\left(\\mathrm{CO}_{3}{ }^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)$, 正确;\n\nD. 向次氯酸钠溶液中通入少量二氧化碳气体的离子方程式为: $\\mathrm{ClO}^{-}+\\mathrm{CO}_{2}+\\mathrm{H}_{2} \\mathrm{O}=\\mathrm{HCO}_{3}$ $-+\\mathrm{HClO}$, 错误;\n\n答案选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_487",
"problem": "利用丙烷 $\\left(\\mathrm{C}_{3} \\mathrm{H}_{8}\\right)$ 在无氧条件下制备丙烯 $\\left(\\mathrm{C}_{3} \\mathrm{H}_{6}\\right)$ 的反应方程式为: $\\mathrm{C}_{3} \\mathrm{H}_{8}(\\mathrm{~g}) \\rightleftharpoons$\n\n$\\mathrm{C}_{3} \\mathrm{H}_{6}(\\mathrm{~g})+\\mathrm{H}_{2}(\\mathrm{~g}) \\Delta \\mathrm{H}=+124 \\mathrm{~kJ} \\cdot \\mathrm{mol}^{-1}$ 。 在一体积可变的容器中, 不同起始压强下 $(0.1 \\mathrm{MPa} 、$ 0.01MPa)进行上述反应, 达到化学平衡时, 测得丙烷和丙烯的物质的量分数随温度变化如图所示,则下列说法中正确的是\n\n[图1]\nA: $\\mathrm{c}$ 曲线表示的是 $0.01 \\mathrm{MPa}$ 压强下丙烯随温度变化的物质的量分数\nB: $A$ 点对应的该反应平衡常数 $K_{p}=1.25 \\mathrm{MPa}\\left(\\mathrm{K}_{\\mathrm{p}}\\right.$ 为以分压表示的平衡常数 $)$\nC: B 点丙烷的平衡转化率为 $33.3 \\%$\nD: 实际生产过程中需通入一定量水蒸气,其目的是稀释原料气,增大丙烯的平衡产率\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n利用丙烷 $\\left(\\mathrm{C}_{3} \\mathrm{H}_{8}\\right)$ 在无氧条件下制备丙烯 $\\left(\\mathrm{C}_{3} \\mathrm{H}_{6}\\right)$ 的反应方程式为: $\\mathrm{C}_{3} \\mathrm{H}_{8}(\\mathrm{~g}) \\rightleftharpoons$\n\n$\\mathrm{C}_{3} \\mathrm{H}_{6}(\\mathrm{~g})+\\mathrm{H}_{2}(\\mathrm{~g}) \\Delta \\mathrm{H}=+124 \\mathrm{~kJ} \\cdot \\mathrm{mol}^{-1}$ 。 在一体积可变的容器中, 不同起始压强下 $(0.1 \\mathrm{MPa} 、$ 0.01MPa)进行上述反应, 达到化学平衡时, 测得丙烷和丙烯的物质的量分数随温度变化如图所示,则下列说法中正确的是\n\n[图1]\n\nA: $\\mathrm{c}$ 曲线表示的是 $0.01 \\mathrm{MPa}$ 压强下丙烯随温度变化的物质的量分数\nB: $A$ 点对应的该反应平衡常数 $K_{p}=1.25 \\mathrm{MPa}\\left(\\mathrm{K}_{\\mathrm{p}}\\right.$ 为以分压表示的平衡常数 $)$\nC: B 点丙烷的平衡转化率为 $33.3 \\%$\nD: 实际生产过程中需通入一定量水蒸气,其目的是稀释原料气,增大丙烯的平衡产率\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-063.jpg?height=686&width=945&top_left_y=1436&top_left_x=330"
],
"answer": [
"D"
],
"solution": "【分析】反应为气体分子数增大的反应, 相同条件下, 增大压强, 平衡逆向移动, 丙烷分数增加,丙烯分数降低结合图可知, $\\mathrm{a} 、 \\mathrm{c}$ 为 $0.1 \\mathrm{Mpa}$ 下曲线, $\\mathrm{bd}$ 为 $0.01 \\mathrm{Mpa}$ 下曲线。\n反应为吸热反应, 升高温度, 平衡正向移动, 丙烯含量增加、丙烷含量减少, 故 $\\mathrm{a} 、 \\mathrm{c}$曲线分别表示的是 $0.1 \\mathrm{MPa}$ 压强下丙烷、丙烯随温度变化的物质的量分数曲线, $b 、 d$ 曲线分别表示的是 $0.01 \\mathrm{MPa}$ 压强下丙烯、丙烷随温度变化的物质的量分数曲线;\n\n【详解】A. 由分析可知, $\\mathrm{c}$ 曲线表示的是 $0.1 \\mathrm{MPa}$ 压强下丙烯随温度变化的物质的量分数, $\\mathrm{A}$ 错误;\n\nB. 假设丙烷初始量为 $1 \\mathrm{~mol}$\n\n| | $\\mathrm{C}_{3} \\mathrm{H}_{8}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{C}_{3} \\mathrm{H}_{6}(\\mathrm{~g})+\\mathrm{H}_{2}(\\mathrm{~g})$ | | |\n| :--- | :---: | :---: | :---: |\n| 起始 $(\\mathrm{mol})$ | 1 | 0 | 0 |\n| 转化 $(\\mathrm{mol})$ | $x$ | $x$ | $x$ |\n| 平衡 $(\\mathrm{mol})$ | $1-x$ | $x$ | $x$ |\n\nA 点丙烷含量为 $50 \\%$, 则 $\\frac{1-x}{1+x} \\times 100 \\%=50 \\%, x=\\frac{1}{3} \\mathrm{~mol}$, 反应后总的物质的量为 $\\frac{4}{3} \\mathrm{~mol}$,则 $A$ 点对应的该反应平衡常数 $K_{p}=\\frac{\\left(\\frac{1}{4} 0.1 \\mathrm{MPa}\\right)\\left(\\frac{1}{4} 0.1 \\mathrm{MPa}\\right)}{\\left(\\frac{2}{4} 0.1 \\mathrm{MPa}\\right)}=0.0125 \\mathrm{MPa}, B$ 错误;\n\nC. 假设丙烷初始量为 $1 \\mathrm{~mol}$\n\n| | $\\mathrm{C}_{3} \\mathrm{H}_{8}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{C}_{3} \\mathrm{H}_{6}(\\mathrm{~g})+\\mathrm{H}_{2}(\\mathrm{~g})$ | | |\n| :--- | :---: | :---: | :---: |\n| 起始 $(\\mathrm{mol})$ | 1 | 0 | 0 |\n| 转化 $(\\mathrm{mol})$ | $x$ | $x$ | $x$ |\n| 平衡 $(\\mathrm{mol})$ | $1-x$ | $x$ | $x$ |\n\nB 点丙烯含量为 $40 \\%$, 则 $\\frac{x}{1+x} \\times 100 \\%=40 \\%, x=\\frac{2}{3} \\mathrm{~mol}, \\mathrm{~B}$ 点丙烷的平衡转化率为 $\\frac{\\frac{2}{3}}{1} \\times 100 \\% \\approx 66.7 \\%, \\mathrm{C}$ 错误;\n\nD. 实际生产过程中需通入一定量水蒸气, 其目的是稀释原料气, 可以促进平衡正向移动, 增大丙烯的平衡产率, $\\mathrm{D}$ 正确;\n\n故选 D。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_695",
"problem": "傲娇, 来源日本 ACGN 的一个词语, 指人物为了掩饰害羞腼腆而做出态度强硬高傲表里不一言行的代名词, 常用来形容平常说话带刺, 态度强硬高傲, 但在一定的条件下害臊地黏㖪在身边的人物。在化学中也有这样的原理, 那就是勒夏特列原理。勒夏特列对于可逆反应平衡的移动总结出的规则在后人的二次总结下总结成了一条: 平衡总是朝着能减小外界条件改变对其产生的影响的方向移动。已知相同条件下, 每个产物浓度系数次幂的连乘积与每个反应物浓度系数次幂的连乘积之比是个常数, 阅读以上材料,在恒容条件下, 下列说法正确的是\nA: 对于煤和温室气体的反应, 物质成分不变后如果升高温度, 反应向着产生空气污染物的方向进行。\nB: 对于天然气和氯气的反应, 物质成分不变后如果减小容积, 反应向着产生氯化氢气体的方向进行。\nC: 对于工业的人工固氮反应, 物质成分不变后如果除去产物, 反应向着产生含有氢键物质方向进行。\nD: 对于两氮氧化物自身互化, 物质成分不变后如果缩小容器, 反应向着使气体颜色变浅的方向进行。\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n傲娇, 来源日本 ACGN 的一个词语, 指人物为了掩饰害羞腼腆而做出态度强硬高傲表里不一言行的代名词, 常用来形容平常说话带刺, 态度强硬高傲, 但在一定的条件下害臊地黏㖪在身边的人物。在化学中也有这样的原理, 那就是勒夏特列原理。勒夏特列对于可逆反应平衡的移动总结出的规则在后人的二次总结下总结成了一条: 平衡总是朝着能减小外界条件改变对其产生的影响的方向移动。已知相同条件下, 每个产物浓度系数次幂的连乘积与每个反应物浓度系数次幂的连乘积之比是个常数, 阅读以上材料,在恒容条件下, 下列说法正确的是\n\nA: 对于煤和温室气体的反应, 物质成分不变后如果升高温度, 反应向着产生空气污染物的方向进行。\nB: 对于天然气和氯气的反应, 物质成分不变后如果减小容积, 反应向着产生氯化氢气体的方向进行。\nC: 对于工业的人工固氮反应, 物质成分不变后如果除去产物, 反应向着产生含有氢键物质方向进行。\nD: 对于两氮氧化物自身互化, 物质成分不变后如果缩小容器, 反应向着使气体颜色变浅的方向进行。\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"C"
],
"solution": "【详解】 $\\mathrm{A}$. 对于煤和温室气体的反应为 $\\mathrm{CO}_{2}+\\mathrm{C} \\xlongequal{\\text { 高温 }} 2 \\mathrm{CO}$, 反应为吸热反应, 物质成分不变后如果升高温度, 反应逆向进行, 则反应向着减少空气污染物的方向进行, A 错误;\n\nB. 对于天然气和氯气的反应, 反应生成的 $\\mathrm{CHCl}_{3} 、 \\mathrm{CCl}_{4}$ 不是气体, 反应后气体分子数减小, 物质成分不变后如果减小容积, 反应会逆向进行, 反应向着减少氯化氢气体的方向进行,B 错误;\n\nC. 对于工业的人工固氮反应 $\\mathrm{N}_{2}+3 \\mathrm{H}_{2} \\stackrel{\\Delta}{\\stackrel{\\text { 催化剂 }}{\\rightleftharpoons}} 2 \\mathrm{NH}_{3}$, 氨分子可以形成氢键, 物质成分不变后如果除去产物, 反应正向进行, 故反应向着产生含有氢键物质方向进行, C 正确 D. 对于两氮氧化物自身互化, 物质成分不变后如果缩小容器, 容器中各物质浓度均变\n大,故反应后颜色变深,D 错误;\n\n故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_1032",
"problem": "Some self-test breathalyser kits use the redox reaction between ethanol and acidified potassium dichromate to estimate blood alcohol.\n\nThe alcohol gets into the blood by absorption through the stomach wall; most is broken down in the liver to carbon dioxide and water - the rest leaves the body through sweat, in the breath and by excretion in urine.\n\n[figure1]\n\nAlcohol concentration in the blood can be estimated by analysing the alcohol in the breath because an equilibrium is set up between the alcohol in the blood and the alcohol in the air in the lungs:\n\n$$\n\\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}_{\\text {(Blood) }} \\rightleftharpoons \\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}_{\\text {(Breath) }}\n$$\n\nAt body temperature, the concentration of alcohol in the blood is about 2300 times that in the breath.\n\nThe half equation for the oxidation of ethanol to ethanoic acid is:\n\n$$\n\\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}+\\mathrm{H}_{2} \\mathrm{O} \\longrightarrow \\mathrm{CH}_{3} \\mathrm{CO}_{2} \\mathrm{H}+4 \\mathrm{H}^{+}+4 \\mathrm{e}^{-}\n$$\n\nThe equation for the reduction of the dichromate ion in acid solution is:\n\n$\\mathrm{Cr}_{2} \\mathrm{O}_{7}^{2-}+6 \\mathrm{e}^{-}+14 \\mathrm{H}^{+} \\longrightarrow 2 \\mathrm{Cr}^{3+}+7 \\mathrm{H}_{2} \\mathrm{O}$\n\nThe overall equation for this reaction is:\n\n$3 \\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}+2 \\mathrm{Cr}_{2} \\mathrm{O}_{7}^{2--}+16 \\mathrm{H}^{+} \\longrightarrow 3 \\mathrm{CH}_{3} \\mathrm{CO}_{2} \\mathrm{H}+4 \\mathrm{Cr}^{3+}+11 \\mathrm{H}_{2} \\mathrm{O}$\n\nAssuming that the acid used is sulfuric acid and the dichromate salt is potassium dichromate, the balanced equation for the reaction is:\n\n$3 \\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}+2 \\mathrm{~K}_{2} \\mathrm{Cr}_{2} \\mathrm{O}_{7}+8 \\mathrm{H}_{2} \\mathrm{SO}_{4} ? 3 \\mathrm{CH}_{3} \\mathrm{CO}_{2} \\mathrm{H}+2 \\mathrm{Cr}_{2}\\left(\\mathrm{SO}_{4}\\right)_{3}+2 \\mathrm{~K}_{2} \\mathrm{SO}_{4}+$ $11 \\mathrm{H}_{2} \\mathrm{O}$\n\nThe breathalyser kit consists of a plastic bag that is inflated with $1000 \\mathrm{~cm}^{3}$ of breath and a glass tube containing the dichromate crystals. When the bag is connected to the tube and the breath is expelled through the tube the crystals change colour as they are reduced. The proportion of the crystals that change colour indicates the amount of alcohol present.\n\nThe current legal maximum blood alcohol concentration when driving in Britain is $80 \\mathrm{mg}$ per $100 \\mathrm{~cm}^{3}$ of blood.\n\nWhat is the corresponding breath alcohol concentration in $\\mu \\mathrm{g}$ per $1000 \\mathrm{~cm}^{3}$ of breath?",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nSome self-test breathalyser kits use the redox reaction between ethanol and acidified potassium dichromate to estimate blood alcohol.\n\nThe alcohol gets into the blood by absorption through the stomach wall; most is broken down in the liver to carbon dioxide and water - the rest leaves the body through sweat, in the breath and by excretion in urine.\n\n[figure1]\n\nAlcohol concentration in the blood can be estimated by analysing the alcohol in the breath because an equilibrium is set up between the alcohol in the blood and the alcohol in the air in the lungs:\n\n$$\n\\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}_{\\text {(Blood) }} \\rightleftharpoons \\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}_{\\text {(Breath) }}\n$$\n\nAt body temperature, the concentration of alcohol in the blood is about 2300 times that in the breath.\n\nThe half equation for the oxidation of ethanol to ethanoic acid is:\n\n$$\n\\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}+\\mathrm{H}_{2} \\mathrm{O} \\longrightarrow \\mathrm{CH}_{3} \\mathrm{CO}_{2} \\mathrm{H}+4 \\mathrm{H}^{+}+4 \\mathrm{e}^{-}\n$$\n\nThe equation for the reduction of the dichromate ion in acid solution is:\n\n$\\mathrm{Cr}_{2} \\mathrm{O}_{7}^{2-}+6 \\mathrm{e}^{-}+14 \\mathrm{H}^{+} \\longrightarrow 2 \\mathrm{Cr}^{3+}+7 \\mathrm{H}_{2} \\mathrm{O}$\n\nThe overall equation for this reaction is:\n\n$3 \\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}+2 \\mathrm{Cr}_{2} \\mathrm{O}_{7}^{2--}+16 \\mathrm{H}^{+} \\longrightarrow 3 \\mathrm{CH}_{3} \\mathrm{CO}_{2} \\mathrm{H}+4 \\mathrm{Cr}^{3+}+11 \\mathrm{H}_{2} \\mathrm{O}$\n\nAssuming that the acid used is sulfuric acid and the dichromate salt is potassium dichromate, the balanced equation for the reaction is:\n\n$3 \\mathrm{CH}_{3} \\mathrm{CH}_{2} \\mathrm{OH}+2 \\mathrm{~K}_{2} \\mathrm{Cr}_{2} \\mathrm{O}_{7}+8 \\mathrm{H}_{2} \\mathrm{SO}_{4} ? 3 \\mathrm{CH}_{3} \\mathrm{CO}_{2} \\mathrm{H}+2 \\mathrm{Cr}_{2}\\left(\\mathrm{SO}_{4}\\right)_{3}+2 \\mathrm{~K}_{2} \\mathrm{SO}_{4}+$ $11 \\mathrm{H}_{2} \\mathrm{O}$\n\nThe breathalyser kit consists of a plastic bag that is inflated with $1000 \\mathrm{~cm}^{3}$ of breath and a glass tube containing the dichromate crystals. When the bag is connected to the tube and the breath is expelled through the tube the crystals change colour as they are reduced. The proportion of the crystals that change colour indicates the amount of alcohol present.\n\nThe current legal maximum blood alcohol concentration when driving in Britain is $80 \\mathrm{mg}$ per $100 \\mathrm{~cm}^{3}$ of blood.\n\nWhat is the corresponding breath alcohol concentration in $\\mu \\mathrm{g}$ per $1000 \\mathrm{~cm}^{3}$ of breath?\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value.",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_4408eb29f8e936fbb54dg-08.jpg?height=588&width=711&top_left_y=323&top_left_x=1112"
],
"answer": [
"348"
],
"solution": "Blood alcohol $=800 \\mathrm{mg} / 1000 \\mathrm{~cm}^{3}$\n\nBreath alcohol $=800 / 2300 \\mathrm{mg} / 1000 \\mathrm{~cm}^{3}=0.348 \\mathrm{mg} / 1000 \\mathrm{~cm} 3=348 \\mu \\mathrm{g} / 1000 \\mathrm{~cm}^{3}$",
"answer_type": "NV",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_1116",
"problem": "Give half-equations for the following reactions in aqueous acid solution. In each case, indicate whether the reaction is an oxidation or a reduction.\n\n$\\mathrm{FeCl}_{3}$ to $\\mathrm{FeCl}_{2}$\nA: oxidation\nB: reduction\n",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThis is a multiple choice question (only one correct answer).\n\nproblem:\nGive half-equations for the following reactions in aqueous acid solution. In each case, indicate whether the reaction is an oxidation or a reduction.\n\n$\\mathrm{FeCl}_{3}$ to $\\mathrm{FeCl}_{2}$\n\nA: oxidation\nB: reduction\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be one of the options: [A, B].",
"figure_urls": null,
"answer": [
"B"
],
"solution": "$\\mathrm{Fe}^{3+}+\\mathrm{e}^{-} \\rightarrow \\mathrm{Fe}^{2+}$\nreduction",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_550",
"problem": "在水溶液中存在下述平衡:\n\n$$\n\\begin{aligned}\n& \\mathrm{Fe}^{3+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{1}=10^{-3.1} \\\\\n& {[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{2}=10^{-3.3}} \\\\\n& {\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{Fe}(\\mathrm{OH})_{3}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{3}} \\\\\n& 2 \\mathrm{Fe}^{3+}+2 \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+}+2 \\mathrm{H}^{+} \\quad \\mathrm{K}_{4}=10^{-2.9} \\\\\n& \\mathrm{~K}_{\\text {sp }}\\left[\\mathrm{Fe}(\\mathrm{OH})_{3}\\right]=10^{-38.6}\n\\end{aligned}\n$$\n\n下列说法不正确的是\nA: 反应 $\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{Fe}(\\mathrm{OH})_{3}+\\mathrm{H}^{+}$平衡常数 $\\mathrm{K}_{3}=10^{3.2}$\nB: 当 $\\mathrm{pH}=3.1$ 时 $\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)=\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]^{2+}\\right\\}$\nC: 当 $\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)=\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{2+}\\right\\}$ 时, $\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}<10^{-5}$\nD: 随 $\\mathrm{pH}$ 增大 $\\frac{\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}}{\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+}\\right\\}}$ 的数值减小\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n在水溶液中存在下述平衡:\n\n$$\n\\begin{aligned}\n& \\mathrm{Fe}^{3+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{1}=10^{-3.1} \\\\\n& {[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{2}=10^{-3.3}} \\\\\n& {\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{Fe}(\\mathrm{OH})_{3}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{3}} \\\\\n& 2 \\mathrm{Fe}^{3+}+2 \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+}+2 \\mathrm{H}^{+} \\quad \\mathrm{K}_{4}=10^{-2.9} \\\\\n& \\mathrm{~K}_{\\text {sp }}\\left[\\mathrm{Fe}(\\mathrm{OH})_{3}\\right]=10^{-38.6}\n\\end{aligned}\n$$\n\n下列说法不正确的是\n\nA: 反应 $\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{Fe}(\\mathrm{OH})_{3}+\\mathrm{H}^{+}$平衡常数 $\\mathrm{K}_{3}=10^{3.2}$\nB: 当 $\\mathrm{pH}=3.1$ 时 $\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)=\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]^{2+}\\right\\}$\nC: 当 $\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)=\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{2+}\\right\\}$ 时, $\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}<10^{-5}$\nD: 随 $\\mathrm{pH}$ 增大 $\\frac{\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}}{\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+}\\right\\}}$ 的数值减小\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": null,
"answer": [
"A",
"D"
],
"solution": "【详解】A. 已知: (1) $\\mathrm{Fe}^{3+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{1}=10^{-3.1}$; (2)\n\n$$\n[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{2}=10^{-3.3} ;\n$$\n\n$\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{Fe}(\\mathrm{OH})_{3}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{3}$; 由盖斯定律可知, (1)+(2)+(3)可得 $\\mathrm{Fe}^{3+}+3 \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{Fe}(\\mathrm{OH})_{3}+3 \\mathrm{H}^{+}$, 平衡常数\n$\\mathrm{K}=\\mathrm{K}_{1} \\mathrm{~K}_{2} \\mathrm{~K}_{3}=\\frac{\\mathrm{c}^{3}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)}=\\frac{\\mathrm{c}^{3}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}^{3}\\left(\\mathrm{OH}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right) \\mathrm{c}^{3}\\left(\\mathrm{OH}^{-}\\right)}=\\frac{\\mathrm{K}_{\\mathrm{w}}^{3}}{\\mathrm{~K}_{\\mathrm{sp}}\\left[\\mathrm{Fe}(\\mathrm{OH})_{3}\\right]}=\\frac{10^{-14 \\times 3}}{10^{-38.6}}=10^{-3.4}, \\mathrm{~K}_{3}=$\n\n$\\frac{10^{-3.4}}{\\mathrm{~K}_{1} \\mathrm{~K}_{2}}=\\frac{10^{-3.4}}{10^{-3.1} \\times 10^{-3.3}}=10^{3}$, 故 A 错误;\n\nB. $\\mathrm{K}_{1}=\\frac{\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]^{2+}\\right\\} \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)}=10^{-3.1}$, 当 $\\mathrm{pH}=1$ 时 $\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]^{2+}\\right\\}=\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)$, 故 B 正确;\n\nC. 2 个连续反应: $\\mathrm{Fe}^{3+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{1}=10^{-3.1}$ 、\n\n$[\\mathrm{Fe}(\\mathrm{OH})]^{2+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{H}^{+} \\quad \\mathrm{K}_{2}=10^{-3.3}$, 相加得\n\n$\\mathrm{Fe}^{3+}+2 \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+2 \\mathrm{H}^{+} \\quad \\mathrm{K}_{5}=\\mathrm{K}_{1} \\mathrm{~K}_{2}=10^{-6.4}$, 当 $\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}=\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)$ 时,\n\n$\\mathrm{c}^{2}\\left(\\mathrm{H}^{+}\\right)=10^{-6.4} \\mathrm{~mol} / \\mathrm{L}, \\mathrm{pH}=3.2, \\mathrm{c}(\\mathrm{OH}-)=10^{-10.8} \\mathrm{~mol} / \\mathrm{L}$, 依据 $\\mathrm{K}_{\\mathrm{sp}}\\left[\\mathrm{Fe}(\\mathrm{OH})_{3}\\right]=\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right) \\mathrm{c}^{3}\\left(\\mathrm{OH}^{-}\\right)$\n\n$=10^{-38.6}, \\quad \\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)=\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}=10^{-6.2}, \\mathrm{C}$ 正确;\n\nD. 依据 $\\mathrm{Fe}^{3+}+2 \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+2 \\mathrm{H}^{+} \\quad \\mathrm{K}=\\mathrm{K}_{1} \\mathrm{~K}_{2}=10^{-6.4}$,\n\n$2 \\mathrm{Fe}^{3+}+2 \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+}+2 \\mathrm{H}^{+} \\quad \\mathrm{K}_{4}=10^{-2.9}$, 相减得\n\n$[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+} \\rightleftharpoons\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}+\\mathrm{Fe}^{3+} \\quad \\mathrm{K}_{6}=\\frac{\\mathrm{K}_{1} \\mathrm{~K}_{2}}{\\mathrm{~K}_{4}}=\\frac{\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right) \\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}}{\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{4+}\\right\\}}$, 随 $\\mathrm{pH}$ 增大,\n\n$\\mathrm{c}\\left(\\mathrm{Fe}^{3+}\\right)$ 减小, $\\frac{\\mathrm{c}\\left\\{\\left[\\mathrm{Fe}(\\mathrm{OH})_{2}\\right]^{+}\\right\\}}{\\mathrm{c}\\left\\{[\\mathrm{Fe}(\\mathrm{OH})]_{2}^{++}\\right\\}}$的数值增大, D 错误;\n\n故选 AD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_746",
"problem": "室温下, 向 $20 \\mathrm{~mL} 0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 溶液中逐滴加入 $0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{NaOH}$溶液, 溶液中由水电离出 $\\mathrm{H}^{+}$浓度的负对数 $\\left[-\\lg c\\right.$ 水 $\\left.\\left(\\mathrm{H}^{+}\\right)\\right]$与所加 $\\mathrm{NaOH}$ 溶液体积关系如图所示。若溶液混合引起的体积变化可忽略, 下列指定溶液中微粒物质的量浓度关系正确的是\n\n[图1]\nA: b 点溶液中: $c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)+c\\left(\\mathrm{H}^{+}\\right)$\nB: c、e 两点溶液中: $c\\left(\\mathrm{Na}^{+}\\right)=c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)$\nC: $\\mathrm{d}$ 点溶液中: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)=0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nD: $\\mathrm{f}$ 点溶液中: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n室温下, 向 $20 \\mathrm{~mL} 0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 溶液中逐滴加入 $0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{NaOH}$溶液, 溶液中由水电离出 $\\mathrm{H}^{+}$浓度的负对数 $\\left[-\\lg c\\right.$ 水 $\\left.\\left(\\mathrm{H}^{+}\\right)\\right]$与所加 $\\mathrm{NaOH}$ 溶液体积关系如图所示。若溶液混合引起的体积变化可忽略, 下列指定溶液中微粒物质的量浓度关系正确的是\n\n[图1]\n\nA: b 点溶液中: $c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)+c\\left(\\mathrm{H}^{+}\\right)$\nB: c、e 两点溶液中: $c\\left(\\mathrm{Na}^{+}\\right)=c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)$\nC: $\\mathrm{d}$ 点溶液中: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)=0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nD: $\\mathrm{f}$ 点溶液中: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-082.jpg?height=905&width=1110&top_left_y=1141&top_left_x=333"
],
"answer": [
"A",
"C"
],
"solution": "【分析】图象 $\\mathrm{b}$ 点对应所加 $\\mathrm{V}(\\mathrm{NaOH})=10 \\mathrm{~mL}$, 此时 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 被中和一半, 故 $\\mathrm{b}$ 点组成为 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 和 $\\mathrm{CH}_{3} \\mathrm{COONa}$, 两者近似相等; $d$ 点所加 $\\mathrm{V}(\\mathrm{NaOH})=20 \\mathrm{~mL}$, 此时 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 被完全中和, 故 $d$ 点组成为 $\\mathrm{CH}_{3} \\mathrm{COONa}$; 点所加 $\\mathrm{V}(\\mathrm{NaOH})=40 \\mathrm{~mL}$, 此时 $\\mathrm{NaOH}$相当于原醋酸的两倍, 故 $\\mathrm{f}$ 点组成为 $\\mathrm{CH}_{3} \\mathrm{COONa}$ 和 $\\mathrm{NaOH}$, 两者近似相等; $\\mathrm{c}$ 点时\n$\\mathrm{CH}_{3} \\mathrm{COOH}$ 未完全中和, 故组成为 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 和 $\\mathrm{CH}_{3} \\mathrm{COONa}$, 由图象纵坐标得 $\\mathrm{c}$ 水 $\\left(\\mathrm{H}^{+}\\right)=10^{-7} \\mathrm{~mol} / \\mathrm{L}=\\mathrm{c}_{\\text {水 }}\\left(\\mathrm{OH}^{-}\\right)$, 此时只有水电离产生 $\\mathrm{OH}^{-}$(注意 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$水解生成的 $\\mathrm{OH}^{-}$实际也来源于水 $)$, 故 $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}_{\\text {水 }}\\left(\\mathrm{OH}^{-}\\right)=10^{-7} \\mathrm{~mol} / \\mathrm{L}$, 根据 $K_{w}$ 求得 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-7} \\mathrm{~mol} / \\mathrm{L}$, $\\mathrm{pH}=7$, 溶液显中性; $\\mathrm{e}$ 点组成为 $\\mathrm{CH}_{3} \\mathrm{COONa}$ 和 $\\mathrm{NaOH}$, 溶液显碱性。\n\n【详解】A. b 点: $c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right): c\\left(\\mathrm{CH}_{3} \\mathrm{COONa}\\right) \\approx 1: 1$, 对比 $\\mathrm{c}$ 点可知 $\\mathrm{b}$ 点溶液呈酸性,说明 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 电离程度大于 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$水解程度, 故 $\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right), \\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)$保持不变, 所以 $\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$, 由电荷守恒: $\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$ $=\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 可知 $\\mathrm{A}$ 正确;\n\nB. $\\mathrm{c}$ 点显中性, 关系成立, 但 $\\mathrm{e}$ 点显碱性, $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 根据电荷守恒知 $\\mathrm{c}(\\mathrm{Na}+)>$ $\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)$, B 错误;\n\nC. $\\mathrm{d}$ 点组成为 $\\mathrm{CH}_{3} \\mathrm{COONa}$, 根据物料守恒 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)=$ $\\frac{0.1 \\mathrm{~mol} / \\mathrm{L}}{2}=0.05 \\mathrm{~mol} / \\mathrm{L}$ (注意两者等体积混合浓度被稀释为原来一半), 故左右两边相加之和为 $0.1 \\mathrm{~mol} / \\mathrm{L}, \\mathrm{C}$ 正确;\n\nD. $\\mathrm{f}$ 点组成: $\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COONa}\\right)$ : $\\mathrm{c}(\\mathrm{NaOH}) \\approx 1: 1, \\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)$相当于两份, $\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)$相当于一份, 故 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)$, 此时 $\\mathrm{NaOH}$ 完全电离产生的 $\\mathrm{OH}^{-}$与 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$近似相等,由于 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$水解导致自身减少, $\\mathrm{OH}^{-}$变多, 故 $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)$, 即大小顺序为: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right), \\mathrm{D}$ 错误。\n\n【点睛】(1)注意图象纵坐标不是溶液中总的 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 仅仅是 $\\mathrm{c}_{\\text {水 }}\\left(\\mathrm{H}^{+}\\right)$, 不能直接换算成 $\\mathrm{pH}$; (2)混合过程中注意浓度稀释的问题。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1324",
"problem": "In Denmark the subsoil consists mainly of limestone. In contact with ground water containing carbon dioxide some of the calcium carbonate dissolves as calcium hydrogen carbonate. As a result, such ground water is hard, and when used as tap water the high content of calcium hydrogen carbonate causes problems due to precipitation of calcium carbonate in, for example, kitchen and bathroom environments.\n\nCarbon dioxide, $\\mathrm{CO}_{2}$, is a diprotic acid in aqueous solution. The $\\mathrm{p} K_{\\mathrm{a}}$-values at $0{ }^{\\circ} \\mathrm{C}$ are:\n\n[figure1]\n\nThe liquid volume change associated with dissolution of $\\mathrm{CO}_{2}$ may be neglected for all of the following problems. The temperature is to be taken as being $0{ }^{\\circ} \\mathrm{C}$.\n\nCalculate the equilibrium concentration of hydrogen ions in a $0.0100 \\mathrm{~m}$ aqueous solution of sodium hydrogen carbonate saturated with carbon dioxide at a carbon dioxide partial pressure of 1.00 bar.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nIn Denmark the subsoil consists mainly of limestone. In contact with ground water containing carbon dioxide some of the calcium carbonate dissolves as calcium hydrogen carbonate. As a result, such ground water is hard, and when used as tap water the high content of calcium hydrogen carbonate causes problems due to precipitation of calcium carbonate in, for example, kitchen and bathroom environments.\n\nCarbon dioxide, $\\mathrm{CO}_{2}$, is a diprotic acid in aqueous solution. The $\\mathrm{p} K_{\\mathrm{a}}$-values at $0{ }^{\\circ} \\mathrm{C}$ are:\n\n[figure1]\n\nThe liquid volume change associated with dissolution of $\\mathrm{CO}_{2}$ may be neglected for all of the following problems. The temperature is to be taken as being $0{ }^{\\circ} \\mathrm{C}$.\n\nCalculate the equilibrium concentration of hydrogen ions in a $0.0100 \\mathrm{~m}$ aqueous solution of sodium hydrogen carbonate saturated with carbon dioxide at a carbon dioxide partial pressure of 1.00 bar.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value.",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_9a7e6af5bdf769e8e1dfg-362.jpg?height=166&width=1354&top_left_y=1005&top_left_x=288"
],
"answer": [
"$1.76 \\times 10^{-6}$"
],
"solution": "$\\mathrm{CO}_{2}(\\mathrm{aq})+\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{l}) \\rightarrow \\mathrm{HCO}_{3}^{-}(\\mathrm{aq})+\\mathrm{H}^{+}(\\mathrm{aq})$\n\n$\\left[\\mathrm{CO}_{2}\\right]=0.0751$ and $\\left[\\mathrm{HCO}_{3}^{-}\\right]=0.0100$\n\n$K_{a}=10^{-6.63}=\\frac{\\left[\\mathrm{H}^{+}\\right]\\left[\\mathrm{HCO}_{3}^{-}\\right]}{\\left[\\mathrm{CO}_{2}\\right]}=\\frac{x 0.0100}{0.0751}$\n\n$\\underline{x}=\\left[\\mathrm{H}^{+}\\right]=1.76 \\times 10^{-6}$",
"answer_type": "NV",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_946",
"problem": "下列图象与对应叙述相符的是\n\n[图1]\n\n(1)\n\n[图2]\n\n(2)\n\n[图3]\n\n(3)\n\n[图4]\n\n(4)\nA: 图(1)表示已达平衡的某反应在 $\\mathrm{t}_{0}$ 时改变某一条件后反应速率随时间变化, 则改变的条件一定是加入催化剂\nB: 图(2)表示 $\\mathrm{Zn} 、 \\mathrm{Cu}$ 和稀硫酸构成的原电池在工作过程中电流强度的变化, 在 $\\mathrm{T}$时加入了 $\\mathrm{H}_{2} \\mathrm{O}_{2}$\nC: 图(3)表示同温度下、同体积 $\\mathrm{pH}=1$ 的盐酸和醋酸溶液分别加水稀释时 $\\mathrm{pH}$ 的变化曲线,其中曲线II为盐酸\nD: 图(4)表示向 $\\mathrm{NaOH}$ 溶液中通入 $\\mathrm{CO}_{2}$, 溶液中水电离出的 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$变化曲线, 则最高点 $\\mathrm{d}$ 处溶液中各离子浓度大小为 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}{ }^{2-}\\right)>\\mathrm{c}\\left(\\mathrm{HCO}_{3}{ }^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n下列图象与对应叙述相符的是\n\n[图1]\n\n(1)\n\n[图2]\n\n(2)\n\n[图3]\n\n(3)\n\n[图4]\n\n(4)\n\nA: 图(1)表示已达平衡的某反应在 $\\mathrm{t}_{0}$ 时改变某一条件后反应速率随时间变化, 则改变的条件一定是加入催化剂\nB: 图(2)表示 $\\mathrm{Zn} 、 \\mathrm{Cu}$ 和稀硫酸构成的原电池在工作过程中电流强度的变化, 在 $\\mathrm{T}$时加入了 $\\mathrm{H}_{2} \\mathrm{O}_{2}$\nC: 图(3)表示同温度下、同体积 $\\mathrm{pH}=1$ 的盐酸和醋酸溶液分别加水稀释时 $\\mathrm{pH}$ 的变化曲线,其中曲线II为盐酸\nD: 图(4)表示向 $\\mathrm{NaOH}$ 溶液中通入 $\\mathrm{CO}_{2}$, 溶液中水电离出的 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$变化曲线, 则最高点 $\\mathrm{d}$ 处溶液中各离子浓度大小为 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}{ }^{2-}\\right)>\\mathrm{c}\\left(\\mathrm{HCO}_{3}{ }^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-88.jpg?height=297&width=325&top_left_y=163&top_left_x=337",
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-88.jpg?height=308&width=348&top_left_y=166&top_left_x=680",
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-88.jpg?height=311&width=363&top_left_y=164&top_left_x=1029",
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-88.jpg?height=308&width=366&top_left_y=166&top_left_x=1436"
],
"answer": [
"B"
],
"solution": "【详解】A. $\\mathrm{t}_{0}$ 时正逆反应速率同等程度的变大, 可能为催化剂或增大压强, 故 A 错误\n\nB. $\\mathrm{Zn} 、 \\mathrm{Cu}$ 和稀硫酸构成的原电池在工作过程中, 锌失电子发生氧化反应, 随稀硫酸浓度减小反应进行, 电流强度减小, $\\mathrm{T}$ 时加入了 $\\mathrm{H}_{2} \\mathrm{O}_{2}$, 是强氧化剂, 可以加快锌溶解的反应, 电流强度增大, 随反应进行电流强度又减小, 但比开始电流强度大, 故 B 正确 C. 醋酸为弱酸, 稀释促进电离, 加水稀释后醋酸 $\\mathrm{pH}$ 较小, 曲线II为醋酸, 且 $\\mathrm{b}$ 点溶液的导电性比 a 点弱, 故 C 错误;\n\nD. 当 $\\mathrm{NaOH}$ 恰好与二氧化碳反应生成碳酸钠时, 碳酸钠的水解程度最大, 则水的电离程度最大, 即水电离出 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$达到最大值时, 溶质为碳酸钠, 溶液中各离子浓度大小分别为: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}{ }^{2-}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 故 D 错误;故选 B。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1420",
"problem": "[figure1]\n\nFigure 2.\n\nEnergy diagram of atomic orbitals of helium when an electron resides in the 1 s orbital.\n\nFigure 2 shows an energy diagram of the atomic orbitals of helium. The arrows indicate the \"allowed\" transitions according to the spectroscopic principle.Identify the transition relevant to the $D_{3}$ line of helium among the transitions $[A]$ to $[E]$ indicated in Figure 2. Mark one of the following choices:\nA: [A]\nB: [B]\nC: [C]\nD: [D]\nE: [E]\n",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThis is a multiple choice question (only one correct answer).\nHere is some context information for this question, which might assist you in solving it:\n[figure1]\n\nFigure 2.\n\nEnergy diagram of atomic orbitals of helium when an electron resides in the 1 s orbital.\n\nFigure 2 shows an energy diagram of the atomic orbitals of helium. The arrows indicate the \"allowed\" transitions according to the spectroscopic principle.\n\nproblem:\nIdentify the transition relevant to the $D_{3}$ line of helium among the transitions $[A]$ to $[E]$ indicated in Figure 2. Mark one of the following choices:\n\nA: [A]\nB: [B]\nC: [C]\nD: [D]\nE: [E]\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be one of the options: [A, B, C, D, E].",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_d067913db7e87f3acbf3g-058.jpg?height=771&width=876&top_left_y=1816&top_left_x=196"
],
"answer": [
"E"
],
"solution": "The correct answer is [E].\n\nThe energy $3.380 \\cdot 10^{-19} \\mathrm{~J}$ matches with the energy of the transition between $2 \\mathrm{p}$ and 3d orbitals.",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_1411",
"problem": "For sustainable energy, hydrogen appears to be the best energy carrier. The most efficient way of using hydrogen is generation of electrical energy in a fuel cell. However, storing hydrogen in large quantities is a challenge in fuel cell applications. Among the chemical hydrides considered as solid hydrogen storage materials, sodium borohydride $\\left(\\mathrm{NaBH}_{4}\\right)$, being non-toxic, stable and environmentally benign, appears to be the most promising one. The hydrolysis of sodium borohydride that releases $\\mathrm{H}_{2}$ gas is a slow reaction at ambient temperature and, therefore, needs to be catalyzed.\n\n$$\n\\mathrm{NaBH}_{4}(\\mathrm{aq})+2 \\mathrm{H}_{2} \\mathrm{O}(I) \\xrightarrow{catalyst} \\mathrm{Na}^{+}(\\mathrm{aq})+\\mathrm{BO}_{2}^{-}(\\mathrm{aq})+4 \\mathrm{H}_{2}(g)\n$$\n\nColloidal ruthenium(0) nanoclusters are the most active catalysts in this hydrolysis even at room temperature and lead to a complete $\\mathrm{H}_{2}$ release from sodium borohydride. Kinetic studies show that the catalytic hydrolysis of $\\mathrm{NaBH}_{4}$ is a first order reaction with respect to the catalyst, but a zero order with respect to the substrate. The rate of hydrogen production per mole of ruthenium is $92 \\mathrm{~mol} \\mathrm{H}_{2} \\cdot(\\mathrm{mol} \\mathrm{Ru})^{-1} \\cdot \\min ^{-1}$ at $25^{\\circ} \\mathrm{C}$.Calculate the amount of ruthenium catalyst (in $\\mathrm{mg}$ ) which must be added to $0.100 \\mathrm{dm}^{3}$ of $\\mathrm{NaBH}_{4}$ solution with a concentration of $1.0 \\mathrm{~mol} \\mathrm{dm}^{-3}$ to supply the hydrogen gas at a rate of $0.100 \\mathrm{dm}^{3} \\cdot \\mathrm{min}^{-1}$ at $25^{\\circ} \\mathrm{C}$ and $1.0 \\mathrm{~atm}$, that is required for a portable fuel cell.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\nHere is some context information for this question, which might assist you in solving it:\nFor sustainable energy, hydrogen appears to be the best energy carrier. The most efficient way of using hydrogen is generation of electrical energy in a fuel cell. However, storing hydrogen in large quantities is a challenge in fuel cell applications. Among the chemical hydrides considered as solid hydrogen storage materials, sodium borohydride $\\left(\\mathrm{NaBH}_{4}\\right)$, being non-toxic, stable and environmentally benign, appears to be the most promising one. The hydrolysis of sodium borohydride that releases $\\mathrm{H}_{2}$ gas is a slow reaction at ambient temperature and, therefore, needs to be catalyzed.\n\n$$\n\\mathrm{NaBH}_{4}(\\mathrm{aq})+2 \\mathrm{H}_{2} \\mathrm{O}(I) \\xrightarrow{catalyst} \\mathrm{Na}^{+}(\\mathrm{aq})+\\mathrm{BO}_{2}^{-}(\\mathrm{aq})+4 \\mathrm{H}_{2}(g)\n$$\n\nColloidal ruthenium(0) nanoclusters are the most active catalysts in this hydrolysis even at room temperature and lead to a complete $\\mathrm{H}_{2}$ release from sodium borohydride. Kinetic studies show that the catalytic hydrolysis of $\\mathrm{NaBH}_{4}$ is a first order reaction with respect to the catalyst, but a zero order with respect to the substrate. The rate of hydrogen production per mole of ruthenium is $92 \\mathrm{~mol} \\mathrm{H}_{2} \\cdot(\\mathrm{mol} \\mathrm{Ru})^{-1} \\cdot \\min ^{-1}$ at $25^{\\circ} \\mathrm{C}$.\n\nproblem:\nCalculate the amount of ruthenium catalyst (in $\\mathrm{mg}$ ) which must be added to $0.100 \\mathrm{dm}^{3}$ of $\\mathrm{NaBH}_{4}$ solution with a concentration of $1.0 \\mathrm{~mol} \\mathrm{dm}^{-3}$ to supply the hydrogen gas at a rate of $0.100 \\mathrm{dm}^{3} \\cdot \\mathrm{min}^{-1}$ at $25^{\\circ} \\mathrm{C}$ and $1.0 \\mathrm{~atm}$, that is required for a portable fuel cell.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of mg, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"4.5"
],
"solution": "$n\\left(\\mathrm{H}_{2}\\right)=\\frac{0.100 \\mathrm{dm}^{3} \\mathrm{~min}^{-1} \\times 101.325 \\mathrm{kPa}}{8.314 \\mathrm{~J} \\mathrm{~mol}^{-1} \\mathrm{~K}^{-1} \\times 298 \\mathrm{~K}}=4.1 \\cdot 10^{-3} \\mathrm{~mol} \\mathrm{~min}^{-1}$\n\n$n(\\mathrm{Ru})=\\frac{4.1 \\cdot 10^{-3} \\mathrm{~mol} \\mathrm{H}_{2} \\mathrm{~min}^{-1}}{\\frac{92 \\mathrm{~mol} \\mathrm{H}_{2} \\mathrm{~min}^{-1}}{1 \\mathrm{~mol} \\mathrm{Ru}}}=4.5 \\cdot 10^{-5} \\mathrm{~mol}$\n\n$m(\\mathrm{Ru})=4.5 \\cdot 10^{-5} \\mathrm{~mol} \\times 101.07 \\mathrm{~g} \\mathrm{~mol}^{-1}=4.5 \\cdot 10^{-3} \\mathrm{~g}=4.5 \\mathrm{mg}$",
"answer_type": "NV",
"unit": [
"mg"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_1199",
"problem": "Dissociating gas cycle\n\nDinitrogen tetroxide forms an equilibrium mixture with nitrogen dioxide:\n\n$$\n\\mathrm{N}_{2} \\mathrm{O}_{4}(g) \\rightleftharpoons 2 \\mathrm{NO}_{2}(g)\n$$\n\n1.00 mol of $\\mathrm{N}_{2} \\mathrm{O}_{4}$ was put into an empty vessel with a fixed volume of $24.44 \\mathrm{dm}^{3}$. The equilibrium gas pressure at $298 \\mathrm{~K}$ was found to be 1.190 bar. When heated to $348 \\mathrm{~K}$, the gas pressure increased to its equilibrium value of 1.886 bar.Calculate $\\Delta S^{0}$ of the reaction, assuming that they do not change significantly with temperature.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\nHere is some context information for this question, which might assist you in solving it:\nDissociating gas cycle\n\nDinitrogen tetroxide forms an equilibrium mixture with nitrogen dioxide:\n\n$$\n\\mathrm{N}_{2} \\mathrm{O}_{4}(g) \\rightleftharpoons 2 \\mathrm{NO}_{2}(g)\n$$\n\n1.00 mol of $\\mathrm{N}_{2} \\mathrm{O}_{4}$ was put into an empty vessel with a fixed volume of $24.44 \\mathrm{dm}^{3}$. The equilibrium gas pressure at $298 \\mathrm{~K}$ was found to be 1.190 bar. When heated to $348 \\mathrm{~K}$, the gas pressure increased to its equilibrium value of 1.886 bar.\n\nproblem:\nCalculate $\\Delta S^{0}$ of the reaction, assuming that they do not change significantly with temperature.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $\\mathrm{~kJ} \\mathrm{~mol}^{-1} \\mathrm{~K}^{-1}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"0.176"
],
"solution": "$\\Delta G^{0}$ at $348 \\mathrm{~K}$\n\n$n_{\\text {total, equi }}=\\frac{p V}{R T}=\\frac{1.886 \\mathrm{bar}\\left(\\frac{10^{5} \\mathrm{~Pa}}{1 \\mathrm{bar}}\\right) \\times 22.44 \\mathrm{dm}^{3}\\left(\\frac{1 \\mathrm{~m}^{3}}{1000 \\mathrm{dm}^{3}}\\right)}{8.314 \\mathrm{~J} \\mathrm{~K}^{-1} \\mathrm{~mol}^{-1} \\times 348 \\mathrm{~K}}=1.593 \\mathrm{~mol}$\n\n$1.593=1+x$\n\n$\\mathrm{x}=0.593 \\mathrm{~mol}$\n\nAt equilibrium:\n\n$p_{\\mathrm{N}_{2} \\mathrm{O}_{4}}=\\frac{1-x}{1+x} p_{\\text {total }}=\\frac{1-0.593}{1+0.593} \\times 1.886$ bar $=0.482$ bar\n\n$p_{\\mathrm{NO}_{2}}=\\frac{2 x}{1+x} p_{\\text {total }}=\\frac{2 \\times 0.593}{1+0.593} \\times 1.886 \\mathrm{bar}=1.404 \\mathrm{bar}$\n\n$\\Rightarrow K_{348}=\\frac{\\left(\\frac{p_{\\mathrm{NO}_{2}}}{p^{\\circ}}\\right)^{2}}{\\left(\\frac{p_{\\mathrm{N}_{2} \\mathrm{O}_{4}}}{p^{\\circ}}\\right)^{2}}=\\frac{\\left(\\frac{1.404}{1}\\right)^{2}}{\\left(\\frac{0.482}{1}\\right)}=4.0897$\n\nAt $348 \\mathrm{~K}$,\n\n$\\Delta G^{0}=-R T \\ln K_{348}=-8.3145 \\times 348 \\times \\ln 4.0897=-4075 \\mathrm{~J} \\mathrm{~mol}^{-1}=-4.08 \\mathrm{~kJ} \\mathrm{~mol}^{-1}$\n\nFor $\\Delta S^{0}$ :\n\n$\\Delta G^{0}{ }_{348}=-4.08 \\mathrm{~kJ}=\\Delta H-348 \\Delta S$\n\n$\\Delta \\mathrm{G}^{0}{ }_{298}=4.72 \\mathrm{~kJ}=\\Delta \\mathrm{H}-298 \\Delta \\mathrm{S}$\n\n(2) $-(1) \\rightarrow \\Delta S=0.176 \\mathrm{~kJ} \\mathrm{~mol}^{-1} \\mathrm{~K}^{-1}$",
"answer_type": "NV",
"unit": [
"$\\mathrm{~kJ} \\mathrm{~mol}^{-1} \\mathrm{~K}^{-1}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_1200",
"problem": "${ }^{131}$I is a radioactive isotope of iodine ( $\\mathrm{e}^{-}$emitter) used in nuclear medicine for analytical procedures to determine thyroid endocrine disorders by scintigraphy. The decay rate constant, $k$, of ${ }^{131} \\mathrm{I}$ is $9.93 \\times 10^{-7} \\mathrm{~s}^{-1}$.\n\nKnowing that a Geiger counter detects activities of the order of $10^{-4} \\mu \\mathrm{c}$, calculate the minimum amount of ${ }^{131}$ I (in grams) which could be detected by this counter.\n\n1 Curie (c) is the amount of a radioisotope that produces $3.7 \\times 10^{10}$ disintegrations $s^{1}$.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\n${ }^{131}$I is a radioactive isotope of iodine ( $\\mathrm{e}^{-}$emitter) used in nuclear medicine for analytical procedures to determine thyroid endocrine disorders by scintigraphy. The decay rate constant, $k$, of ${ }^{131} \\mathrm{I}$ is $9.93 \\times 10^{-7} \\mathrm{~s}^{-1}$.\n\nKnowing that a Geiger counter detects activities of the order of $10^{-4} \\mu \\mathrm{c}$, calculate the minimum amount of ${ }^{131}$ I (in grams) which could be detected by this counter.\n\n1 Curie (c) is the amount of a radioisotope that produces $3.7 \\times 10^{10}$ disintegrations $s^{1}$.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of g, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"$8.11 \\times 10^{-16}$"
],
"solution": "1 Curie (c) is the amount of a radioisotope that produces $3.7 \\times 10^{10}$ disintegrations $\\mathrm{s}^{-1}$ $1 \\mathrm{mc}=3.7 \\times 10^{7} \\mathrm{dis} \\mathrm{s}^{-1}$\n\n$1 \\mu \\mathrm{c}=3.7 \\times 10^{4} \\mathrm{dis} \\mathrm{s}^{-1}$\n\nThen:\n\n$10^{-4} \\mu \\mathrm{c} \\times 3.7 \\times 10^{4} \\mathrm{dis} \\mathrm{s}^{-1}=3.7 \\mathrm{dis} \\mathrm{s}^{-1}=-\\frac{d N}{d t}$\n\n$t_{1 / 2}$ of ${ }^{131}$ I expressed in seconds is $=8.08 \\mathrm{~d} \\times 86400 \\mathrm{~s} \\mathrm{~d}^{-1}=6.98 \\times 10^{5} \\mathrm{~s}$\n\n$m=-\\frac{d N}{d t} \\times \\frac{t_{1 / 2} \\times A_{r}(\\mathrm{I})}{\\ln 2 \\times N_{A}}=\\frac{3.7 \\times 6.98 \\times 10^{5} \\times 131}{0.693 \\times 6.02 \\times 10^{23}}=8.11 \\times 10^{-16} \\mathrm{~g}$",
"answer_type": "NV",
"unit": [
"g"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_456",
"problem": "甘氨酸 $\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right)$ 是一种最简单的氨基酸。其作为内源性抗氧化剂还原型谷胱甘肽的组成氨基酸, 在机体发生严重应激时常需外源补充。如图为某兴趣小组通过实验获得在 $25^{\\circ} \\mathrm{C}$ 下 $10 \\mathrm{~mL} 2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 甘氨酸溶液中各组分分布分数和 $\\mathrm{pH}$ 的对应关系(通过 $\\mathrm{HCl}$ 调节 $\\mathrm{pH}$ ,溶液体积不变)\n\n[图1]\n\n已知: 氨基酸是两性电解质, 在碱性溶液中表现出带负电荷, 在酸性溶液中表现出带正电荷, 在某一定 $\\mathrm{pH}$ 溶液中, 氨基酸所带的正电荷和负电荷相等时的 $\\mathrm{pH}$, 称为该氨基酸的等电点, 写作 $\\mathrm{pL})$\n\n$$\n\\delta\\left(\\mathrm{A}^{2-}\\right)=\\frac{\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)+\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}\n$$\n\n[图2]\n\n下列说法错误的是\nA: $\\mathrm{a}$ 为 $\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}, \\mathrm{b}$ 为 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}, \\mathrm{c}$ 为 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$, $\\mathrm{K}_{\\mathrm{a}}\\left(\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}\\right)=10^{-2.35}, \\mathrm{~K}_{\\mathrm{a}}\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right)=10^{-9.78}$\nB: $\\mathrm{pH}=2.35$ 时, $3\\left[\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right]\\left[\\mathrm{H}^{+}\\right]+\\left[\\mathrm{H}^{+}\\right]^{2}=2 \\mathrm{~K}_{\\mathrm{a} 1}+\\mathrm{K}_{\\mathrm{w}}+\\mathrm{K}_{\\mathrm{a} 1} \\cdot\\left[\\mathrm{Cl}^{-}\\right]$\nC: 在 D 点溶液中: $\\left[\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right]>\\left[\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right]>\\left[\\mathrm{OH}^{-}\\right]>\\left[\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}\\right]>\\left[\\mathrm{H}^{+}\\right]$\nD: 该兴趣小组测得甘氨酸的 $\\mathrm{pL}=6.065$, 查表得知甘氨酸实际 $\\mathrm{pL}=5.97$, 造成误差 的原因可能是因为原甘氨酸样品中有杂质, 导致甘氨酸实际浓度偏低\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n甘氨酸 $\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right)$ 是一种最简单的氨基酸。其作为内源性抗氧化剂还原型谷胱甘肽的组成氨基酸, 在机体发生严重应激时常需外源补充。如图为某兴趣小组通过实验获得在 $25^{\\circ} \\mathrm{C}$ 下 $10 \\mathrm{~mL} 2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 甘氨酸溶液中各组分分布分数和 $\\mathrm{pH}$ 的对应关系(通过 $\\mathrm{HCl}$ 调节 $\\mathrm{pH}$ ,溶液体积不变)\n\n[图1]\n\n已知: 氨基酸是两性电解质, 在碱性溶液中表现出带负电荷, 在酸性溶液中表现出带正电荷, 在某一定 $\\mathrm{pH}$ 溶液中, 氨基酸所带的正电荷和负电荷相等时的 $\\mathrm{pH}$, 称为该氨基酸的等电点, 写作 $\\mathrm{pL})$\n\n$$\n\\delta\\left(\\mathrm{A}^{2-}\\right)=\\frac{\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)+\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}\n$$\n\n[图2]\n\n下列说法错误的是\n\nA: $\\mathrm{a}$ 为 $\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}, \\mathrm{b}$ 为 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}, \\mathrm{c}$ 为 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$, $\\mathrm{K}_{\\mathrm{a}}\\left(\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}\\right)=10^{-2.35}, \\mathrm{~K}_{\\mathrm{a}}\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right)=10^{-9.78}$\nB: $\\mathrm{pH}=2.35$ 时, $3\\left[\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right]\\left[\\mathrm{H}^{+}\\right]+\\left[\\mathrm{H}^{+}\\right]^{2}=2 \\mathrm{~K}_{\\mathrm{a} 1}+\\mathrm{K}_{\\mathrm{w}}+\\mathrm{K}_{\\mathrm{a} 1} \\cdot\\left[\\mathrm{Cl}^{-}\\right]$\nC: 在 D 点溶液中: $\\left[\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right]>\\left[\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}\\right]>\\left[\\mathrm{OH}^{-}\\right]>\\left[\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}\\right]>\\left[\\mathrm{H}^{+}\\right]$\nD: 该兴趣小组测得甘氨酸的 $\\mathrm{pL}=6.065$, 查表得知甘氨酸实际 $\\mathrm{pL}=5.97$, 造成误差 的原因可能是因为原甘氨酸样品中有杂质, 导致甘氨酸实际浓度偏低\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-020.jpg?height=523&width=857&top_left_y=1383&top_left_x=337",
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-020.jpg?height=214&width=1447&top_left_y=2366&top_left_x=336"
],
"answer": [
"D"
],
"solution": "【分析】随着溶液酸性增强, $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$的量不断减小、 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}$ 的量先增加后减小、 $\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}$的量不断增大, 结合图像可知, $\\mathrm{a}$ 为 $\\mathrm{HOOCCH}_{2} \\mathrm{NH}_{3}^{+}, \\mathrm{b}$ 为 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}, \\mathrm{c}$ 为 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$;",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_530",
"problem": "$25^{\\circ} \\mathrm{C}$ 时, 向 $50 \\mathrm{~mL}$ 浓度均为 $1.0 \\mathrm{~mol} / \\mathrm{L}$ 的醋酸和醋酸钠混合溶液中, 缓慢滴加 1.0 $\\mathrm{mol} / \\mathrm{L}$ 的 $\\mathrm{NaOH}$ 溶液, 所得溶液的 $\\mathrm{pH}$ 变化情况如图所示(已知: $25^{\\circ} \\mathrm{C}$ 时, $\\mathrm{K}_{\\mathrm{a}}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$ $\\left.=1.8 \\times 10^{-5}\\right)$ 。下列叙述错误的是\n\n[图1]\nA: $\\mathrm{V}(\\mathrm{NaOH}) \\leq 50 \\mathrm{~mL}$ 时, 随 $\\mathrm{V}(\\mathrm{NaOH})$ 增大, 溶液中离子总浓度增大\nB: b 点溶液中, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$\nC: a 点溶液中, $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$约为 $1.8 \\times 10^{-5} \\mathrm{~mol} / \\mathrm{L}$\nD: 从 $\\mathrm{a}$ 到 $\\mathrm{c}$ 的过程中, 溶液中 $\\frac{\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}$不变\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n$25^{\\circ} \\mathrm{C}$ 时, 向 $50 \\mathrm{~mL}$ 浓度均为 $1.0 \\mathrm{~mol} / \\mathrm{L}$ 的醋酸和醋酸钠混合溶液中, 缓慢滴加 1.0 $\\mathrm{mol} / \\mathrm{L}$ 的 $\\mathrm{NaOH}$ 溶液, 所得溶液的 $\\mathrm{pH}$ 变化情况如图所示(已知: $25^{\\circ} \\mathrm{C}$ 时, $\\mathrm{K}_{\\mathrm{a}}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$ $\\left.=1.8 \\times 10^{-5}\\right)$ 。下列叙述错误的是\n\n[图1]\n\nA: $\\mathrm{V}(\\mathrm{NaOH}) \\leq 50 \\mathrm{~mL}$ 时, 随 $\\mathrm{V}(\\mathrm{NaOH})$ 增大, 溶液中离子总浓度增大\nB: b 点溶液中, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$\nC: a 点溶液中, $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$约为 $1.8 \\times 10^{-5} \\mathrm{~mol} / \\mathrm{L}$\nD: 从 $\\mathrm{a}$ 到 $\\mathrm{c}$ 的过程中, 溶液中 $\\frac{\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}$不变\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-24.jpg?height=360&width=463&top_left_y=568&top_left_x=337"
],
"answer": [
"A"
],
"solution": "A. $\\mathrm{V}(\\mathrm{NaOH}) \\leq 50 \\mathrm{~mL}$ 时, 在溶液中, 根据电荷守恒, 有 $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{CH}_{3} \\mathrm{COO}\\right.$ $\\left.{ }^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$, 考虑离子总浓度, 只要考虑阳离子的浓度的变化即可, 开始混合溶液中 $c\\left(\\mathrm{Na}^{+}\\right)=1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 加入 $\\mathrm{NaOH}$ 溶液中 $c\\left(\\mathrm{Na}^{+}\\right)=1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 因此滴加过程中, $c\\left(\\mathrm{Na}^{+}\\right)$不变。滴加 $\\mathrm{NaOH}$ 溶液, 中和了溶液中的醋酸, 酸性减弱, $c\\left(\\mathrm{H}^{+}\\right)$减小, 阳离子总浓度减小,因此溶液中离子总浓度减小,A 错误,符合题意;\n\nB. $\\mathrm{CH}_{3} \\mathrm{COOH}$ 的电离平衡常数 $K_{a}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)=1.8 \\times 10^{-5}$, 则 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$的水解平衡常数 $\\mathrm{K}_{\\mathrm{h}}=$ $\\frac{K_{\\mathrm{w}}}{K_{a}}=\\frac{10^{-14}}{1.8 \\times 10^{-5}}=5.6 \\times 10^{-10}$, 可知, 开始的混合溶液中, $\\mathrm{CH}_{3} \\mathrm{COOH}$ 的电离程度大于 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$的水解程度, 使得 $c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)>\\mathrm{C}\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$, 根据物料守恒, $2 c(\\mathrm{Na}$ $\\left.{ }^{+}\\right)=c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$, 结合两式可知 $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$, 现加入 $\\mathrm{NaOH}$溶液, $\\mathrm{NaOH}$ 会与 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 反应, $c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)$ 的浓度减小, 而 $c\\left(\\mathrm{Na}^{+}\\right)$不变, 有 $c(\\mathrm{Na}$ $\\left.{ }^{+}\\right)>c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right), B$ 正确, 不选;\n\nC. $\\mathrm{CH}_{3} \\mathrm{COOH}$ 的电离平衡常数 $K_{\\mathrm{a}}=\\frac{c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right) c\\left(\\mathrm{H}^{+}\\right)}{c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)}$, 不管是 $\\mathrm{CH}_{3} \\mathrm{COOH}$ 的电离还是 $\\mathrm{CH}_{3} \\mathrm{COO}^{-}$的水解都是微弱的, 因此可以近似地认为 $c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right)=c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)=1 \\mathrm{~mol} \\cdot \\mathrm{L}$ ${ }^{-1}$, 带入数据, 可得 $c\\left(\\mathrm{H}^{+}\\right)$约为 $1.8 \\times 10^{-5} \\mathrm{~mol} / \\mathrm{L}, \\mathrm{C}$ 正确, 不选;\n\nD. $\\frac{c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right)}{c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right) \\cdot c\\left(\\mathrm{OH}^{-}\\right)}=\\frac{c\\left(\\mathrm{CH}_{3} \\mathrm{COO}^{-}\\right) c\\left(\\mathrm{H}^{+}\\right)}{c\\left(\\mathrm{CH}_{3} \\mathrm{COOH}\\right) c\\left(\\mathrm{OH}^{-}\\right) c\\left(\\mathrm{H}^{+}\\right)}=\\frac{K_{\\mathrm{a}}}{K_{\\mathrm{w}}}$, 温度不变, $K_{a} 、 K_{w}$ 均不变, 因此此式子的值不变, D 正确, 不选;",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_484",
"problem": "温度为 $\\mathrm{T}_{1}$ 时, 在三个容积均为 $1 \\mathrm{~L}$ 的恒容密闭容器中仅发生反应: $2 \\mathrm{NO}_{2}(\\mathrm{~g}) \\rightleftharpoons$ $2 \\mathrm{NO}(\\mathrm{g})+\\mathrm{O}_{2}(\\mathrm{~g})$ (正反应吸热)。实验测得 $\\mathrm{v}$ 正 $=\\mathrm{v}\\left(\\mathrm{NO}_{2}\\right)_{\\text {消耗 }}=\\mathrm{k}_{\\text {正 }} \\mathrm{c}^{2}\\left(\\mathrm{NO}_{2}\\right), \\mathrm{v}$ 逆 $=\\mathrm{v}(\\mathrm{NO})_{\\text {消耗 }}=2 \\mathrm{v}\\left(\\mathrm{O}_{2}\\right)$消耗 $=\\mathrm{k}$ 逆 $\\mathrm{c}^{2}(\\mathrm{NO}) \\cdot \\mathrm{c}\\left(\\mathrm{O}_{2}\\right), \\mathrm{k}$ 正、 $\\mathrm{k}$ 逆为速率常数, 受温度影响。下列说法正确的是 ( )\n\n| 容器
编号 | 物质的起始浓度 $\\left(\\mathrm{mol} \\cdot \\mathrm{L}^{-1}\\right)$ | | | 物质的平衡浓度 $\\left(\\mathrm{mol} \\cdot \\mathrm{L}^{-1}\\right)$ |\n| :---: | :---: | :---: | :---: | :---: |\n| | $c\\left(\\mathrm{NO}_{2}\\right)$ | $c(\\mathrm{NO})$ | $c\\left(\\mathrm{O}_{2}\\right)$ | $c\\left(\\mathrm{O}_{2}\\right)$ |\n| $\\mathrm{I}$ | 0.6 | 0 | 0 | 0.2 |\n| $\\mathrm{II}$ | 0.3 | 0.5 | 0.2 | |\n| $\\mathrm{III}$ | 0 | 0.5 | 0.35 | |\nA: 达平衡时, 容器I与容器II中的总压强之比为 $4: 5$\nB: 达平衡时, 容器 II中 $\\frac{\\mathrm{c}\\left(\\mathrm{O}_{2}\\right)}{\\mathrm{c}\\left(\\mathrm{NO}_{2}\\right)}$ 比容器I中的大\nC: 达平衡时, 容器III中 $\\mathrm{NO}$ 的体积分数小于 $50 \\%$\nD: 当温度改变为 $T_{2}$ 时, 若 $k_{\\text {正 }}=k$ 逆, 则 $T_{2}>T_{1}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n温度为 $\\mathrm{T}_{1}$ 时, 在三个容积均为 $1 \\mathrm{~L}$ 的恒容密闭容器中仅发生反应: $2 \\mathrm{NO}_{2}(\\mathrm{~g}) \\rightleftharpoons$ $2 \\mathrm{NO}(\\mathrm{g})+\\mathrm{O}_{2}(\\mathrm{~g})$ (正反应吸热)。实验测得 $\\mathrm{v}$ 正 $=\\mathrm{v}\\left(\\mathrm{NO}_{2}\\right)_{\\text {消耗 }}=\\mathrm{k}_{\\text {正 }} \\mathrm{c}^{2}\\left(\\mathrm{NO}_{2}\\right), \\mathrm{v}$ 逆 $=\\mathrm{v}(\\mathrm{NO})_{\\text {消耗 }}=2 \\mathrm{v}\\left(\\mathrm{O}_{2}\\right)$消耗 $=\\mathrm{k}$ 逆 $\\mathrm{c}^{2}(\\mathrm{NO}) \\cdot \\mathrm{c}\\left(\\mathrm{O}_{2}\\right), \\mathrm{k}$ 正、 $\\mathrm{k}$ 逆为速率常数, 受温度影响。下列说法正确的是 ( )\n\n| 容器
编号 | 物质的起始浓度 $\\left(\\mathrm{mol} \\cdot \\mathrm{L}^{-1}\\right)$ | | | 物质的平衡浓度 $\\left(\\mathrm{mol} \\cdot \\mathrm{L}^{-1}\\right)$ |\n| :---: | :---: | :---: | :---: | :---: |\n| | $c\\left(\\mathrm{NO}_{2}\\right)$ | $c(\\mathrm{NO})$ | $c\\left(\\mathrm{O}_{2}\\right)$ | $c\\left(\\mathrm{O}_{2}\\right)$ |\n| $\\mathrm{I}$ | 0.6 | 0 | 0 | 0.2 |\n| $\\mathrm{II}$ | 0.3 | 0.5 | 0.2 | |\n| $\\mathrm{III}$ | 0 | 0.5 | 0.35 | |\n\nA: 达平衡时, 容器I与容器II中的总压强之比为 $4: 5$\nB: 达平衡时, 容器 II中 $\\frac{\\mathrm{c}\\left(\\mathrm{O}_{2}\\right)}{\\mathrm{c}\\left(\\mathrm{NO}_{2}\\right)}$ 比容器I中的大\nC: 达平衡时, 容器III中 $\\mathrm{NO}$ 的体积分数小于 $50 \\%$\nD: 当温度改变为 $T_{2}$ 时, 若 $k_{\\text {正 }}=k$ 逆, 则 $T_{2}>T_{1}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-087.jpg?height=62&width=1397&top_left_y=1057&top_left_x=341"
],
"answer": [
"C",
"D"
],
"solution": "【详解】A. I 中反应三段式为\n\n| $2 \\mathrm{NO}_{2}(\\mathrm{~g}) \\rightleftharpoons 2 \\mathrm{NO}(\\mathrm{g})+\\mathrm{O}_{2}(\\mathrm{~g})$ | | | |\n| :--- | :---: | :---: | :---: |\n| 起始 $(\\mathrm{mol})$ | 0.6 | 0 | 0 |\n| 转化 $(\\mathrm{mol})$ | 0.4 | 0.4 | 0.2 |\n| 平衡 $(\\mathrm{mol})$ | 0.2 | 0.4 | 0.2 |\n\n则该温度下平衡常数 $K=\\frac{0.2 \\times 0.4^{2}}{0.2^{2}}=0.8$; 容器体积为 $1 \\mathrm{~L}$, 则平衡时 $\\mathrm{I}$ 中气体总物质的量 $=1 \\mathrm{~L} \\times(0.2+0.4+0.2) \\mathrm{mol} / \\mathrm{L}=0.8 \\mathrm{~mol}$, 恒容恒温时气体压强之比等于其物质的量之比, 如果平衡时 I、II 中压强之比为 4: 5 , 则 II 中平衡时气体总物质的量为 $1 \\mathrm{~mol}$, 而 II 中开始时各气体的总物质的量恰好为 $1 \\mathrm{~mol}$, II 中开始时浓度商 $=\\frac{0.5^{2} \\times 0.2}{0.3^{2}}=\\frac{5}{9}<0.8$, 则平衡正向移动, 平衡正向移动导致混合气体总物质的量之和增大, 所以达平衡时, 容器I与容器II中的总压强之比小于 4: 5, 故 A 错误;\n\nB. 容器 I 中 $\\frac{c\\left(\\mathrm{O}_{2}\\right)}{c\\left(\\mathrm{NO}_{2}\\right)}=1$; 如果 II 中平衡时 $c\\left(\\mathrm{NO}_{2}\\right)=c\\left(\\mathrm{O}_{2}\\right)$, 设转化的 $c\\left(\\mathrm{NO}_{2}\\right)=\\mathrm{xmol} / \\mathrm{L}$, 则有 $0.3-\\mathrm{x}=0.2+0.5 \\mathrm{x}$, 解得 $\\mathrm{x}=\\frac{1}{15} \\mathrm{~mol} / \\mathrm{L}$, 平衡时 $c\\left(\\mathrm{NO}_{2}\\right)=c\\left(\\mathrm{O}_{2}\\right)=\\frac{7}{30} \\mathrm{~mol} / \\mathrm{L}, c(\\mathrm{NO})=0.5 \\mathrm{~mol} / \\mathrm{L}+$ $\\frac{1}{15} \\mathrm{~mol} / \\mathrm{L}=\\frac{17}{30} \\mathrm{~mol} / \\mathrm{L}$, 此时容器 II 中浓度商为 $\\frac{\\left(\\frac{17}{30}\\right)^{2} \\times \\frac{7}{30}}{\\left(\\frac{7}{30}\\right)^{2}} \\approx 1.3>0.8$, 说明若容器 II 中 $c\\left(\\mathrm{NO}_{2}\\right)=c\\left(\\mathrm{O}_{2}\\right)$ 时, 平衡要逆向移动, 则说明 II 中平衡时应该存在 $c\\left(\\mathrm{NO}_{2}\\right)>c\\left(\\mathrm{O}_{2}\\right)$, 即 $\\frac{c\\left(\\mathrm{O}_{2}\\right)}{c\\left(\\mathrm{NO}_{2}\\right)}<1$, 故 B 错误;\n\nC. 平衡时 I 中 $\\mathrm{NO}$ 的体积分数为 $\\frac{0.4 \\mathrm{~mol}}{0.2 \\mathrm{~mol}+0.4 \\mathrm{~mol}+0.2 \\mathrm{~mol}} \\times 100 \\%=50 \\%$; 假设 III 中平衡时设 III 中 $\\mathrm{NO}$ 的体积分数为 $50 \\%$ 时, 转化的 $n(\\mathrm{NO})=\\mathrm{a}$, 列三段式有:\n\n| $2 \\mathrm{NO}_{2}(\\mathrm{~g}) \\rightleftharpoons 2 \\mathrm{NO}(\\mathrm{g})+$ | | | $+\\mathrm{O}_{2}(\\mathrm{~g})$ |\n| :---: | :---: | :---: | :---: |\n| mol) | 0 | 0.5 | 0.35 |\n| nol) | $\\mathrm{a}$ | a | $0.5 \\mathrm{a}$ |\n| mol) | $\\mathrm{a}$ | $0.5-\\mathrm{a}$ | $0.35-0.5 \\mathrm{a}$ |\n\n则有 $\\frac{0.5-\\mathrm{a}}{\\mathrm{a}+0.5-\\mathrm{a}+0.35-0.5 \\mathrm{a}}=\\frac{1}{2}$, 解得 $\\mathrm{a}=0.1 \\mathrm{~mol}$, 则此时容器中 $c\\left(\\mathrm{NO}_{2}\\right)=0.1 \\mathrm{~mol} / \\mathrm{L}$,\n\n$c(\\mathrm{NO})=0.4 \\mathrm{~mol} / \\mathrm{L}, c\\left(\\mathrm{O}_{2}\\right)=0.3 \\mathrm{~mol} / \\mathrm{L}$, 此时容器中浓度商为 $\\frac{0.3 \\times 0.4^{2}}{0.1^{2}}=4.8>0.8$, 所以此时平衡要逆向移动, 即 $\\mathrm{NO}$ 的体积分数要小于 $50 \\%$, 故 C 正确;\n\nD. $v_{\\text {正 }}=v\\left(\\mathrm{NO}_{2}\\right)_{\\text {消耗 }}=k_{\\text {正 }} c^{2}\\left(\\mathrm{NO}_{2}\\right), v_{\\text {逆 }}=v(\\mathrm{NO})_{\\text {消耗 }}=2 v\\left(\\mathrm{O}_{2}\\right)_{\\text {消耗 }}=k_{\\text {逆 }} c^{2}(\\mathrm{NO}) \\cdot c\\left(\\mathrm{O}_{2}\\right)$, 达到平衡状态时正逆反应速率相等, 则 $k_{\\text {正 }} c^{2}\\left(\\mathrm{NO}_{2}\\right)=k_{\\text {逆 }} c^{2}(\\mathrm{NO}) \\cdot c\\left(\\mathrm{O}_{2}\\right)$, 据此可知 $\\frac{k_{\\text {正 }}}{k_{\\text {逆 }}} K, \\mathrm{~T}_{2}$\n\n[图1]\n所以 $\\mathrm{T}_{2}>\\mathrm{T}_{1}$, 故 D 正确;\n\n故答案为 $\\mathrm{CD}$ 。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_1445",
"problem": "Extraction of gold using sodium cyanide, a very poisonous chemical, causes environmental problems and gives rise to serious public concern about the use of this so called \"cyanide process\". Thiosulfate leaching of gold has been considered as an alternative. In this process, the main reagent is ammonium thiosulfate, $\\left(\\mathrm{NH}_{4}\\right)_{2} \\mathrm{~S}_{2} \\mathrm{O}_{3}$, which is relatively non-toxic. Although this process appears to be environmentally benign, the chemistry involved is very complex and needs to be studied thoroughly. The solution used for leaching gold contains $\\mathrm{S}_{2} \\mathrm{O}_{3}^{2-}, \\mathrm{Cu}^{2+}, \\mathrm{NH}_{3}$, and dissolved $\\mathrm{O}_{2}$. The solution must have a $\\mathrm{pH}$ greater than 8.5 to allow free ammonia to be present.\n\nAccording to the proposed mechanism, a local voltaic micro-cell is formed on the surface of gold particles during the leaching process and operates as follows:\n\nAnode:\n\n$\\mathrm{Au}(\\mathrm{s})+2 \\mathrm{NH}_{3}(\\mathrm{aq}) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(\\mathrm{aq})+e^{-}$\n\n$\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(a q)+2 \\mathrm{~S}_{2} \\mathrm{O}_{3}^{2-}(a q) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}(a q)+2 \\mathrm{NH}_{3}(a q)$\n\nCathode:\n\n$\\left[\\mathrm{Cu}\\left(\\mathrm{NH}_{3}\\right)_{4}\\right]^{2+}(a q)+e^{-} \\rightarrow\\left[\\mathrm{Cu}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(a q)+2 \\mathrm{NH}_{3}(a q)$\n\n$\\left[\\mathrm{Cu}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(a q)+3 \\mathrm{~S}_{2} \\mathrm{O}_{3}^{2-}(a q) \\rightarrow\\left[\\mathrm{Cu}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{3}\\right]^{5-}(a q)+2 \\mathrm{NH}_{3}(a q)$\n\nThe formation constants, $K_{f}$, of $\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}$and $\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}$ complexes are $1.00 \\cdot 10^{26}$ and $1.00 \\cdot 10^{28}$, respectively. Consider a leaching solution in which the equilibrium concentrations of the species are as follows:\n\n$\\left[\\mathrm{S}_{2} \\mathrm{O}_{3}^{2 \\cdot}\\right]=0.100 ;\\left[\\mathrm{NH}_{3}\\right]=0.100$ and the total concentration of gold $(\\mathrm{I})$ species $=$ $5.50 \\cdot 10^{-5} \\mathrm{~mol} \\mathrm{dm}^{-3}$.Calculate the percentage of gold $(I)$ ion that exists in the form of thiosulfate complex.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\nHere is some context information for this question, which might assist you in solving it:\nExtraction of gold using sodium cyanide, a very poisonous chemical, causes environmental problems and gives rise to serious public concern about the use of this so called \"cyanide process\". Thiosulfate leaching of gold has been considered as an alternative. In this process, the main reagent is ammonium thiosulfate, $\\left(\\mathrm{NH}_{4}\\right)_{2} \\mathrm{~S}_{2} \\mathrm{O}_{3}$, which is relatively non-toxic. Although this process appears to be environmentally benign, the chemistry involved is very complex and needs to be studied thoroughly. The solution used for leaching gold contains $\\mathrm{S}_{2} \\mathrm{O}_{3}^{2-}, \\mathrm{Cu}^{2+}, \\mathrm{NH}_{3}$, and dissolved $\\mathrm{O}_{2}$. The solution must have a $\\mathrm{pH}$ greater than 8.5 to allow free ammonia to be present.\n\nAccording to the proposed mechanism, a local voltaic micro-cell is formed on the surface of gold particles during the leaching process and operates as follows:\n\nAnode:\n\n$\\mathrm{Au}(\\mathrm{s})+2 \\mathrm{NH}_{3}(\\mathrm{aq}) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(\\mathrm{aq})+e^{-}$\n\n$\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(a q)+2 \\mathrm{~S}_{2} \\mathrm{O}_{3}^{2-}(a q) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}(a q)+2 \\mathrm{NH}_{3}(a q)$\n\nCathode:\n\n$\\left[\\mathrm{Cu}\\left(\\mathrm{NH}_{3}\\right)_{4}\\right]^{2+}(a q)+e^{-} \\rightarrow\\left[\\mathrm{Cu}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(a q)+2 \\mathrm{NH}_{3}(a q)$\n\n$\\left[\\mathrm{Cu}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(a q)+3 \\mathrm{~S}_{2} \\mathrm{O}_{3}^{2-}(a q) \\rightarrow\\left[\\mathrm{Cu}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{3}\\right]^{5-}(a q)+2 \\mathrm{NH}_{3}(a q)$\n\nThe formation constants, $K_{f}$, of $\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}$and $\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}$ complexes are $1.00 \\cdot 10^{26}$ and $1.00 \\cdot 10^{28}$, respectively. Consider a leaching solution in which the equilibrium concentrations of the species are as follows:\n\n$\\left[\\mathrm{S}_{2} \\mathrm{O}_{3}^{2 \\cdot}\\right]=0.100 ;\\left[\\mathrm{NH}_{3}\\right]=0.100$ and the total concentration of gold $(\\mathrm{I})$ species $=$ $5.50 \\cdot 10^{-5} \\mathrm{~mol} \\mathrm{dm}^{-3}$.\n\nproblem:\nCalculate the percentage of gold $(I)$ ion that exists in the form of thiosulfate complex.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of %, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"99"
],
"solution": "$$\n\\begin{aligned} &\n\\mathrm{Au}^{+}(\\mathrm{aq})+2 \\mathrm{NH}_{3}(\\mathrm{aq}) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(\\mathrm{aq}) \\quad \\mathrm{K}_{f, 1}=1.00 \\cdot 10^{26} \\\\\n& \\mathrm{Au}^{+}(\\mathrm{aq})+2 \\mathrm{~S}_{2} \\mathrm{O}_{3}{ }^{2-}(\\mathrm{aq}) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}(\\mathrm{aq}) \n\\quad \\mathrm{K}_{f, 2}=1.00 \\cdot 10^{28} \n\\\\\n& {\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}(\\mathrm{aq})+2 \\mathrm{~S}_{2} \\mathrm{O}_{3}^{2-}(\\mathrm{aq}) \\rightarrow\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}(\\mathrm{aq})+2 \\mathrm{NH}_{3}(\\mathrm{aq}) } \\\\\n& \\mathrm{~K}_{\\mathrm{eq}}=\\frac{K_{f, 2}}{\\mathrm{~K}_{f, 1}}=1.00 \\cdot 10^{2} \\\\\n& {\\left[\\mathrm{Au}\\left(\\mathrm{NH}_{3}\\right)_{2}\\right]^{+}+\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}=5.50 \\cdot 10^{-5} \\mathrm{~mol} \\mathrm{dm}^{-3}} \\\\\n& \\mathrm{~K}_{\\mathrm{eq}}=\\frac{(0.100)^{2} x}{\\left(5.50 \\cdot 10^{-5}-x\\right)(0.100)^{2}}=1.00 \\cdot 10^{2} \\\\\n& x=5.445 \\cdot 10^{-5} \\\\\n& \\frac{5.445 \\cdot 10^{-5}}{5.50 \\cdot 10^{-5}} \\times 100=99.0 \\%\n\\end{aligned}\n$$\n\nThus, $99.0 \\%$ of $\\mathrm{Au}(\\mathrm{I})$ is in the form of $\\left[\\mathrm{Au}\\left(\\mathrm{S}_{2} \\mathrm{O}_{3}\\right)_{2}\\right]^{3-}$.",
"answer_type": "NV",
"unit": [
"%"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_715",
"problem": "$500 \\mathrm{mLKCl}$ 和 $\\mathrm{Cu}\\left(\\mathrm{NO}_{3}\\right)_{2}$ 的混合溶液中 $\\mathrm{c}\\left(\\mathrm{Cu}^{2+}\\right)=0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 用石墨作电极电解此溶液, 通电一段时间后, 两电极均收集到 $5.6 \\mathrm{~L}$ (标准状况下)气体, 假设电解后溶液的体积仍为 $500 \\mathrm{~mL}$, 下列说法正确的是\nA: 原混合溶液中 $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)=0.6 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nB: 上述电解过程中共转移 $0.5 \\mathrm{~mol}$ 电子\nC: 电解得到的无色气体与有色气体的体积比为 $3: 7$\nD: 电解后溶液中 $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n$500 \\mathrm{mLKCl}$ 和 $\\mathrm{Cu}\\left(\\mathrm{NO}_{3}\\right)_{2}$ 的混合溶液中 $\\mathrm{c}\\left(\\mathrm{Cu}^{2+}\\right)=0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 用石墨作电极电解此溶液, 通电一段时间后, 两电极均收集到 $5.6 \\mathrm{~L}$ (标准状况下)气体, 假设电解后溶液的体积仍为 $500 \\mathrm{~mL}$, 下列说法正确的是\n\nA: 原混合溶液中 $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)=0.6 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nB: 上述电解过程中共转移 $0.5 \\mathrm{~mol}$ 电子\nC: 电解得到的无色气体与有色气体的体积比为 $3: 7$\nD: 电解后溶液中 $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": null,
"answer": [
"A",
"D"
],
"solution": "【分析】电解 $\\mathrm{KCl}$ 和 $\\mathrm{Cu}\\left(\\mathrm{NO}_{3}\\right)_{2}$ 的混合溶液, 溶液中存在: $\\mathrm{Cu}^{2+} 、 \\mathrm{H}^{+} 、 \\mathrm{OH}^{-} 、 \\mathrm{Cl}^{-} 、 \\mathrm{~K}^{+} 、 \\mathrm{NO}_{3}^{-}$离子; 根据离子的还原性顺序可知, 阳极氯离子先放电, 氢氧根离子后放电, 电极反应式为: $2 \\mathrm{Cl}^{-}-2 \\mathrm{e}=\\mathrm{Cl}_{2} \\uparrow, 4 \\mathrm{OH}^{-}-4 \\mathrm{e}^{-}=\\mathrm{O}_{2} \\uparrow+2 \\mathrm{H}_{2} \\mathrm{O}$; 阴极铜离子先放电, 氢离子后放电, 电极反应式为: $\\mathrm{Cu}^{2+}+2 \\mathrm{e}=\\mathrm{Cu}, 2 \\mathrm{H}^{+}+2 \\mathrm{e}^{-}=\\mathrm{H}_{2} \\uparrow$; 两电极均收集到 $5.6 \\mathrm{~L}$ (标准状况下)气体, 气体的物质的量为 $0.25 \\mathrm{~mol}$; 混合溶液中 $\\mathrm{c}\\left(\\mathrm{Cu}^{2+}\\right)=0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}, \\mathrm{n}\\left(\\mathrm{Cu}^{2+}\\right)=0.1 \\mathrm{~mol}$, 转移电子 $0.2 \\mathrm{~mol}$; $\\mathrm{n}\\left(\\mathrm{H}_{2}\\right)=0.25 \\mathrm{~mol}$, 转移电子为 $0.5 \\mathrm{~mol}$, 所以阴极共转移电子 $0.7 \\mathrm{~mol}$, 阳极也转移电子 $0.7 \\mathrm{~mol}$;设生成氯气为 $\\mathrm{xmol}$, 氧气为 $\\mathrm{ymol}$, 则 $\\mathrm{x}+\\mathrm{y}=0.25,2 \\mathrm{x}+4 \\mathrm{y}=0.7$, 解之得 $\\mathrm{x}=0.15 \\mathrm{~mol}$, $\\mathrm{y}=0.1 \\mathrm{~mol}$; 据以上分析解答。\n\n【详解】A. 结合以上分析可知, $\\mathrm{n}\\left(\\mathrm{Cl}^{-}\\right)=2 \\mathrm{n}\\left(\\mathrm{Cl}_{2}\\right)=0.3 \\mathrm{~mol}$, 假设电解后溶液的体积仍为 $500 \\mathrm{~mL}$ ,原混合溶液中 $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)=0.6 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 故 A 正确;\n\nB. 结合以上分析可知, 电解过程中共转移 $0.7 \\mathrm{~mol}$ 电子, 故 B 错误;\n\nC. 电解得到的无色气体为氢气和氧气, 共计 $0.25+0.1=0.35 \\mathrm{~mol}$, 有色气体为氯气, 为 $0.15 \\mathrm{~mol}$, 气体的体积之比和物质的量成正比, 所以无色气体与有色气体的体积比为 $7: 3$, 故 C 错误;\n\nD. 结合以上分析可知, 电解过程中消耗氢离子 $0.5 \\mathrm{~mol}$, 消耗氢氧根离子 $0.4 \\mathrm{~mol}$, 剩余氢氧根离子 $0.1 \\mathrm{~mol}$, 假设电解后溶液的体积仍为 $500 \\mathrm{~mL}$, 电解后溶液中 $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 故 D 正确;\n\n故选 AD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_965",
"problem": "常温下, 向 $10.00 \\mathrm{~mL}$ 浓度均为 $0.100 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{NaOH}$ 溶液和二甲胺 $\\left[\\left(\\mathrm{CH}_{3}\\right)_{2} \\mathrm{NH} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right]$的混合溶液中逐滴加入盐酸。利用传感器测得该过程溶液中的阳离子总浓度变化曲线如图; 已知二甲胺在水中电离与氨相似, 常温下 $K_{b}\\left[\\left(\\mathrm{CH}_{3}\\right)_{2} \\mathrm{NH} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right]=1.60 \\times 10^{-4}$ 。下列说法正确的是( )\n\n[图1]\nA: a 点溶液中, $c\\left[\\left(\\mathrm{CH}_{3}\\right)_{2} \\mathrm{NH}_{2}{ }^{+}\\right]$约为 $1.60 \\times 10^{-4} \\mathrm{~mol} / \\mathrm{L}$\nB: 从 $\\mathrm{a}$ 到 $\\mathrm{c}$ 的过程中, 水的电离程度最大的是 $\\mathrm{b}$ 点\nC: $\\mathrm{c}$ 点溶液中: $3 c\\left(\\mathrm{Na}^{+}\\right)+c\\left[\\left(\\mathrm{CH}_{3}\\right)_{2} \\mathrm{NH}_{2}{ }^{+}\\right]=2 c\\left(\\mathrm{Cl}^{-}\\right)$\nD: $\\mathrm{V}(\\mathrm{HCl})=15.00 \\mathrm{~mL}$ 时, $c\\left[\\left(\\mathrm{CH}_{3}\\right)_{2} \\mathrm{NH}_{2}{ }^{+}\\right]c\\left[\\left(\\mathrm{CH}_{3}\\right)_{2} \\mathrm{NH} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right]$, D 错误;",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_940",
"problem": "如图 $\\mathrm{I}$ 所示, 甲、乙之间的隔板 $\\mathrm{K}$ 和活塞 $\\mathrm{F}$ 都可以左右移动, $\\mathrm{F}$ 受压力恒定. 甲中充入 $2 \\mathrm{~mol} \\mathrm{~A}$ 和 $1 \\mathrm{~mol} \\mathrm{~B}$, 乙中充入 $2 \\mathrm{~mol} \\mathrm{C}$ 和 $1 \\mathrm{~mol} \\mathrm{He}$, 此时 $\\mathrm{K}$ 停在 0 处. 在一定条件下发生可逆反应: $2 \\mathrm{~A}(\\mathrm{~g})+\\mathrm{B}(\\mathrm{g}) \\rightleftharpoons 2 \\mathrm{C}(\\mathrm{g})$, 反应达到平衡后, 再恢复至原温度, 则下列\n[图1]\nA: 达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在 0 刻度左侧的 2 到 4 之间\nB: 若达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在左侧 1 处, 则乙中 $\\mathrm{C}$ 的转化率小于 $50 \\%$\nC: 若达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在左侧靠近 2 处, 则乙中 $\\mathrm{F}$ 最终停留在右侧的刻度大于 4\nD: 如图 II 所示若 $\\mathrm{x}$ 轴表示时间, 则 $\\mathrm{y}$ 轴可表示甲乙两容器中气体的总物质的量或 $\\mathrm{A}$ 的物质的量\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n如图 $\\mathrm{I}$ 所示, 甲、乙之间的隔板 $\\mathrm{K}$ 和活塞 $\\mathrm{F}$ 都可以左右移动, $\\mathrm{F}$ 受压力恒定. 甲中充入 $2 \\mathrm{~mol} \\mathrm{~A}$ 和 $1 \\mathrm{~mol} \\mathrm{~B}$, 乙中充入 $2 \\mathrm{~mol} \\mathrm{C}$ 和 $1 \\mathrm{~mol} \\mathrm{He}$, 此时 $\\mathrm{K}$ 停在 0 处. 在一定条件下发生可逆反应: $2 \\mathrm{~A}(\\mathrm{~g})+\\mathrm{B}(\\mathrm{g}) \\rightleftharpoons 2 \\mathrm{C}(\\mathrm{g})$, 反应达到平衡后, 再恢复至原温度, 则下列\n[图1]\n\nA: 达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在 0 刻度左侧的 2 到 4 之间\nB: 若达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在左侧 1 处, 则乙中 $\\mathrm{C}$ 的转化率小于 $50 \\%$\nC: 若达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在左侧靠近 2 处, 则乙中 $\\mathrm{F}$ 最终停留在右侧的刻度大于 4\nD: 如图 II 所示若 $\\mathrm{x}$ 轴表示时间, 则 $\\mathrm{y}$ 轴可表示甲乙两容器中气体的总物质的量或 $\\mathrm{A}$ 的物质的量\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-90.jpg?height=236&width=848&top_left_y=221&top_left_x=343"
],
"answer": [
"C"
],
"solution": "【详解】试题分析: $\\mathrm{A} 、 2 \\mathrm{~A}(\\mathrm{~g})+\\mathrm{B}(\\mathrm{g}) \\rightleftharpoons 2 \\mathrm{C}(\\mathrm{g})$, 由于甲中充入 $2 \\mathrm{~mol} \\mathrm{~A}$ 和 $1 \\mathrm{~mol} \\mathrm{~B}$, 反应向正反应方向移动, 甲中压强降低, 最多能转化为 $2 \\mathrm{~mol} \\mathrm{C}$, 但是由于反应是可逆反应, 所以 $\\mathrm{C}$ 的物质的量在 0-2 mol 之间, 所以达到平衡后, 隔板 $\\mathrm{K}$ 不再滑动, 最终停留在左侧刻度 0-2 之间, 故 A 错误; B、“隔板 $\\mathrm{K}$ 最终停留在左侧 1 处”说明反应后气体体积为 5 格, 即物质量为 $2.5 \\mathrm{~mol}$, 设参加反应的 $\\mathrm{A}$ 的物质量为 $2 \\mathrm{x}$, 故 $2-2 \\mathrm{x}+1-\\mathrm{x}+2 \\mathrm{x}=2.5$,则 $\\mathrm{x}=0.5 \\mathrm{~mol}$, 则甲中 $\\mathrm{A}$ 的转化率为 $50 \\%$. 但是对于乙来说, 就不同了, 如果无 $\\mathrm{He}$, 甲与乙是等效平衡, 但乙的压强比甲小, 则 $2 \\mathrm{C}(\\mathrm{g} \\rightleftharpoons 2 \\mathrm{~A}(\\mathrm{~g})+\\mathrm{B}(\\mathrm{g})$ 的平衡向右移动了, 故其转化率比大于 $50 \\%$. 故 B 错误 C、若达到平衡时, 隔板 $\\mathrm{K}$ 最终停留在左侧靠近 2 处,说明甲中反应物完全转化为 $\\mathrm{C}$, 物质的量为 $2 \\mathrm{~mol}$, 如乙平衡不移动, 乙中为 $\\mathrm{C}$ 和 $\\mathrm{He}$,共 $3 \\mathrm{~mol}$, 体积为 $6, \\mathrm{~F}$ 应停留在 4 处, 但因为保持恒压的条件, 乙中 $2 \\mathrm{~A}(\\mathrm{~g})+\\mathrm{B}(\\mathrm{g}) \\rightleftharpoons$ $2 \\mathrm{C}(\\mathrm{g})$ 反应体系的压强降低, 所以到达平衡时, 乙向逆方向反应方向移动, 导致到达平衡时甲容器中 $\\mathrm{C}$ 的物质的量大于乙容器中 $\\mathrm{C}$ 的物质的量. 甲、乙容器中压强相等, 若平衡时 $\\mathrm{K}$ 停留在左侧 2 处,则活塞应停留在右侧大于 4 处,故 $\\mathrm{C}$ 正确; $\\mathrm{D}$ 、甲中反应向右进行, $\\mathrm{A}$ 的物质的量逐渐减少, 乙中反应向左进行, $\\mathrm{A}$ 的物质的量逐渐增多, 但反应开始时无 A, 故 D 错误;故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_565",
"problem": "室温下, 向 $100 \\mathrm{~mL}$ 某浓度的多元弱酸 $\\mathrm{H} n \\mathrm{~A}$ 溶液中加入 $0.1 \\mathrm{~mol}^{-} \\mathrm{L}^{-1} \\mathrm{NaOH}$ 溶液,溶液的 $\\mathrm{pH}$ 随 $\\mathrm{NaOH}$ 溶液体积的变化曲线如图所示。下列有关说法不正确的是\n\n[图1]\nA: $n=2$ 且起始时 $c(\\mathrm{H} n \\mathrm{~A})=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nB: b 点时: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{HA}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{~A}^{2-}\\right)$\nC: $\\mathrm{b} \\rightarrow \\mathrm{c}$ 段, 反应的离子方程式为 $\\mathrm{HA}^{-}+\\mathrm{OH}^{-}=\\mathrm{A}^{2-}+\\mathrm{H}_{2} \\mathrm{O}$\nD: $\\mathrm{c} \\rightarrow \\mathrm{d}$ 段, 溶液中 $\\mathrm{A}^{2}$-的水解程度逐渐减弱\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n室温下, 向 $100 \\mathrm{~mL}$ 某浓度的多元弱酸 $\\mathrm{H} n \\mathrm{~A}$ 溶液中加入 $0.1 \\mathrm{~mol}^{-} \\mathrm{L}^{-1} \\mathrm{NaOH}$ 溶液,溶液的 $\\mathrm{pH}$ 随 $\\mathrm{NaOH}$ 溶液体积的变化曲线如图所示。下列有关说法不正确的是\n\n[图1]\n\nA: $n=2$ 且起始时 $c(\\mathrm{H} n \\mathrm{~A})=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nB: b 点时: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{HA}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{~A}^{2-}\\right)$\nC: $\\mathrm{b} \\rightarrow \\mathrm{c}$ 段, 反应的离子方程式为 $\\mathrm{HA}^{-}+\\mathrm{OH}^{-}=\\mathrm{A}^{2-}+\\mathrm{H}_{2} \\mathrm{O}$\nD: $\\mathrm{c} \\rightarrow \\mathrm{d}$ 段, 溶液中 $\\mathrm{A}^{2}$-的水解程度逐渐减弱\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-63.jpg?height=408&width=653&top_left_y=573&top_left_x=356"
],
"answer": [
"B"
],
"solution": "【详解】A 曲线中有两个突跃范围, 故为二元弱酸, 当滴加 $\\mathrm{NaOH}$ 溶液体积为 $100 \\mathrm{~mL}$时达到第一个计量点, 故 $\\mathrm{n}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\times 0.1 \\mathrm{~L}=0.01 \\mathrm{~mol}$, 起始时, $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)=0.01$ $\\mathrm{mol} / 0.1 \\mathrm{~L}=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}, \\mathrm{~A}$ 项正确; $\\mathrm{B} . \\mathrm{b}$ 点为 $\\mathrm{NaHA}$ 溶液, 显酸性, 则 $\\mathrm{HA}^{-}$的电离程度大于水解程度, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right), \\mathrm{B}$ 项错误; $\\mathrm{C} . \\mathrm{a} \\rightarrow \\mathrm{b}$ 段发生反应 $\\mathrm{H}_{2} \\mathrm{~A}+\\mathrm{NaOH}===\\mathrm{NaHA}+\\mathrm{H}_{2} \\mathrm{O}, \\mathrm{b} \\rightarrow \\mathrm{c}$ 段发生反应 $\\mathrm{NaHA}+\\mathrm{NaOH}===\\mathrm{Na}_{2} \\mathrm{~A}+\\mathrm{H}_{2} \\mathrm{O}, \\mathrm{C}$ 项正确; D.c 点时 $\\mathrm{H}_{2} \\mathrm{~A}$ 与 $\\mathrm{NaOH}$ 恰好完全中和, 得 $\\mathrm{Na}_{2} \\mathrm{~A}$ 溶液, $\\mathrm{c} \\rightarrow \\mathrm{d}$ 段是向 $\\mathrm{Na}_{2} \\mathrm{~A}$ 溶液中继续滴加 $\\mathrm{NaOH}$ 溶液, $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$增大, 抑制 $\\mathrm{A}^{2-}$ 的水解, $\\mathrm{D}$ 项正确。答案: B。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_778",
"problem": "硝基苯是一种重要有机合成中间体,其制备、纯化流程如图。已知: 制备反应在温度稍高时会生成间二硝基苯。\n\n[图1]\n\n下列说法错误的是\nA: 制备硝基苯所需玻璃仪器只有酒精灯、烧杯、试管、导管\nB: 配制混酸时, 应将浓硫酸缓慢注入到浓硝酸中, 边加边搅拌\nC: $\\mathrm{Na}_{2} \\mathrm{CO}_{3}$ 溶液可以用 $\\mathrm{NaOH}$ 溶液代替\nD: 由(2)、(3)分别获取相应物质时可采用相同的操作方法\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n硝基苯是一种重要有机合成中间体,其制备、纯化流程如图。已知: 制备反应在温度稍高时会生成间二硝基苯。\n\n[图1]\n\n下列说法错误的是\n\nA: 制备硝基苯所需玻璃仪器只有酒精灯、烧杯、试管、导管\nB: 配制混酸时, 应将浓硫酸缓慢注入到浓硝酸中, 边加边搅拌\nC: $\\mathrm{Na}_{2} \\mathrm{CO}_{3}$ 溶液可以用 $\\mathrm{NaOH}$ 溶液代替\nD: 由(2)、(3)分别获取相应物质时可采用相同的操作方法\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_d1b519b524f279de7793g-18.jpg?height=466&width=1462&top_left_y=658&top_left_x=340",
"https://cdn.mathpix.com/cropped/2024_03_31_d1b519b524f279de7793g-18.jpg?height=143&width=916&top_left_y=1733&top_left_x=336"
],
"answer": [
"A",
"D"
],
"solution": "【分析】本题考查的知识点是硝基苯的制备, 制备原理:\n\n[图2]\n\n【详解】A. 制备硝基苯时的温度为 $50 \\sim 60^{\\circ} \\mathrm{C}$, 需要用水浴加热, 则所需玻璃仪器还有温度计, A 错误;\n\nB. 配制混酸时, 应将密度大的浓硫酸缓慢加入到密度小的浓硝酸中, 边加边搅拌, 使产生的热量迅速散失,B 正确;\n\nC. 碳酸钠溶液的作用是除去 $\\mathrm{NO}_{2}$, 可以用氢氧化钠溶液代替, $2 \\mathrm{NO}_{2}+2 \\mathrm{NaOH}=\\mathrm{NaNO}_{3}$ $+\\mathrm{NaNO}_{2}+\\mathrm{H}_{2} \\mathrm{O}, \\mathrm{C}$ 正确;\n\nD. (2)中由反应后的混合物得到粗产品采用分液; (3)中粗产品 2 经过干燥后, 采用蒸馏得到硝基苯, D 错误;\n\n故选 AD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_445",
"problem": "穿心莲内酯具有祛热解毒, 消炎止痛之功效,被誉为天然抗生素药物,结构简式如\n图所示。下列说法正确的是\n\n[图1]\nA: 该物质分子式为 $\\mathrm{C}_{20} \\mathrm{H}_{32} \\mathrm{O}_{5}$\nB: 该物质的含氧官能团有 2 种\nC: $1 \\mathrm{~mol}$ 该物质与足量 $\\mathrm{Na}$ 反应, 标准状况下生成 $33.6 \\mathrm{~L} \\mathrm{H}_{2}$\nD: 该物质最多可与 $3 \\mathrm{~mol} \\mathrm{H}_{2}$ 发生加成反应\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n穿心莲内酯具有祛热解毒, 消炎止痛之功效,被誉为天然抗生素药物,结构简式如\n图所示。下列说法正确的是\n\n[图1]\n\nA: 该物质分子式为 $\\mathrm{C}_{20} \\mathrm{H}_{32} \\mathrm{O}_{5}$\nB: 该物质的含氧官能团有 2 种\nC: $1 \\mathrm{~mol}$ 该物质与足量 $\\mathrm{Na}$ 反应, 标准状况下生成 $33.6 \\mathrm{~L} \\mathrm{H}_{2}$\nD: 该物质最多可与 $3 \\mathrm{~mol} \\mathrm{H}_{2}$ 发生加成反应\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_d1b519b524f279de7793g-33.jpg?height=457&width=422&top_left_y=248&top_left_x=360"
],
"answer": [
"B",
"C"
],
"solution": "A. 根据结构简式确定该物质分子式为 $\\mathrm{C}_{20} \\mathrm{H}_{30} \\mathrm{O}_{5}$, 故 A 错误;\n\nB. 该物质的含氧官能团有 2 种, 即酯基和羟基, 故 B 正确;\n\nC. 羟基和 $\\mathrm{Na}$ 以 $1: 1$ 反应, 该分子中含有 3 个羟基, $1 \\mathrm{~mol}$ 该物质中羟基可与 $3 \\mathrm{molNa}$反应生成 $1.5 \\mathrm{~mol}$ 氢气, 标况下的体积为 $33.6 \\mathrm{~L}$, 故 C 正确;\n\nD. 该物质中碳碳双键可与 $\\mathrm{H}_{2}$ 发生加成反应, 故 $1 \\mathrm{~mol}$ 该物质最多可与 $2 \\mathrm{molH}_{2}$ 发生加成反应, 选项中未给该物质的量, 无法确定, 故 D 错误;\n\n故选 BC。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_632",
"problem": "溶液中各含氮(含碳)微粒的分布分数 $\\delta$ 是指某含氮(或碳)微粒的浓度占各含氮(或碳)微粒浓度之和的分数。 $25^{\\circ} \\mathrm{C}$ 时, 向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{NH}_{4} \\mathrm{HCO}_{3}$ 溶液 $(\\mathrm{pH}=7.8)$ 中滴加适量的盐酸或 $\\mathrm{NaOH}$ 溶液, 溶液中含氮(或碳)各微粒的分布分数 $\\delta$ 与 $\\mathrm{pH}$ 的关系如图所示(不考虑溶液中的 $\\mathrm{CO}_{2}$ 和 $\\mathrm{NH}_{3}$ 分子)。下列说法正确的是\n\n[图1]\nA: $\\mathrm{K}_{\\mathrm{b}}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\cdot \\mathrm{K}_{\\mathrm{al}}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)<\\mathrm{K}_{\\mathrm{w}}$\nB: $\\mathrm{n}$ 点时, 溶液中: $3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$\nC: $\\mathrm{m}$ 点时, $\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)$\nD: 反应 $\\mathrm{HCO}_{3}^{-}+\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{NH}_{4}^{+}+\\mathrm{CO}_{3}^{2-}+\\mathrm{H}_{2} \\mathrm{O}$ 的平衡常数为 $\\mathrm{K}, \\operatorname{lg~K}=0.9$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n溶液中各含氮(含碳)微粒的分布分数 $\\delta$ 是指某含氮(或碳)微粒的浓度占各含氮(或碳)微粒浓度之和的分数。 $25^{\\circ} \\mathrm{C}$ 时, 向 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的 $\\mathrm{NH}_{4} \\mathrm{HCO}_{3}$ 溶液 $(\\mathrm{pH}=7.8)$ 中滴加适量的盐酸或 $\\mathrm{NaOH}$ 溶液, 溶液中含氮(或碳)各微粒的分布分数 $\\delta$ 与 $\\mathrm{pH}$ 的关系如图所示(不考虑溶液中的 $\\mathrm{CO}_{2}$ 和 $\\mathrm{NH}_{3}$ 分子)。下列说法正确的是\n\n[图1]\n\nA: $\\mathrm{K}_{\\mathrm{b}}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\cdot \\mathrm{K}_{\\mathrm{al}}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)<\\mathrm{K}_{\\mathrm{w}}$\nB: $\\mathrm{n}$ 点时, 溶液中: $3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$\nC: $\\mathrm{m}$ 点时, $\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)$\nD: 反应 $\\mathrm{HCO}_{3}^{-}+\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{NH}_{4}^{+}+\\mathrm{CO}_{3}^{2-}+\\mathrm{H}_{2} \\mathrm{O}$ 的平衡常数为 $\\mathrm{K}, \\operatorname{lg~K}=0.9$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-004.jpg?height=471&width=674&top_left_y=810&top_left_x=340"
],
"answer": [
"C"
],
"solution": "【详解】 A. 由图可知, 当 $\\mathrm{pH}=6.4$ 时, $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)$,\n\n$\\mathrm{K}_{\\mathrm{a} 1}=\\frac{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)}=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-6.4}$, 当 $\\mathrm{pH}=10.2, \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)=\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)$,\n\n$\\mathrm{K}_{\\mathrm{a} 2}=\\frac{\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)}=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-10.2}$, 当 $\\mathrm{pH}=9.3, \\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right.$,\n\n$\\mathrm{K}_{\\mathrm{b}}=\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)}=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=10^{-(14-9.3)}=10^{-4.7}$, 所以\n\n$\\mathrm{K}_{\\mathrm{b}}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\cdot \\mathrm{K}_{\\mathrm{al}}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=10^{-4.7} \\times 10^{-6.4}=10^{-11.1}>\\mathrm{K}_{\\mathrm{w}}, \\quad \\mathrm{A}$ 错误;\n\nB. 向溶液中加入 $\\mathrm{NaOH}, \\mathrm{n}$ 点时, $\\mathrm{pH}=10.2, \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)=\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)$, 根据电荷守恒:\n\n$\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=2 \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$,\n$\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right), \\mathrm{B}$ 错误;\n\nC. 由图可知, $\\mathrm{m}$ 点时, $\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)>\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right), \\mathrm{C}$ 正确;\n\nD. 反应 $\\mathrm{HCO}_{3}^{-}+\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{NH}_{4}^{+}+\\mathrm{CO}_{3}^{2-}+\\mathrm{H}_{2} \\mathrm{O}$ 平衡常数\n\n$\\mathrm{K}=\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right) \\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)}=\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right) \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right) \\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\mathrm{K}_{\\mathrm{w}}}=\\frac{\\mathrm{K}_{\\mathrm{b}} \\cdot \\mathrm{K}_{\\mathrm{a} 2}}{\\mathrm{~K}_{\\mathrm{w}}}=\\frac{10^{-4.7} \\times 10^{-10.2}}{10^{-14}}=10^{-0.9}$\n\n$\\lg \\mathrm{K}=\\lg 10^{-0.9}=-0.9, \\mathrm{D}$ 错误\n\n故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1521",
"problem": "The second law of thermodynamics is a fundamental law of science. In this problem we consider the thermodynamics of an ideal gas, phase transitions and chemical equilibrium.\n\n3.00 mol of $\\mathrm{CO}_{2}$ gas expands isothermically (in thermal contact with the surroundings; temperature $=15^{\\circ} \\mathrm{C}$ ) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are $10.0 \\mathrm{dm}^{3}$ and $30.0 \\mathrm{dm}^{3}$, respectively.\n\nEstimate the temperature at which the reaction would have an equilibrium constant equal to 1. Ignore slight variations in the thermodynamic data with temperature.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nThe second law of thermodynamics is a fundamental law of science. In this problem we consider the thermodynamics of an ideal gas, phase transitions and chemical equilibrium.\n\n3.00 mol of $\\mathrm{CO}_{2}$ gas expands isothermically (in thermal contact with the surroundings; temperature $=15^{\\circ} \\mathrm{C}$ ) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are $10.0 \\mathrm{dm}^{3}$ and $30.0 \\mathrm{dm}^{3}$, respectively.\n\nEstimate the temperature at which the reaction would have an equilibrium constant equal to 1. Ignore slight variations in the thermodynamic data with temperature.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $\\mathrm{~K}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"980"
],
"solution": "$\\Delta G^{0}=0$ when $\\Delta H^{0}=T \\Delta S^{0}$\n\n$T=980 \\mathrm{~K}$",
"answer_type": "NV",
"unit": [
"$\\mathrm{~K}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_592",
"problem": "电有机合成反应温和高效, 体系简单, 环境友好。电解合成 1,2 -二氯乙烷的实验装置如图所示。下列说法中不正确的是\n\n[图1]\nA: 该装置工作时, $\\mathrm{NaCl}$ 溶液的浓度不断减小\nB: 液相反应中, $\\mathrm{C}_{2} \\mathrm{H}_{4}$ 被还原为 1,2 二二氯乙烷\nC: [图2]\nD: 当电路中转移 $2 \\mathrm{~mol}$ 电子就有 $2 \\mathrm{~mol} \\mathrm{Na}^{+}$通过离子交换膜 $\\mathrm{Y}$ 进入氯化钠溶液\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n电有机合成反应温和高效, 体系简单, 环境友好。电解合成 1,2 -二氯乙烷的实验装置如图所示。下列说法中不正确的是\n\n[图1]\n\nA: 该装置工作时, $\\mathrm{NaCl}$ 溶液的浓度不断减小\nB: 液相反应中, $\\mathrm{C}_{2} \\mathrm{H}_{4}$ 被还原为 1,2 二二氯乙烷\nC: [图2]\nD: 当电路中转移 $2 \\mathrm{~mol}$ 电子就有 $2 \\mathrm{~mol} \\mathrm{Na}^{+}$通过离子交换膜 $\\mathrm{Y}$ 进入氯化钠溶液\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8e75292c6204fb2a9e3ag-59.jpg?height=365&width=825&top_left_y=160&top_left_x=336",
"https://cdn.mathpix.com/cropped/2024_03_31_8e75292c6204fb2a9e3ag-59.jpg?height=92&width=1102&top_left_y=748&top_left_x=403"
],
"answer": [
"B",
"D"
],
"solution": "【详解】A. 钠离子进入阴极区, 氯离子进入阳极区, 氯化钠浓度逐渐减小, 故 A 正确\n\nB. $\\mathrm{CuCl}_{2}$ 能将 $\\mathrm{C}_{2} \\mathrm{H}_{4}$ 氧化为 1,2 二二氯乙烷, 故 B 错误;\n\nC. 以 $\\mathrm{NaCl}$ 和 $\\mathrm{CH}_{2}=\\mathrm{CH}_{2}$ 为原料合成 1, 2 -二氯乙烷中, $\\mathrm{CuCl} \\rightarrow \\mathrm{CuCl}_{2} \\rightarrow \\mathrm{CuCl}, \\mathrm{CuCl}$ 循环使用, 其实质是 $\\mathrm{NaCl} 、 \\mathrm{H}_{2} \\mathrm{O}$ 与 $\\mathrm{CH}_{2}=\\mathrm{CH}_{2}$ 反应, 所以总反应为\n\n$\\mathrm{CH}_{2}=\\mathrm{CH}_{2}+2 \\mathrm{H}_{2} \\mathrm{O}+2 \\mathrm{NaC} \\stackrel{\\text { 电解 }}{=} \\mathrm{H}_{2} \\uparrow+2 \\mathrm{NaOH}+\\mathrm{CO}_{2} \\mathrm{OH}_{2} \\mathrm{a}$, 故 C 正确;\n\nD. 阴极 $\\mathrm{H}_{2} \\mathrm{O}$ 或 $\\mathrm{H}^{+}$放电生成 $\\mathrm{NaOH}$, 所以离子交换膜 $\\mathrm{Y}$ 为阳离子交换膜; 阳极 $\\mathrm{CuCl}$ 放电转化为 $\\mathrm{CuCl}_{2}$, 所以离子交换膜 $\\mathrm{X}$ 为阴离子交换膜, 钠离子应通过离子交换膜进入阴极区, 故 D 错误;\n\n故选 BD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_526",
"problem": "提纯下列物质所选试剂及对应分离方法均可行的是\n\n| | 物质 | 杂质 | 所选试剂 | 方法 |\n| :--- | :--- | :--- | :--- | :--- |\n| $\\mathrm{A}$ | 乙烷 | 乙烯 | 酸性 $\\mathrm{KMnO}_{4}$ 溶液 | 洗气 |\n| $\\mathrm{B}$ | 溴苯 | 溴 | $\\mathrm{NaOH}$ 溶液 | 分液 |\n| $\\mathrm{C}$ | 乙炔 | 硫化氢 | $\\mathrm{CuSO}_{4}$ 溶液 | 洗气 |\n| D | 乙酸 | 苯酚 | $\\mathrm{NaOH}$ 溶液 | 蒸馏 |\nA: A\nB: B\nC: C\nD: D\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n提纯下列物质所选试剂及对应分离方法均可行的是\n\n| | 物质 | 杂质 | 所选试剂 | 方法 |\n| :--- | :--- | :--- | :--- | :--- |\n| $\\mathrm{A}$ | 乙烷 | 乙烯 | 酸性 $\\mathrm{KMnO}_{4}$ 溶液 | 洗气 |\n| $\\mathrm{B}$ | 溴苯 | 溴 | $\\mathrm{NaOH}$ 溶液 | 分液 |\n| $\\mathrm{C}$ | 乙炔 | 硫化氢 | $\\mathrm{CuSO}_{4}$ 溶液 | 洗气 |\n| D | 乙酸 | 苯酚 | $\\mathrm{NaOH}$ 溶液 | 蒸馏 |\n\nA: A\nB: B\nC: C\nD: D\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": null,
"answer": [
"B",
"C"
],
"solution": "A. 乙烯被高锰酸钾氧化生成二氧化碳, 引入新杂质二氧化碳, 应利用溴水、洗气除去乙烷中混有的乙烯, 故 A 错误;\n\nB. 溴不易溶于水, 易溶于溴苯, 能与 $\\mathrm{NaOH}$ 溶液反应生成可溶于水的 $\\mathrm{NaBr}$ 和 $\\mathrm{NaBrO}$,可利用 $\\mathrm{NaOH}$ 溶液、分液除去溴苯中的婇,故 B 正确;\n\nC. 硫化氢与硫酸铜反应生成难溶于的 $\\mathrm{CuS}$ 和稀硫酸, 而乙炔不能与硫酸铜反应, 则选硫酸铜溶液、洗气即可除去乙炔中混有的硫化氢,故 C 正确;\n\nD. 乙酸、苯酚均可与氢氧化钠溶液反应生成可溶于水的盐, 则用 $\\mathrm{NaOH}$ 无法除去乙酸中混有的苯酚, 故 D 错误;\n\n故答案为 $\\mathrm{BC}$ 。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_862",
"problem": "次磷酸 $\\left(\\mathrm{H}_{3} \\mathrm{PO}_{2}\\right)$ 是一种精细化工产品, 具有较强还原性, 属于一元中强酸。 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$可用电渗析法制备。“四室电渗析法”工作原理如图所示(阳膜、阴膜分别只允许阳离子、阴离子通过)。下列说法错误的是\n\n[图1]\nA: $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 与足量 $\\mathrm{NaOH}$ 反应生成 $\\mathrm{Na}_{3} \\mathrm{PO}_{2}$\nB: 阴极的电极反应式为 $2 \\mathrm{H}_{2} \\mathrm{O}+2 \\mathrm{e}^{-}=\\mathrm{H}_{2} \\uparrow+2 \\mathrm{OH}^{-}$\nC: 若撤去阳膜 $\\mathrm{a}$ 会导致生成的 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 纯度降低\nD: 当有 $336 \\mathrm{~mL}$ (标准状况) $\\mathrm{O}_{2}$ 生成时理论上通过阴膜的离子为 $0.015 \\mathrm{~mol}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n次磷酸 $\\left(\\mathrm{H}_{3} \\mathrm{PO}_{2}\\right)$ 是一种精细化工产品, 具有较强还原性, 属于一元中强酸。 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$可用电渗析法制备。“四室电渗析法”工作原理如图所示(阳膜、阴膜分别只允许阳离子、阴离子通过)。下列说法错误的是\n\n[图1]\n\nA: $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 与足量 $\\mathrm{NaOH}$ 反应生成 $\\mathrm{Na}_{3} \\mathrm{PO}_{2}$\nB: 阴极的电极反应式为 $2 \\mathrm{H}_{2} \\mathrm{O}+2 \\mathrm{e}^{-}=\\mathrm{H}_{2} \\uparrow+2 \\mathrm{OH}^{-}$\nC: 若撤去阳膜 $\\mathrm{a}$ 会导致生成的 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 纯度降低\nD: 当有 $336 \\mathrm{~mL}$ (标准状况) $\\mathrm{O}_{2}$ 生成时理论上通过阴膜的离子为 $0.015 \\mathrm{~mol}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8e75292c6204fb2a9e3ag-56.jpg?height=497&width=811&top_left_y=174&top_left_x=334"
],
"answer": [
"A",
"D"
],
"solution": "【分析】阴极室中阳离子为钠离子和水电离出的氢离子, 阴极上氢离子得电子发生还原反应生成氢气, 电极反应式为 $2 \\mathrm{H}_{2} \\mathrm{O}+2 \\mathrm{e}=\\mathrm{H}_{2} \\uparrow+\\mathrm{OH}^{-}$, 溶液中氢氧根浓度增大, 原料室中钠离子通过阳膜向阴极室移动; $\\mathrm{H}_{2} \\mathrm{PO}_{2}^{-}$离子通过阴膜向产品室移动; 阳极室中阴离子为硫酸根离子和水电离出的氢氧根离子, 阳极上氢氧根离子失电子发生氧化反应生成氧气,电极反应式为 $2 \\mathrm{H}_{2} \\mathrm{O}-4 \\mathrm{e}^{-}=\\mathrm{O}_{2} \\uparrow+4 \\mathrm{H}^{+}$, 溶液中氢离子浓度增大, $\\mathrm{H}^{+}$通过阳膜向产品室移动,产品室中 $\\mathrm{H}_{2} \\mathrm{PO}_{2}^{-}$与 $\\mathrm{H}^{+}$反应生成弱酸 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 。\n\n【详解】A. 次磷酸 $\\left(\\mathrm{H}_{3} \\mathrm{PO}_{2}\\right)$ 是一元中强酸, 故 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 与足量 $\\mathrm{NaOH}$ 反应生成 $\\mathrm{NaH}_{2} \\mathrm{PO}_{2}$, 故 A 错误;\n\nB. 阴极上氢离子得电子发生还原反应生成氢气, 电极反应式为 $2 \\mathrm{H}_{2} \\mathrm{O}+2 \\mathrm{e}^{-}=\\mathrm{H}_{2} \\uparrow+\\mathrm{OH}^{-}$,故 B 正确;\n\nC. 撤去阳极室与产品室之间的阳膜, 阳极生成的氧气会把 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 氧化成 $\\mathrm{H}_{3} \\mathrm{PO}_{4}$, 导致 $\\mathrm{H}_{3} \\mathrm{PO}_{2}$ 的纯度下降, 故 C 正确;\n\nD. $336 \\mathrm{~mL}$ (标准状况) $\\mathrm{O}_{2}$ 的物质的量为 $\\frac{0.336 \\mathrm{~L}}{22.4 \\mathrm{~L} / \\mathrm{mol}}=0.015 \\mathrm{~mol}$, 发生的反应为 $2 \\mathrm{H}_{2} \\mathrm{O}-4 \\mathrm{e}^{-}=\\mathrm{O}_{2} \\uparrow+4 \\mathrm{H}^{+}, \\mathrm{H}_{2} \\mathrm{PO}_{2}^{-}$离子通过阴膜向产品室移动, 根据电荷守恒, 理论上通过阴膜的离子为 $0.06 \\mathrm{~mol}$, 故 D 错误;\n\n故选 AD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_724",
"problem": "常温下, 向 $20.0 \\mathrm{~mL} 0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 溶液中逐滴加入 $\\mathrm{NaOH}$ 溶液, 所得溶液中 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4} 、 \\mathrm{HC}_{2} \\mathrm{O}_{4}^{-} 、 \\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}$ 三种微粒的物质的量分数 $(\\delta)$ 与溶液 $\\mathrm{pH}$ 的关系如图所示。下列分析错误的是\n\n[图1]\nA: 曲线 1 表示 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 的物质的量分数随溶液 $\\mathrm{pH}$ 的变化\nB: $\\mathrm{pH}=4.2$ 时, 溶液中: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+2 c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right)$\nC: $0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NaHC}_{2} \\mathrm{O}_{4}$ 溶液中: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)>c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right)$\nD: 反应 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}+\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-} \\rightleftharpoons 2 \\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$的平衡常数 $\\mathrm{K}=1.0 \\times 10^{3}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n常温下, 向 $20.0 \\mathrm{~mL} 0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 溶液中逐滴加入 $\\mathrm{NaOH}$ 溶液, 所得溶液中 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4} 、 \\mathrm{HC}_{2} \\mathrm{O}_{4}^{-} 、 \\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}$ 三种微粒的物质的量分数 $(\\delta)$ 与溶液 $\\mathrm{pH}$ 的关系如图所示。下列分析错误的是\n\n[图1]\n\nA: 曲线 1 表示 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 的物质的量分数随溶液 $\\mathrm{pH}$ 的变化\nB: $\\mathrm{pH}=4.2$ 时, 溶液中: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+2 c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right)$\nC: $0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NaHC}_{2} \\mathrm{O}_{4}$ 溶液中: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)>c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right)$\nD: 反应 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}+\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-} \\rightleftharpoons 2 \\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$的平衡常数 $\\mathrm{K}=1.0 \\times 10^{3}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-036.jpg?height=545&width=808&top_left_y=1095&top_left_x=338"
],
"answer": [
"B"
],
"solution": "【分析】向 $20.0 \\mathrm{~mL} 0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 溶液中逐滴加入 $\\mathrm{NaOH}$ 溶液, 发生反应分别为 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}+\\mathrm{NaOH}=\\mathrm{NaHC}_{2} \\mathrm{O}_{4}+\\mathrm{H}_{2} \\mathrm{O} 、 \\mathrm{NaHC}_{2} \\mathrm{O}_{4}+\\mathrm{NaOH}=\\mathrm{Na}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}+\\mathrm{H}_{2} \\mathrm{O}$, 所得溶液中 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$物质的量逐渐减少, $\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$物质的量先逐渐增多, 然后逐渐减少, $\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}$ 物质的量逐渐增多, 直至最大, 则结合图像, 曲线 1 表示 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 的物质的量分数随溶液 $\\mathrm{pH}$ 的变化,曲线 2 表示 $\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$物质的量分数随溶液 $\\mathrm{pH}$ 的变化, 曲线 3 表示 $\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}$ 物质的量分数随\n溶液 $\\mathrm{pH}$ 的变化, 据此解答。\n\n【详解】A. 根据分析, 曲线 1 表示 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}$ 的物质的量分数随溶液 $\\mathrm{pH}$ 的变化, A 正确:\nB. $\\mathrm{pH}=4.2$ 时, $\\mathrm{NaHC}_{2} \\mathrm{O}_{4}^{-}$物质的量等于 $\\mathrm{Na}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}$ 物质的量, 结合电荷守恒, 溶液中: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)+2 c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right), \\quad \\mathrm{B}$ 错误;\nC. $\\mathrm{NaHC}_{2} \\mathrm{O}_{4}$ 属于盐, 完全电离为 $\\mathrm{Na}^{+}$和 $\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$, 溶液显酸性, $\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$少部分电离出氢离子, $0.10 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NaHC}_{2} \\mathrm{O}_{4}$ 溶液中: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)>c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right), \\mathrm{C}$ 正确;\n\nD. 根据反应 $\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}+\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-} \\rightleftharpoons 2 \\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}$, 该反应对应图像 $\\mathrm{pH}=1.2$ 时, 此时 $\\mathrm{c}\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}\\right)$, 则 $\\mathrm{K}_{\\mathrm{a} 1}=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-1.2}, \\mathrm{pH}=4.2$ 时, $\\mathrm{c}\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right)$, $\\mathrm{K}_{\\mathrm{a} 2}=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-4.2}$, 由电离常数可知 $\\mathrm{K}=\\frac{\\mathrm{Ka}_{1}}{\\mathrm{Ka}_{2}}=\\frac{c^{2}\\left(\\mathrm{HC}_{2} \\mathrm{O}_{4}^{-}\\right)}{c\\left(\\mathrm{H}_{2} \\mathrm{C}_{2} \\mathrm{O}_{4}\\right) \\bullet c\\left(\\mathrm{C}_{2} \\mathrm{O}_{4}^{2-}\\right)}=1.0 \\times 10^{3}, \\mathrm{D}$ 正确;故选 B。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1250",
"problem": "In Denmark the subsoil consists mainly of limestone. In contact with ground water containing carbon dioxide some of the calcium carbonate dissolves as calcium hydrogen carbonate. As a result, such ground water is hard, and when used as tap water the high content of calcium hydrogen carbonate causes problems due to precipitation of calcium carbonate in, for example, kitchen and bathroom environments.\n\nCarbon dioxide, $\\mathrm{CO}_{2}$, is a diprotic acid in aqueous solution. The $\\mathrm{p} K_{\\mathrm{a}}$-values at $0{ }^{\\circ} \\mathrm{C}$ are:\n\n[figure1]\n\nThe liquid volume change associated with dissolution of $\\mathrm{CO}_{2}$ may be neglected for all of the following problems. The temperature is to be taken as being $0{ }^{\\circ} \\mathrm{C}$.\n\nCalculate the equilibrium concentration of hydrogen ions and the equilibrium concentration of $\\mathrm{CO}_{2}$ in water saturated with carbon dioxide at a carbon dioxide partial pressure of 1.00 bar.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThis question involves multiple quantities to be determined.\n\nproblem:\nIn Denmark the subsoil consists mainly of limestone. In contact with ground water containing carbon dioxide some of the calcium carbonate dissolves as calcium hydrogen carbonate. As a result, such ground water is hard, and when used as tap water the high content of calcium hydrogen carbonate causes problems due to precipitation of calcium carbonate in, for example, kitchen and bathroom environments.\n\nCarbon dioxide, $\\mathrm{CO}_{2}$, is a diprotic acid in aqueous solution. The $\\mathrm{p} K_{\\mathrm{a}}$-values at $0{ }^{\\circ} \\mathrm{C}$ are:\n\n[figure1]\n\nThe liquid volume change associated with dissolution of $\\mathrm{CO}_{2}$ may be neglected for all of the following problems. The temperature is to be taken as being $0{ }^{\\circ} \\mathrm{C}$.\n\nCalculate the equilibrium concentration of hydrogen ions and the equilibrium concentration of $\\mathrm{CO}_{2}$ in water saturated with carbon dioxide at a carbon dioxide partial pressure of 1.00 bar.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nYour final quantities should be output in the following order: [the equilibrium concentration of hydrogen ions $\\left[\\mathrm{H}^{+}\\right]$, the equilibrium concentration of $\\mathrm{CO}_{2}$].\nTheir answer types are, in order, [numerical value, numerical value].\nPlease end your response with: \"The final answers are \\boxed{ANSWER}\", where ANSWER should be the sequence of your final answers, separated by commas, for example: 5, 7, 2.5",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_9a7e6af5bdf769e8e1dfg-362.jpg?height=166&width=1354&top_left_y=1005&top_left_x=288"
],
"answer": [
"0.000133",
"[CO2]=0.0751"
],
"solution": "$\\mathrm{CO}_{2}(\\mathrm{aq})+\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{l}) \\rightarrow \\mathrm{HCO}_{3}^{-}(\\mathrm{aq})+\\mathrm{H}^{+}(\\mathrm{aq})$\n\n$\\left[\\mathrm{H}^{+}\\right]=\\left[\\mathrm{HCO}_{3}^{-}\\right]=\\mathrm{x}$ and $\\left[\\mathrm{CO}_{2}\\right]+\\left[\\mathrm{HCO}_{3}^{-}\\right]=0.0752$\n\n$K_{a}=10^{-6.63}=\\frac{\\left[\\mathrm{H}^{+}\\right]\\left[\\mathrm{HCO}_{3}^{-}\\right]}{\\left[\\mathrm{CO}_{2}\\right]}=\\frac{\\mathrm{x}^{2}}{0.0752-\\mathrm{x}}$\n\n$\\left[\\mathrm{H}^{+}\\right]=0.000133 \\quad$ and $\\quad\\left[\\mathrm{CO}_{2}\\right]=0.0751$",
"answer_type": "MPV",
"unit": [
null,
null
],
"answer_sequence": [
"the equilibrium concentration of hydrogen ions $\\left[\\mathrm{H}^{+}\\right]$",
" the equilibrium concentration of $\\mathrm{CO}_{2}$"
],
"type_sequence": [
"NV",
"NV"
],
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_1285",
"problem": "The rechargeable lithium ion battery has been developed in Japan.\n\nThe standard electromotive force of the battery is $3.70 \\mathrm{~V}$. Assume that the halfreaction at the cathode is\n\n$$\n\\mathrm{CoO}_{2}+\\mathrm{Li}^{+}+\\mathrm{e}^{-} \\rightarrow \\mathrm{LiCoO}_{2}\n$$\n\nand the half-reaction at the anode is\n\n$$\n\\mathrm{LiC}_{6} \\rightarrow 6 \\mathrm{C}+\\mathrm{Li}^{+}+\\mathrm{e}^{-} .\n$$\n\nThe battery cell is constructed using $\\mathrm{LiCoO}_{2}$ and graphite (C) as the electrode materials.Calculate the mass of the anode in the completely charged state and that in completely discharged state if $10.00 \\mathrm{~g}$ of $\\mathrm{LiCoO}_{2}$ and $10.00 \\mathrm{~g}$ of graphite (C) are present initially.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThis question involves multiple quantities to be determined.\nHere is some context information for this question, which might assist you in solving it:\nThe rechargeable lithium ion battery has been developed in Japan.\n\nThe standard electromotive force of the battery is $3.70 \\mathrm{~V}$. Assume that the halfreaction at the cathode is\n\n$$\n\\mathrm{CoO}_{2}+\\mathrm{Li}^{+}+\\mathrm{e}^{-} \\rightarrow \\mathrm{LiCoO}_{2}\n$$\n\nand the half-reaction at the anode is\n\n$$\n\\mathrm{LiC}_{6} \\rightarrow 6 \\mathrm{C}+\\mathrm{Li}^{+}+\\mathrm{e}^{-} .\n$$\n\nThe battery cell is constructed using $\\mathrm{LiCoO}_{2}$ and graphite (C) as the electrode materials.\n\nproblem:\nCalculate the mass of the anode in the completely charged state and that in completely discharged state if $10.00 \\mathrm{~g}$ of $\\mathrm{LiCoO}_{2}$ and $10.00 \\mathrm{~g}$ of graphite (C) are present initially.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nYour final quantities should be output in the following order: [the mass of the anode in the completely charged state, the mass of the anode in the completely discharged state].\nTheir units are, in order, [g, g], but units shouldn't be included in your concluded answer.\nTheir answer types are, in order, [numerical value, numerical value].\nPlease end your response with: \"The final answers are \\boxed{ANSWER}\", where ANSWER should be the sequence of your final answers, separated by commas, for example: 5, 7, 2.5",
"figure_urls": null,
"answer": [
"10.71",
"10"
],
"solution": "In the completely charged state: $10.71 \\mathrm{~g}$\n\n$n\\left(\\mathrm{LiCoO}_{2}\\right)=\\frac{10.00 \\mathrm{~g}}{97.87 \\mathrm{~g} \\mathrm{~mol}^{-1}}=0.1022 \\mathrm{~mol}$\n\n$n(C)=\\frac{10.00 \\mathrm{~g}}{12.01 \\mathrm{~g} \\mathrm{~mol}^{-1}}=0.8326 \\mathrm{~mol}$, which is larger than $0.1022 \\mathrm{~mol} \\times 6=0.6132 \\mathrm{~mol}$\n\nThus, the mass in the completely charged state of the anode is\n\n$10.00+(0.1022 \\times 6.94)=10.71 \\mathrm{~g}$\n\nIn the completely discharged state: $10.00 \\mathrm{~g}$",
"answer_type": "MPV",
"unit": [
"g",
"g"
],
"answer_sequence": [
"the mass of the anode in the completely charged state",
"the mass of the anode in the completely discharged state"
],
"type_sequence": [
"NV",
"NV"
],
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_660",
"problem": "$25^{\\circ} \\mathrm{C}$ 时, 向 $10.00 \\mathrm{~mL} 0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的二元酸 $\\mathrm{H}_{2} \\mathrm{R}$ 溶液中逐滴滴入 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NaOH}$ 溶液,测得溶液的 $\\mathrm{pH}$ 与 $\\lg \\mathrm{Y}\\left[\\mathrm{Y}\\right.$ 代表 $\\frac{c\\left(\\mathrm{R}^{2-}\\right)}{c\\left(\\mathrm{HR}^{-}\\right)}$或 $\\left.\\frac{c\\left(\\mathrm{HR}^{-}\\right)}{c\\left(\\mathrm{H}_{2} \\mathrm{R}\\right)}\\right]$ 关系如图。下列相关结论错误的是\n\n[图1]\nA: 曲线 $\\mathrm{b}$ 表示 $\\mathrm{pH}$ 与 $\\lg \\frac{c\\left(\\mathrm{R}^{2-}\\right)}{\\left(\\mathrm{HR}^{-}\\right)}$的变化关系\nB: $25^{\\circ} \\mathrm{C}$ 时, $\\mathrm{H}_{2} \\mathrm{R}$ 的 $\\mathrm{Ka}_{1}$ 数量级为 $10^{-3}$\nC: 溶液的 $\\mathrm{pH}=7.2$ 时, $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=3 c\\left(\\mathrm{HR}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$\nD: 滴入 $20.00 \\mathrm{mLNaOH}$ 溶液时: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{R}^{2-}\\right)>c\\left(\\mathrm{HR}^{-}\\right)>\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n$25^{\\circ} \\mathrm{C}$ 时, 向 $10.00 \\mathrm{~mL} 0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的二元酸 $\\mathrm{H}_{2} \\mathrm{R}$ 溶液中逐滴滴入 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NaOH}$ 溶液,测得溶液的 $\\mathrm{pH}$ 与 $\\lg \\mathrm{Y}\\left[\\mathrm{Y}\\right.$ 代表 $\\frac{c\\left(\\mathrm{R}^{2-}\\right)}{c\\left(\\mathrm{HR}^{-}\\right)}$或 $\\left.\\frac{c\\left(\\mathrm{HR}^{-}\\right)}{c\\left(\\mathrm{H}_{2} \\mathrm{R}\\right)}\\right]$ 关系如图。下列相关结论错误的是\n\n[图1]\n\nA: 曲线 $\\mathrm{b}$ 表示 $\\mathrm{pH}$ 与 $\\lg \\frac{c\\left(\\mathrm{R}^{2-}\\right)}{\\left(\\mathrm{HR}^{-}\\right)}$的变化关系\nB: $25^{\\circ} \\mathrm{C}$ 时, $\\mathrm{H}_{2} \\mathrm{R}$ 的 $\\mathrm{Ka}_{1}$ 数量级为 $10^{-3}$\nC: 溶液的 $\\mathrm{pH}=7.2$ 时, $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=3 c\\left(\\mathrm{HR}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$\nD: 滴入 $20.00 \\mathrm{mLNaOH}$ 溶液时: $c\\left(\\mathrm{Na}^{+}\\right)>c\\left(\\mathrm{R}^{2-}\\right)>c\\left(\\mathrm{HR}^{-}\\right)>\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_9ae9edb59ad378207fffg-027.jpg?height=446&width=713&top_left_y=1659&top_left_x=337"
],
"answer": [
"D"
],
"solution": "【分析】根据向 $\\mathrm{H}_{2} \\mathrm{R}$ 溶液中加入 $\\mathrm{NaOH}$ 溶液的反应过程可知, $\\mathrm{H}_{2} \\mathrm{R}$ 越来越少, 先生成 $\\mathrm{HR}^{-}$, 再生成 $\\mathrm{R}^{2-}$, 则可知曲线 $\\mathrm{a}$ 代表 $\\lg \\frac{\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{R}\\right)}$ 随 $\\mathrm{pH}$ 的变化, 曲线 $\\mathrm{b}$ 表示 $\\mathrm{pH}$ 与 $\\lg \\frac{c\\left(\\mathrm{R}^{2-}\\right)}{\\left(\\mathrm{HR}^{-}\\right)}$的变化关系, 已知 $\\mathrm{H}_{2} \\mathrm{R} \\rightleftharpoons \\mathrm{H}^{+}+\\mathrm{HR}^{-}$则有 $\\mathrm{K}_{\\mathrm{a} 1}=\\frac{\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{R}\\right)}$, 根据曲线 $\\mathrm{a}$ 可知, $\\lg \\mathrm{Y}=1.88 、 \\mathrm{pH}=4$, 则 $\\mathrm{K}_{\\mathrm{a} 1}=10^{-2.12}, \\mathrm{HR}^{-} \\rightleftharpoons \\mathrm{H}^{+}+\\mathrm{R}^{2-}$, 则有 $\\mathrm{K}_{\\mathrm{a} 2}=\\frac{\\mathrm{c}\\left(\\mathrm{R}^{2-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right)}$, 根据曲线 $\\mathrm{b}$ 可知, $\\lg \\mathrm{Y}=2.8$ 时 $\\mathrm{pH}=10, \\mathrm{~K}_{\\mathrm{a} 2}=10^{-7.2}, \\mathrm{~K}_{\\mathrm{a} 1}>\\mathrm{K}_{\\mathrm{a} 2}$, 据此作答。\n\n【详解】A. $\\mathrm{K}_{\\mathrm{a} 1}=10^{-2.12} 、 \\mathrm{~K}_{\\mathrm{a} 2}=10^{-7.2}$, 曲线 $\\mathrm{b}$ 表示 $\\mathrm{pH}$ 与 $\\lg \\frac{c\\left(\\mathrm{R}^{2-}\\right)}{\\left(\\mathrm{HR}^{-}\\right)}$的变化关系, 故 $\\mathrm{A}$ 正确;\n\nB. $25^{\\circ} \\mathrm{C}$ 时, $\\mathrm{H}_{2} \\mathrm{R}$ 的 $\\mathrm{K}_{\\mathrm{a} 1}=10^{-2.12}$, 数量级为 $10^{-3}$, 故 B 正确;\n\nC. 根据分析可知 $\\mathrm{K}_{\\mathrm{a} 2}=\\frac{\\mathrm{c}\\left(\\mathrm{R}^{2-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right)}$, 溶液的 $\\mathrm{pH}=7.2$ 时, 说明 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-7.2} \\mathrm{~mol} / \\mathrm{L}$, 由此可知 $\\mathrm{c}\\left(\\mathrm{R}^{2-}\\right)=\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right)$, 依据电荷守恒可知溶液\n\n$\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{R}^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$, 代入可得:\n\n$c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=3 c\\left(\\mathrm{HR}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$, 故 C 正确;\n\nD. 滴入 $20.00 \\mathrm{mLNaOH}$ 溶液时二者恰好反应生成正盐 $\\mathrm{Na}_{2} \\mathrm{R}, \\mathrm{R}^{2-}$ 水解且分步水解, 溶液显碱性, 因此 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{R}^{2-}\\right)>\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{HR}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 故 D 错误;故答案选 D。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1244",
"problem": "Using the information provided on this graph, give numerical answers with appropriate units to the following questions:\n\n[figure1]\n\nIf we use electromagnetic radiation of frequency $3.9 \\times 10^{15} \\mathrm{~Hz}$ in order to ionise $\\mathrm{H}_{2}$, what will be the velocity of the extracted electrons? (Ignore molecular vibrational energy.)",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nUsing the information provided on this graph, give numerical answers with appropriate units to the following questions:\n\n[figure1]\n\nIf we use electromagnetic radiation of frequency $3.9 \\times 10^{15} \\mathrm{~Hz}$ in order to ionise $\\mathrm{H}_{2}$, what will be the velocity of the extracted electrons? (Ignore molecular vibrational energy.)\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $\\mathrm{~ms}^{-1}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_9a7e6af5bdf769e8e1dfg-471.jpg?height=911&width=1279&top_left_y=590&top_left_x=340"
],
"answer": [
"$492 \\times 10^{3}$"
],
"solution": "$\\mathrm{H}_{2}+h \\nu \\rightarrow \\mathrm{H}_{2}^{+}+\\mathrm{e}^{-}$\n\n$$\n\\begin{aligned}\n& E\\left(\\mathrm{H}_{2}\\right)+h v \\rightarrow E\\left(\\mathrm{H}_{2}^{+}\\right)+\\frac{m_{e} v_{e}^{2}}{2} \\\\\n& v_{e}=\\sqrt{\\frac{2\\left(E\\left(\\mathrm{H}_{2}\\right)-E\\left(\\mathrm{H}_{2}^{+}\\right)+h v\\right.}{m_{e}}}= \\\\\n& =\\sqrt{\\frac{2\\left(\\frac{-3080 \\times 10^{3}-\\left(-1510 \\times 10^{3}\\right)}{\\left.6.02 \\times 10^{23}\\right)+6.63 \\times 10^{-34} \\times 4.1 \\times 10^{15}}\\right.}{9.11 \\times 10^{-31}}}=492 \\times 10^{3} \\mathrm{~ms}^{-1}\n\\end{aligned}\n$$",
"answer_type": "NV",
"unit": [
"$\\mathrm{~ms}^{-1}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_838",
"problem": "“天宫一号”的供电系统中有再生氢氧燃料电池 (RFC), RFC 是一种将太阳能电池电解水技术与氢氧燃料电池技术相结合的可充电电池。下图为 RFC 工作原理示意图 (隔膜为质子选择性透过膜), 下列说法中正确的是\n\n[图1]\n\n装置I 装置II\nA: $\\mathrm{c}$ 极上发生的电极反应是: $\\mathrm{O}_{2}+4 \\mathrm{H}^{+}+4 \\mathrm{e}^{-}=2 \\mathrm{H}_{2} \\mathrm{O}$\nB: 当有 $0.1 \\mathrm{~mol}$ 电子转移时, $\\mathrm{b}$ 极产生 $1.12 \\mathrm{~L}$ 气体 $\\mathrm{Y}$ (标准状况下)\nC: 装置 I 与装置 II 的电解质溶液中, 氢离子运动方向相反\nD: RFC 系统工作过程中只存在 3 种形式的能量转化\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n“天宫一号”的供电系统中有再生氢氧燃料电池 (RFC), RFC 是一种将太阳能电池电解水技术与氢氧燃料电池技术相结合的可充电电池。下图为 RFC 工作原理示意图 (隔膜为质子选择性透过膜), 下列说法中正确的是\n\n[图1]\n\n装置I 装置II\n\nA: $\\mathrm{c}$ 极上发生的电极反应是: $\\mathrm{O}_{2}+4 \\mathrm{H}^{+}+4 \\mathrm{e}^{-}=2 \\mathrm{H}_{2} \\mathrm{O}$\nB: 当有 $0.1 \\mathrm{~mol}$ 电子转移时, $\\mathrm{b}$ 极产生 $1.12 \\mathrm{~L}$ 气体 $\\mathrm{Y}$ (标准状况下)\nC: 装置 I 与装置 II 的电解质溶液中, 氢离子运动方向相反\nD: RFC 系统工作过程中只存在 3 种形式的能量转化\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-83.jpg?height=514&width=891&top_left_y=1916&top_left_x=340"
],
"answer": [
"A"
],
"solution": "【分析】根据水流动方向, 水由 $\\mathrm{c}$ 极移向 $\\mathrm{b}$, 说明水在 $\\mathrm{A}$ 极生成, 由于隔膜为质子选择性透过膜, 所以 $\\mathrm{c}$ 极反应为 $\\mathrm{O}_{2}+4 e^{-}+4 \\mathrm{H}^{+}=2 \\mathrm{H}_{2} \\mathrm{O}, \\mathrm{c}$ 是正极, 气体 $\\mathrm{Y}$ 是氧气、 $\\mathrm{d}$ 是负极, 负极反应为 $\\mathrm{H}_{2}-2 \\mathrm{e}^{-}=2 \\mathrm{H}^{+}$, 气体 $\\mathrm{X}$ 是氢气; $\\mathrm{a}$ 是阴极生成氢气, $\\mathrm{b}$ 是阳极生成氧气。\n\n【详解】A.根据分析, $\\mathrm{c}$ 极上发生的电极反应是: $\\mathrm{O}_{2}+4 \\mathrm{H}^{+}+4 \\mathrm{e}^{-}=2 \\mathrm{H}_{2} \\mathrm{O}$, 故 A 正确;\n\nB. 当有 $0.1 \\mathrm{~mol}$ 电子转移时, $\\mathrm{b}$ 极产生 $0.56 \\mathrm{~L}$ 气体氧气 (标准状况下), 故 B 错误;\n\n$\\mathrm{C} . \\mathrm{a}$ 是阴极, $\\mathrm{b}$ 是阳极, 装置 $\\mathrm{I}$ 氢离子由 $\\mathrm{b}$ 移向 $\\mathrm{a} ; \\mathrm{c}$ 是正极, $\\mathrm{d}$ 是负极, 氢离子由 $\\mathrm{d}$ 到 $\\mathrm{c}$, 运动方向相同, 故 C 错误;\n\nD. RFC 系统工作过程中只存在光能、电能、化学能、热能的等形式的能量转化, 故 D 错误;\n\n故选 A。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_494",
"problem": "标准状况下 $1.568 \\mathrm{~L}$ 无色可燃气体在足量氧气中完全燃烧。若将产物通入足量澄清石灰水, 得到的白色沉淀的质量为 $14.0 \\mathrm{~g}$; 若用足量碱石灰吸收燃烧产物, 测得其增重\nA: 该气体若是单一气体, 则可能为 $\\mathrm{C}_{2} \\mathrm{H}_{4}$ 或 $\\mathrm{C}_{3} \\mathrm{H}_{6}$\nB: 该气体可能由等物质的量的 $\\mathrm{C}_{3} \\mathrm{H}_{6}$ 和 $\\mathrm{CH}_{2} \\mathrm{O}$ 组成\nC: 不能确定该气体是否含氧元素\nD: 该气体不可能由等物质的量的 $\\mathrm{C}_{3} \\mathrm{H}_{8}$ 和 $\\mathrm{CO}$ 组成\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n标准状况下 $1.568 \\mathrm{~L}$ 无色可燃气体在足量氧气中完全燃烧。若将产物通入足量澄清石灰水, 得到的白色沉淀的质量为 $14.0 \\mathrm{~g}$; 若用足量碱石灰吸收燃烧产物, 测得其增重\n\nA: 该气体若是单一气体, 则可能为 $\\mathrm{C}_{2} \\mathrm{H}_{4}$ 或 $\\mathrm{C}_{3} \\mathrm{H}_{6}$\nB: 该气体可能由等物质的量的 $\\mathrm{C}_{3} \\mathrm{H}_{6}$ 和 $\\mathrm{CH}_{2} \\mathrm{O}$ 组成\nC: 不能确定该气体是否含氧元素\nD: 该气体不可能由等物质的量的 $\\mathrm{C}_{3} \\mathrm{H}_{8}$ 和 $\\mathrm{CO}$ 组成\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": null,
"answer": [
"B",
"C"
],
"solution": "【详解】设燃烧产物中 $\\mathrm{CO}_{2}$ 的质量为 $x$ 。则:\n\n$\\mathrm{CO}_{2}+\\mathrm{Ca}(\\mathrm{OH})_{2}=\\mathrm{CaCO}_{3} \\downarrow+\\mathrm{H}_{2} \\mathrm{O}$\n\n44\n\n100\n\n$\\mathrm{x}$\n\n$14.0 \\mathrm{~g}$\n\n解得 $x=6.16 \\mathrm{~g}$, 而碱石灰既能吸收水, 又能吸收二氧化碳, 因此, 碱石灰增重的质量是二氧化碳和水的总质量, 即 $m\\left(\\mathrm{CO}_{2}\\right)+m\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)=8.68 \\mathrm{~g}, m\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)=8.68 \\mathrm{~g}-6.16 \\mathrm{~g}=2.52 \\mathrm{~g}$,无色可燃气体的物质的量 $n($ 气体 $)=\\frac{1.568 \\mathrm{~L}}{22.4 \\mathrm{~L} \\cdot \\mathrm{mol}^{-1}}=0.07 \\mathrm{~mol}$, $n\\left(\\mathrm{CO}_{2}\\right)=\\frac{6.16 \\mathrm{~g}}{44 \\mathrm{~g} \\cdot \\mathrm{mol}^{-1}}=0.14 \\mathrm{~mol}$, 则 $n(\\mathrm{C})=0.14 \\mathrm{~mol} ; n\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)=\\frac{2.52 \\mathrm{~g}}{18 \\mathrm{~g} \\cdot \\mathrm{mol}^{-1}}=0.14 \\mathrm{~mol}$,则 $n(\\mathrm{H})=n\\left(\\mathrm{H}_{2} \\mathrm{O}\\right) \\times 2=0.28 \\mathrm{~mol}$, 即 $0.07 \\mathrm{~mol}$ 气体中含有 $0.14 \\mathrm{~mol} \\mathrm{C}$ 原子和 $0.28 \\mathrm{~mol} \\mathrm{H}$ 原子, 所以 $1 \\mathrm{~mol}$ 该气体中含有 $2 \\mathrm{~mol} \\mathrm{C}$ 原子、 $4 \\mathrm{~mol} \\mathrm{H}$ 原子, 可能含有氧元素。若该气体为单一气体, 则其分子式是 $\\mathrm{C}_{2} \\mathrm{H}_{4}\\left(\\mathrm{C}_{2} \\mathrm{H}_{4} \\mathrm{O}_{x}\\right.$ 在标准状况下不是气体), 若该气体为等物质的量的两种气体的混合物, 则在 $2 \\mathrm{~mol}$ 混合气体中, 应含有 $4 \\mathrm{~mol} \\mathrm{C}$ 原子 $8 \\mathrm{~mol} \\mathrm{H}$ 原子, 这两种气体可能是 $\\mathrm{C}_{4} \\mathrm{H}_{6}$ 和 $\\mathrm{H}_{2}$ 或 $\\mathrm{C}_{3} \\mathrm{H}_{8}$ 和 $\\mathrm{CO}$ 或 $\\mathrm{C}_{3} \\mathrm{H}_{6}$ 和 $\\mathrm{CH}_{2} \\mathrm{O}$ 等, 故选 $\\mathrm{BC}$ 。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_1241",
"problem": "Lactic acid is formed in the muscles during intense activity (anaerobic metabolism). In the blood, lactic acid is neutralized by reaction with hydrogen carbonate. This will be illustrated by the following calculations:\n\nLactic acid written as HL is monoprotic, and the acid dissociation constant is $K_{\\mathrm{HL}}=1.4 \\times 10^{-4}$.\n\nThe acid dissociation constants for carbonic acid are: $K_{\\mathrm{a} 1}=4.5 \\times 10^{-7}$ and $K_{\\mathrm{a} 2}=$ $4.7 \\times 10^{-11}$. All carbon dioxide remains dissolved during the reactions.\n\n$\\mathrm{pH}$ in the blood of a person changed from 7.40 to 7.00 due to lactic acid formed during physical activity. Let an aqueous solution having $\\mathrm{pH}=7.40$ and $\\left[\\mathrm{HCO}_{3}^{-}\\right]=$ 0.022 represent blood in the following calculation. How many moles of lactic acid have been added to $1.00 \\mathrm{dm}^{3}$ of this solution when its $\\mathrm{pH}$ has become 7.00 ?",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nLactic acid is formed in the muscles during intense activity (anaerobic metabolism). In the blood, lactic acid is neutralized by reaction with hydrogen carbonate. This will be illustrated by the following calculations:\n\nLactic acid written as HL is monoprotic, and the acid dissociation constant is $K_{\\mathrm{HL}}=1.4 \\times 10^{-4}$.\n\nThe acid dissociation constants for carbonic acid are: $K_{\\mathrm{a} 1}=4.5 \\times 10^{-7}$ and $K_{\\mathrm{a} 2}=$ $4.7 \\times 10^{-11}$. All carbon dioxide remains dissolved during the reactions.\n\n$\\mathrm{pH}$ in the blood of a person changed from 7.40 to 7.00 due to lactic acid formed during physical activity. Let an aqueous solution having $\\mathrm{pH}=7.40$ and $\\left[\\mathrm{HCO}_{3}^{-}\\right]=$ 0.022 represent blood in the following calculation. How many moles of lactic acid have been added to $1.00 \\mathrm{dm}^{3}$ of this solution when its $\\mathrm{pH}$ has become 7.00 ?\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $\\mathrm{~mol}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"$2.4 \\times 10^{-3}$"
],
"solution": "$\\mathrm{~A}: \\quad \\mathrm{pH}=7.40 ; \\quad\\left[\\mathrm{H}_{3} \\mathrm{O}^{+}\\right]=4.0 \\times 10^{-8} ; \\quad\\left[\\mathrm{HCO}_{3}^{-}\\right]_{\\mathrm{A}}=0.022$.\n\nFrom $K_{\\mathrm{a} 1}:\\left[\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right]_{\\mathrm{A}}=0.0019$;\n\n(1) $\\left[\\mathrm{HCO}_{3}^{-}\\right]_{\\mathrm{B}}+\\left[\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right]_{\\mathrm{B}}=0.0239$\n\n$(0.024)$\n\n$\\mathrm{B}: \\quad p H=7.00 ; \\quad \\frac{\\left[\\mathrm{HCO}_{3}\\right]}{\\left[\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right]}=4.5 ;$\n\n(2) $\\left[\\mathrm{HCO}_{3}^{-}\\right]_{\\mathrm{B}}=4.5\\left[\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right]_{\\mathrm{B}}$\n\nFrom (1) and (2): $\\quad\\left[\\mathrm{HCO}_{3}^{-}\\right]_{\\mathrm{B}}=0.0196$\n\n$$\n\\left[\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right]_{\\mathrm{B}}=0.0043\n$$\n\n$n(\\mathrm{HL})=\\Delta n\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=\\Delta c\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right) \\times 1.00 \\mathrm{dm}^{3}=2.4 \\times 10^{-3} \\mathrm{~mol}$",
"answer_type": "NV",
"unit": [
"$\\mathrm{~mol}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_770",
"problem": "已知苯甲酸乙酯的沸点为 $212.6^{\\circ} \\mathrm{C}$, “乙醚-环已烷-水共沸物” 的沸点为 $62.1^{\\circ} \\mathrm{C}$ 。实验室初步分离苯甲酸乙酯、苯甲酸和环已烷的流程如下。下列说法错误的是\n\n[图1]\nA: 操作 a 所使用的主要玻璃仪器为分液漏斗和烧杯\nB: 操作 $\\mathrm{b}$ 和操作 $\\mathrm{c}$ 均为重结晶\nC: 无水 $\\mathrm{MgSO}_{4}$ 和饱和碳酸钠溶液的作用相同\nD: 该流程中苯甲酸先转化为苯甲酸钠, 后转化为苯甲酸\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n已知苯甲酸乙酯的沸点为 $212.6^{\\circ} \\mathrm{C}$, “乙醚-环已烷-水共沸物” 的沸点为 $62.1^{\\circ} \\mathrm{C}$ 。实验室初步分离苯甲酸乙酯、苯甲酸和环已烷的流程如下。下列说法错误的是\n\n[图1]\n\nA: 操作 a 所使用的主要玻璃仪器为分液漏斗和烧杯\nB: 操作 $\\mathrm{b}$ 和操作 $\\mathrm{c}$ 均为重结晶\nC: 无水 $\\mathrm{MgSO}_{4}$ 和饱和碳酸钠溶液的作用相同\nD: 该流程中苯甲酸先转化为苯甲酸钠, 后转化为苯甲酸\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_d1b519b524f279de7793g-29.jpg?height=422&width=1159&top_left_y=674&top_left_x=334"
],
"answer": [
"B",
"C"
],
"solution": "分析】由题给流程可知: 向混合物中加入饱和碳酸钠溶液洗涤, 将苯甲酸转化为苯甲酸钠, 分液得到含有苯甲酸乙酯和环己烷的有机相和水相; 向水相中加入乙醚, 萃取水相中的苯甲酸乙酯和环己烷, 分液得到有机相和萃取液; 有机相混合得到有机相 $\\mathrm{I}$, 有机相经蒸馏得到共沸物和有机相 II, 向有机相中加入无水硫酸镁除去水分, 干燥有机相,过滤、蒸馏得到苯甲酸乙酯, 向萃取液中加入稀硫酸, 将苯甲酸钠转化为苯甲酸, 过滤得到苯甲酸粗品,经重结晶得到苯甲酸,据此分析。\n\n【详解】A. 由分析可知, 操作 a 为分液, 分液所使用的主要玻璃仪器为分液漏斗和烧杯, A 正确;\n\nB. 操作 $\\mathrm{b}$ 为蒸馏, 操作 $\\mathrm{c}$ 为重结晶, $\\mathrm{B}$ 错误;\n\nC. 加入无水硫酸钠镁的作用是除去水分, 干燥有机相 I, 饱和碳酸钠作用是将苯甲酸转化为苯甲酸钠, $\\mathrm{C}$ 错误;\n\nD. 该流程中苯甲酸先与饱和碳酸钠溶液反应转化为苯甲酸钠, 苯甲酸钠再与稀硫酸反应转化为苯甲酸, D 正确;\n\n故本题选 BC。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1572",
"problem": "Bridge between Denmark and Sweden\n\n[figure1]\n\nOn July 1, 2000, the combined tunnel and bridge connecting Denmark and Sweden was officially opened. It consists of a tunnel from Copenhagen to an artificial island, and a bridge from the island to Malmö in Sweden. The major construction materials employed are concrete and steel. This problem deals with chemical reactions relating to production and degradation of such materials.\n\nConcrete is produced from a mixture of cement, water, sand and small stones. Cement consists primarily of calcium silicates and calcium aluminates formed by heating and grinding of clay and limestone. In the later steps of cement production a small amount of gypsum, $\\mathrm{CaSO}_{4} \\cdot 2 \\mathrm{H}_{2} \\mathrm{O}$, is added to improve subsequent hardening of the concrete. The use of elevated temperatures during the final production may lead to formation of unwanted hemihydrate, $\\mathrm{CaSO}_{4} \\cdot 1 / 2 \\mathrm{H}_{2} \\mathrm{O}$. Consider the following reaction:\n\n$$\n\\mathrm{CaSO}_{4} \\cdot 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s}) \\rightarrow \\mathrm{CaSO}_{4} \\cdot 1 / 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s})+1 \\frac{1}{2} \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g})\n$$\n\nThe following thermodynamic data apply at $25^{\\circ} \\mathrm{C}$, standard pressure: 1.00 bar:\n\n| Compound | $\\Delta_{\\dot{f}} \\mathrm{H}\\left(\\mathrm{kJ} \\mathrm{mol}^{-1}\\right)$ | $\\mathrm{S}\\left(\\mathrm{J} \\mathrm{K}^{-1} \\mathrm{~mol}^{-1}\\right)$ |\n| :--- | :---: | :---: |\n| $\\mathrm{CaSO}_{4} \\cdot 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s})$ | -2021.0 | 194.0 |\n| $\\mathrm{CaSO}_{4} \\cdot 1 / 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s})$ | -1575.0 | 130.5 |\n| $\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g})$ | -241.8 | 188.6 |\n\nGas constant: $R=8.314 \\mathrm{~J} \\mathrm{~mol}^{-1} \\mathrm{~K}^{-1}=0.08314 \\mathrm{~L} \\mathrm{bar} \\mathrm{mol}^{-1} \\mathrm{~K}^{-1}$\n\n$$\n0^{\\circ} \\mathrm{C}=273.15 \\mathrm{~K} .\n$$\n\nThe overall reaction referred to above is allowed to proceed for 24 hours under standard conditions and at a constant current of $0.12 \\mathrm{~A}$. Calculate the mass of $\\mathrm{Fe}$ converted to $\\mathrm{Fe}^{2+}$ after 24 hours. Oxygen and water may be assumed to be present in excess.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nBridge between Denmark and Sweden\n\n[figure1]\n\nOn July 1, 2000, the combined tunnel and bridge connecting Denmark and Sweden was officially opened. It consists of a tunnel from Copenhagen to an artificial island, and a bridge from the island to Malmö in Sweden. The major construction materials employed are concrete and steel. This problem deals with chemical reactions relating to production and degradation of such materials.\n\nConcrete is produced from a mixture of cement, water, sand and small stones. Cement consists primarily of calcium silicates and calcium aluminates formed by heating and grinding of clay and limestone. In the later steps of cement production a small amount of gypsum, $\\mathrm{CaSO}_{4} \\cdot 2 \\mathrm{H}_{2} \\mathrm{O}$, is added to improve subsequent hardening of the concrete. The use of elevated temperatures during the final production may lead to formation of unwanted hemihydrate, $\\mathrm{CaSO}_{4} \\cdot 1 / 2 \\mathrm{H}_{2} \\mathrm{O}$. Consider the following reaction:\n\n$$\n\\mathrm{CaSO}_{4} \\cdot 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s}) \\rightarrow \\mathrm{CaSO}_{4} \\cdot 1 / 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s})+1 \\frac{1}{2} \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g})\n$$\n\nThe following thermodynamic data apply at $25^{\\circ} \\mathrm{C}$, standard pressure: 1.00 bar:\n\n| Compound | $\\Delta_{\\dot{f}} \\mathrm{H}\\left(\\mathrm{kJ} \\mathrm{mol}^{-1}\\right)$ | $\\mathrm{S}\\left(\\mathrm{J} \\mathrm{K}^{-1} \\mathrm{~mol}^{-1}\\right)$ |\n| :--- | :---: | :---: |\n| $\\mathrm{CaSO}_{4} \\cdot 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s})$ | -2021.0 | 194.0 |\n| $\\mathrm{CaSO}_{4} \\cdot 1 / 2 \\mathrm{H}_{2} \\mathrm{O}(\\mathrm{s})$ | -1575.0 | 130.5 |\n| $\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g})$ | -241.8 | 188.6 |\n\nGas constant: $R=8.314 \\mathrm{~J} \\mathrm{~mol}^{-1} \\mathrm{~K}^{-1}=0.08314 \\mathrm{~L} \\mathrm{bar} \\mathrm{mol}^{-1} \\mathrm{~K}^{-1}$\n\n$$\n0^{\\circ} \\mathrm{C}=273.15 \\mathrm{~K} .\n$$\n\nThe overall reaction referred to above is allowed to proceed for 24 hours under standard conditions and at a constant current of $0.12 \\mathrm{~A}$. Calculate the mass of $\\mathrm{Fe}$ converted to $\\mathrm{Fe}^{2+}$ after 24 hours. Oxygen and water may be assumed to be present in excess.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of g, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_9a7e6af5bdf769e8e1dfg-345.jpg?height=951&width=1445&top_left_y=595&top_left_x=314"
],
"answer": [
"3.0"
],
"solution": "$Q=I t=0.12 \\mathrm{~A} \\times 24 \\times 60 \\times 60 \\mathrm{~s}=10368 \\mathrm{C}$\n\n$n\\left(\\mathrm{e}^{-}\\right)=Q / F=10368 \\mathrm{C} / 96485 \\mathrm{C} \\mathrm{mol}^{-1}=0.1075 \\mathrm{~mol}$\n\n$m(\\mathrm{Fe})=n(\\mathrm{Fe}) M(\\mathrm{Fe})=1 / 2 \\times 0.1075 \\mathrm{~mol} \\times 55.85 \\mathrm{~g} \\mathrm{~mol}^{-1}=3.0 \\mathrm{~g}$",
"answer_type": "NV",
"unit": [
"g"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_485",
"problem": "一定温度下, 向 $300 \\mathrm{~mL} 1 \\mathrm{~mol} / \\mathrm{L}$ 的 $\\mathrm{NaOH}$ 溶液中通入 $b \\mathrm{~mol} \\mathrm{CO}_{2}$, 下列说法正确的是\nA: 通入 $\\mathrm{CO}_{2}$ 过程中溶液的 $K_{w}$ 减小\nB: 当 $b=0.2$ 时, 所得溶液中部分离子浓度关系为: $c\\left(\\mathrm{HCO}_{3}^{-}\\right)>c\\left(\\mathrm{CO}_{3}^{2-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\nC: $b=0.3$ 与 $b=0.15$ 时, 所得溶液中的微粒种类不相同\nD: 当恰好生成 $\\mathrm{NaHCO}_{3}$ 时, 溶液中存在: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{HCO}_{3}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n一定温度下, 向 $300 \\mathrm{~mL} 1 \\mathrm{~mol} / \\mathrm{L}$ 的 $\\mathrm{NaOH}$ 溶液中通入 $b \\mathrm{~mol} \\mathrm{CO}_{2}$, 下列说法正确的是\n\nA: 通入 $\\mathrm{CO}_{2}$ 过程中溶液的 $K_{w}$ 减小\nB: 当 $b=0.2$ 时, 所得溶液中部分离子浓度关系为: $c\\left(\\mathrm{HCO}_{3}^{-}\\right)>c\\left(\\mathrm{CO}_{3}^{2-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\nC: $b=0.3$ 与 $b=0.15$ 时, 所得溶液中的微粒种类不相同\nD: 当恰好生成 $\\mathrm{NaHCO}_{3}$ 时, 溶液中存在: $c\\left(\\mathrm{Na}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{HCO}_{3}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"B"
],
"solution": "【详解】A. 通入 $\\mathrm{CO}_{2}$ 过程中, 溶液温度不变, 则溶液中的 $\\mathrm{Kw}$ 不变, 故 $\\mathrm{A}$ 错误;\n\nB. $300 \\mathrm{~mL} 1 \\mathrm{~mol} / \\mathrm{L}$ 的 $\\mathrm{NaOH}$ 溶液中含有氢氧化钠的物质的量为 $0.3 \\mathrm{~mol}, 0.2 \\mathrm{~mol}$ 二氧化碳与 $0.3 \\mathrm{~mol}$ 氢氧化钠反应后溶质为 $0.1 \\mathrm{~mol}$ 碳酸钠、 $0.1 \\mathrm{~mol}$ 碳酸氢钠, 碳酸根离子的水解程度大于碳酸氢根离子, 则 $\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right) 、 \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 溶液中离子浓度大小为: $\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 故 B 正确;\n\nC. $\\mathrm{b}=0.3$ 与 $\\mathrm{b}=0.15$ 时, 所得溶液中的微粒种类相同, 都含有: $\\mathrm{HCO}_{3}^{-} 、 \\mathrm{CO}_{3}^{2-} 、 \\mathrm{OH}^{-} 、$ $\\mathrm{H}^{+} 、 \\mathrm{H}_{2} \\mathrm{CO}_{3} 、 \\mathrm{H}_{2} \\mathrm{O}$, 故 C 错误;\n\nD. 碳酸氢钠溶液中存在电荷守恒: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)$, 故 D 错误;故答案选 B。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_432",
"problem": "常温下, 将 $100 \\mathrm{~mL} 1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的氨水与 $100 \\mathrm{~mL} \\mathrm{a} \\mathrm{mol} \\cdot \\mathrm{L}^{-1}$ 盐酸等体积混合, 忽略反应放热和体积变化, 下列有关推论不正确的是\nA: 若混合后溶液 $\\mathrm{pH}=7$, 则 $\\mathrm{c}\\left(\\mathrm{NH}_{4}{ }^{+}\\right)=\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)$\nB: 若 $\\mathrm{a}=2$, 则 $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\nC: 若 $a=0.5$, 则 $c\\left(N_{4}{ }^{+}\\right)>c\\left(\\mathrm{Cl}^{-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\nD: 若混合后溶液满足 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)$, 则可推出 $\\mathrm{a}=1$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n常温下, 将 $100 \\mathrm{~mL} 1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的氨水与 $100 \\mathrm{~mL} \\mathrm{a} \\mathrm{mol} \\cdot \\mathrm{L}^{-1}$ 盐酸等体积混合, 忽略反应放热和体积变化, 下列有关推论不正确的是\n\nA: 若混合后溶液 $\\mathrm{pH}=7$, 则 $\\mathrm{c}\\left(\\mathrm{NH}_{4}{ }^{+}\\right)=\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)$\nB: 若 $\\mathrm{a}=2$, 则 $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\nC: 若 $a=0.5$, 则 $c\\left(N_{4}{ }^{+}\\right)>c\\left(\\mathrm{Cl}^{-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$\nD: 若混合后溶液满足 $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)$, 则可推出 $\\mathrm{a}=1$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"B"
],
"solution": "【详解】本题考查的是溶液中离子浓度的大小关系和等量关系。\n\n若混合后溶液 $\\mathrm{pH}=7, c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)$, 根据电荷守恒, $c\\left(\\mathrm{NH}_{4}^{+}\\right)=c\\left(\\mathrm{Cl}^{-}\\right)$, 所以 $\\mathrm{A}$ 正确。若 $a=2$, 等体积混合后, 氨水与盐酸反应生成氯化铵, 盐酸还剩余一半, $c\\left(\\mathrm{Cl}^{-}\\right)$最大,溶液显酸性, $c\\left(\\mathrm{H}^{+}\\right)>c\\left(\\mathrm{OH}^{-}\\right)$, 若不考虑铵根水解, $c\\left(\\mathrm{NH}_{4}^{+}\\right)=c\\left(\\mathrm{H}^{+}\\right)$, 但是铵根肯定会水解, 使得 $c\\left(\\mathrm{NH}_{4}^{+}\\right)c\\left(\\mathrm{H}^{+}\\right)>c\\left(\\mathrm{NH}_{4}^{+}\\right)>c\\left(\\mathrm{OH}^{-}\\right)$, 所以 $\\mathrm{B}$ 不正确。\n\n若 $a=0.5$, 则氨水反应掉一半剩余一半, 溶液中有物质的量相同的两种溶质, 氨水电离使溶液显碱性, 氯化铵水解使溶液显酸性。由于此时溶液显碱性, 说明氨水的电离作用大于氯化铵的水解作用, 所以 $c\\left(\\mathrm{NH}_{4}^{+}\\right)>c\\left(\\mathrm{Cl}^{-}\\right)>c\\left(\\mathrm{OH}^{-}\\right)>c\\left(\\mathrm{H}^{+}\\right)$正确。\n\n当 $\\mathrm{a}=1$ 时, 两溶液恰好反应得到氯化铵溶液, 依据质子守恒可知 $c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+$ $c\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)$, 所以 $\\mathrm{D}$ 正确。\n\n点睛: 分析溶液中的守恒关系时, 先要分析溶液中存在的各种弱电解质的电离平衡和盐的水解平衡, 找出溶液中存在的各种粒子, 然后写出溶液中的电荷守恒式、物料守恒式和质子守恒式。如, 无论本题中两种溶液以何种比例混合, 都存在相同的电荷守恒式: $c\\left(\\mathrm{H}^{+}\\right)+c\\left(\\mathrm{NH}_{4}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{Cl}^{-}\\right)$; 当 $\\mathrm{a}=2$ 时, 由于两溶液体积相同, 而盐酸的物质的量浓度是氨水的 2 倍, 所以混合后一定有物料守恒:\n\n$c\\left(\\mathrm{Cl}^{-}\\right)=2 c\\left(\\mathrm{NH}_{4}^{+}\\right)+2 c\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)$; 所谓质子守恒, 就是水电离的氢离子的物质的量等于水电离的氢氧根离子, 在 $\\mathrm{NH}_{4} \\mathrm{Cl}$\n\n溶液中, 由于一个 $\\mathrm{NH}_{4}^{+}$水解时结合了一个水电离的 $\\mathrm{OH}^{-}$, 所以质子守恒式为: $c\\left(\\mathrm{H}^{+}\\right)=$ $c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)$",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_442",
"problem": "化学反应的方向: 对于可逆反应而言, 有正向进行和逆向进行两个方向。一般地,判断反应方向有“焓判据”和“熵判据”两种判断方法。在此之前我们要先了解“熵”的概念。熵 $(S)$ 的定义式为 $S=k \\ln \\Omega$, 其中 $\\Omega$ 为体系混乱度, $k$ 为玻尔兹曼常数, 熵单位为 $\\mathrm{J} \\cdot \\mathrm{K}^{-1} \\cdot \\mathrm{mol}^{-1} ; \\mathrm{S}$ 越大系统混乱度越大, 规定(开氏温标下, $0 \\mathrm{~K}=-273.15^{\\circ} \\mathrm{C}$ 即绝对零度, 开氏温标每增加 $1 \\mathrm{~K}$, 摄氏温标增加 $\\left.1^{\\circ} \\mathrm{C}\\right): \\lim _{\\mathrm{T} \\rightarrow 0 \\mathrm{~K}} \\mathrm{~S}=0$\n\n即在绝对零度下任何完美的纯净的晶体的熵值为 0 , 对于同一种物质, 其熵值: 气态 $>$液态>固态。\n\n-焓判据:放热反应体系能量降低,因此具有自发进行(指没有任何外力做功的情况下能够“自己”进行)的倾向。\n\n$\\cdot$熵判据:反应体系具有自发向熵增的方向进行的倾向。\n\n但是仅凭焓判据和熵判据都存在特例, 无法概况全部化学反应, 因此 1876 年美国化学家吉布斯引入了一个新的热力学函数——吉布斯自由能 $(\\mathrm{G})$, 其物理意义是一个化学反应可被利用来做有用功的能力,根据吉布斯-亥姆霍兹方程式:\n\n$\\Delta \\mathrm{G}=\\Delta \\mathrm{H}-\\mathrm{T} \\Delta \\mathrm{S}=\\Delta(\\mathrm{H}-\\mathrm{TS})$\n\n因此有 $\\mathrm{G} \\equiv \\mathrm{H}-\\mathrm{TS}$ 。在压强与温度恒定时, 若 $\\Delta \\mathrm{G}<0$ 则正反应自发, 若 $\\Delta \\mathrm{G}>0$ 则逆反应自发, 若 $\\Delta \\mathrm{G}=0$ 反应达到化学平衡。根据材料, 许多放热化学反应能够自发进行, 使得人们总结出焓判据的原因在于\nA: 其反应熵变很小\nB: 其反应需要的温度较高\nC: 反应活化能较低\nD: 反应的体积功大 $(\\Delta \\mathrm{H}=\\Delta \\mathrm{U}-\\Delta \\mathrm{pV}$ ,其中 $-\\Delta \\mathrm{pV}$ 为其体积功 $)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n化学反应的方向: 对于可逆反应而言, 有正向进行和逆向进行两个方向。一般地,判断反应方向有“焓判据”和“熵判据”两种判断方法。在此之前我们要先了解“熵”的概念。熵 $(S)$ 的定义式为 $S=k \\ln \\Omega$, 其中 $\\Omega$ 为体系混乱度, $k$ 为玻尔兹曼常数, 熵单位为 $\\mathrm{J} \\cdot \\mathrm{K}^{-1} \\cdot \\mathrm{mol}^{-1} ; \\mathrm{S}$ 越大系统混乱度越大, 规定(开氏温标下, $0 \\mathrm{~K}=-273.15^{\\circ} \\mathrm{C}$ 即绝对零度, 开氏温标每增加 $1 \\mathrm{~K}$, 摄氏温标增加 $\\left.1^{\\circ} \\mathrm{C}\\right): \\lim _{\\mathrm{T} \\rightarrow 0 \\mathrm{~K}} \\mathrm{~S}=0$\n\n即在绝对零度下任何完美的纯净的晶体的熵值为 0 , 对于同一种物质, 其熵值: 气态 $>$液态>固态。\n\n-焓判据:放热反应体系能量降低,因此具有自发进行(指没有任何外力做功的情况下能够“自己”进行)的倾向。\n\n$\\cdot$熵判据:反应体系具有自发向熵增的方向进行的倾向。\n\n但是仅凭焓判据和熵判据都存在特例, 无法概况全部化学反应, 因此 1876 年美国化学家吉布斯引入了一个新的热力学函数——吉布斯自由能 $(\\mathrm{G})$, 其物理意义是一个化学反应可被利用来做有用功的能力,根据吉布斯-亥姆霍兹方程式:\n\n$\\Delta \\mathrm{G}=\\Delta \\mathrm{H}-\\mathrm{T} \\Delta \\mathrm{S}=\\Delta(\\mathrm{H}-\\mathrm{TS})$\n\n因此有 $\\mathrm{G} \\equiv \\mathrm{H}-\\mathrm{TS}$ 。在压强与温度恒定时, 若 $\\Delta \\mathrm{G}<0$ 则正反应自发, 若 $\\Delta \\mathrm{G}>0$ 则逆反应自发, 若 $\\Delta \\mathrm{G}=0$ 反应达到化学平衡。根据材料, 许多放热化学反应能够自发进行, 使得人们总结出焓判据的原因在于\n\nA: 其反应熵变很小\nB: 其反应需要的温度较高\nC: 反应活化能较低\nD: 反应的体积功大 $(\\Delta \\mathrm{H}=\\Delta \\mathrm{U}-\\Delta \\mathrm{pV}$ ,其中 $-\\Delta \\mathrm{pV}$ 为其体积功 $)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"D"
],
"solution": "【详解】仅凭焓判据和熵判据都存在特例, 无法概况全部化学反应, 1876 年美国化学家吉布斯引入了一个新的热力学函数——吉布斯自由能 $(G)$, 其物理意义是一个化学反应可被利用来做有用功的能力; 故使得人们总结出焓判据的原因在于反应的体积功大 $(\\Delta \\mathrm{H}=\\Delta \\mathrm{U}-\\Delta \\mathrm{pV}$ ,其中 $-\\Delta \\mathrm{pV}$ 为其体积功);故选 D。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
},
{
"id": "Chemistry_1306",
"problem": "In Denmark the subsoil consists mainly of limestone. In contact with ground water containing carbon dioxide some of the calcium carbonate dissolves as calcium hydrogen carbonate. As a result, such ground water is hard, and when used as tap water the high content of calcium hydrogen carbonate causes problems due to precipitation of calcium carbonate in, for example, kitchen and bathroom environments.\n\nCarbon dioxide, $\\mathrm{CO}_{2}$, is a diprotic acid in aqueous solution. The $\\mathrm{p} K_{\\mathrm{a}}$-values at $0{ }^{\\circ} \\mathrm{C}$ are:\n\n[figure1]\n\nThe liquid volume change associated with dissolution of $\\mathrm{CO}_{2}$ may be neglected for all of the following problems. The temperature is to be taken as being $0{ }^{\\circ} \\mathrm{C}$.\n\nCalculate the concentration of calcium ions in water in equilibrium with calcium carbonate in an atmosphere with a partial pressure of carbon dioxide of 1.00 bar.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nIn Denmark the subsoil consists mainly of limestone. In contact with ground water containing carbon dioxide some of the calcium carbonate dissolves as calcium hydrogen carbonate. As a result, such ground water is hard, and when used as tap water the high content of calcium hydrogen carbonate causes problems due to precipitation of calcium carbonate in, for example, kitchen and bathroom environments.\n\nCarbon dioxide, $\\mathrm{CO}_{2}$, is a diprotic acid in aqueous solution. The $\\mathrm{p} K_{\\mathrm{a}}$-values at $0{ }^{\\circ} \\mathrm{C}$ are:\n\n[figure1]\n\nThe liquid volume change associated with dissolution of $\\mathrm{CO}_{2}$ may be neglected for all of the following problems. The temperature is to be taken as being $0{ }^{\\circ} \\mathrm{C}$.\n\nCalculate the concentration of calcium ions in water in equilibrium with calcium carbonate in an atmosphere with a partial pressure of carbon dioxide of 1.00 bar.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $\\mathrm{~mol} \\mathrm{dm}^{-3}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_14_9a7e6af5bdf769e8e1dfg-362.jpg?height=166&width=1354&top_left_y=1005&top_left_x=288"
],
"answer": [
"$1.02 \\times 10^{-2}$"
],
"solution": "$6.6 K=\\frac{\\left[\\mathrm{Ca}^{2+}\\right]\\left[\\mathrm{HCO}_{3}^{-}\\right]}{\\left[\\mathrm{CO}_{2}\\right]}=10^{-4.25}$ and $2\\left[\\mathrm{Ca}^{2+}\\right]=\\left[\\mathrm{HCO}_{3}^{-}\\right]$\n\n$\\frac{4\\left[\\mathrm{Ca}^{2+}\\right]}{0.0751}=10^{-4.25} \\quad\\left[\\mathrm{Ca}^{2+}\\right]=1.02 \\times 10^{-2} \\quad c\\left(\\mathrm{Ca}^{2+}\\right)=1.02 \\times 10^{-2} \\mathrm{~mol} \\mathrm{dm}^{-3}$",
"answer_type": "NV",
"unit": [
"$\\mathrm{~mol} \\mathrm{dm}^{-3}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "multi-modal"
},
{
"id": "Chemistry_791",
"problem": "柠檬酸是三元弱酸(简写为 $\\mathrm{H}_{3} \\mathrm{~A}$ )。常温下, 向 $10 \\mathrm{~mL} 0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{3} \\mathrm{~A}$ 溶液中滴加\n\n$\\mathrm{VmLpH}=13$ 的 $\\mathrm{NaOH}$ 溶液, 溶液的 $\\mathrm{pH}$ 与含 $\\mathrm{A}$ 粒子分布系数如图所示。下列叙述正确的是\n\n已知: $\\mathrm{H}_{3} \\mathrm{~A}$ 的分布系数表达式为\n\n$\\delta\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)=\\frac{\\mathrm{n}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)}{\\mathrm{n}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)+\\mathrm{n}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)+\\mathrm{n}\\left(\\mathrm{HA}^{2-}\\right)+\\mathrm{n}\\left(\\mathrm{A}^{3-}\\right)} \\times 100 \\% 。$\n\n[图1]\nA: $\\mathrm{Na}_{3} \\mathrm{~A}$ 在水中的第二步水解方程式为 $\\mathrm{H}_{2} \\mathrm{~A}^{-}+\\mathrm{H}_{2} \\mathrm{O}=\\mathrm{H}_{3} \\mathrm{O}^{+}+\\mathrm{HA}^{2-}$\nB: 当 $\\mathrm{V}=20$ 时, 溶液中: $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)<\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\nC: $\\mathrm{pH}=4.77$ 时, 溶液中: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)<\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+3 \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)+3 \\mathrm{c}\\left(\\mathrm{A}^{3-}\\right)$\nD: $\\mathrm{A}^{3-}+\\mathrm{H}_{2} \\mathrm{~A}^{-} \\rightleftharpoons 2 \\mathrm{HA}^{2-}$ 的 $\\mathrm{K}_{1}$ 小于 $\\mathrm{H}_{3} \\mathrm{~A}+\\mathrm{HA}^{2-} \\rightleftharpoons 2 \\mathrm{H}_{2} \\mathrm{~A}^{-}$的 $\\mathrm{K}_{2}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n柠檬酸是三元弱酸(简写为 $\\mathrm{H}_{3} \\mathrm{~A}$ )。常温下, 向 $10 \\mathrm{~mL} 0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{3} \\mathrm{~A}$ 溶液中滴加\n\n$\\mathrm{VmLpH}=13$ 的 $\\mathrm{NaOH}$ 溶液, 溶液的 $\\mathrm{pH}$ 与含 $\\mathrm{A}$ 粒子分布系数如图所示。下列叙述正确的是\n\n已知: $\\mathrm{H}_{3} \\mathrm{~A}$ 的分布系数表达式为\n\n$\\delta\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)=\\frac{\\mathrm{n}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)}{\\mathrm{n}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)+\\mathrm{n}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)+\\mathrm{n}\\left(\\mathrm{HA}^{2-}\\right)+\\mathrm{n}\\left(\\mathrm{A}^{3-}\\right)} \\times 100 \\% 。$\n\n[图1]\n\nA: $\\mathrm{Na}_{3} \\mathrm{~A}$ 在水中的第二步水解方程式为 $\\mathrm{H}_{2} \\mathrm{~A}^{-}+\\mathrm{H}_{2} \\mathrm{O}=\\mathrm{H}_{3} \\mathrm{O}^{+}+\\mathrm{HA}^{2-}$\nB: 当 $\\mathrm{V}=20$ 时, 溶液中: $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)<\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\nC: $\\mathrm{pH}=4.77$ 时, 溶液中: $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)<\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+3 \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)+3 \\mathrm{c}\\left(\\mathrm{A}^{3-}\\right)$\nD: $\\mathrm{A}^{3-}+\\mathrm{H}_{2} \\mathrm{~A}^{-} \\rightleftharpoons 2 \\mathrm{HA}^{2-}$ 的 $\\mathrm{K}_{1}$ 小于 $\\mathrm{H}_{3} \\mathrm{~A}+\\mathrm{HA}^{2-} \\rightleftharpoons 2 \\mathrm{H}_{2} \\mathrm{~A}^{-}$的 $\\mathrm{K}_{2}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_9ae9edb59ad378207fffg-112.jpg?height=405&width=917&top_left_y=2336&top_left_x=341"
],
"answer": [
"C"
],
"solution": "【详解】 A. $\\mathrm{Na}_{3} \\mathrm{~A}$ 在水中的第二步水解方程式为 $\\mathrm{HA}^{2-}+\\mathrm{H}_{2} \\mathrm{O}=\\mathrm{OH}^{-}+\\mathrm{H}_{2} \\mathrm{~A}^{-}$; 故 A 错误;\n\nB. $\\mathrm{pH}=13$ 的 $\\mathrm{NaOH}$ 溶液, $c\\left(\\mathrm{OH}^{-}\\right)=\\frac{10^{-14}}{10^{-13}}=0.1 \\mathrm{~mol} / \\mathrm{L}$, 当 $\\mathrm{V}=20$ 时, 恰好生成 $\\mathrm{Na}_{2} \\mathrm{HA}$,\n\n由图可知, (2)和(3)的交点, $\\delta\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)=\\delta\\left(\\mathrm{HA}^{2-}\\right), \\mathrm{pH}=4.77, \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-4.77} \\mathrm{~mol} / \\mathrm{L}$,\n\n$K_{a 2}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)=\\frac{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)}=c\\left(\\mathrm{H}^{+}\\right)=10^{-4.77} \\mathrm{~mol} / \\mathrm{L}$, 同理(3)和(4)的交点, $\\delta\\left(\\mathrm{HA}^{2-}\\right)=\\delta\\left(\\mathrm{A}^{3-}\\right)$,\n\n$K_{a 3}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)=10^{-6.39} \\mathrm{~mol} / \\mathrm{L}, \\quad \\mathrm{HA}^{2-}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{H}_{2} \\mathrm{~A}^{-}+\\mathrm{OH}^{-}$, 水解常数\n\n$K_{\\mathrm{h}}=\\frac{c\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right) c\\left(\\mathrm{OH}^{-}\\right)}{c\\left(\\mathrm{HA}^{2-}\\right)} \\times \\frac{c\\left(\\mathrm{H}^{+}\\right)}{c\\left(\\mathrm{H}^{+}\\right)}=\\frac{K_{\\mathrm{w}}}{K_{\\mathrm{a} 2}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right)}=\\frac{10^{-14}}{10^{-4.77}}=10^{-9.23}\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$, 故 B 错误;\n\nC. $\\mathrm{pH}=4.77$ 时, $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)$, 根据电荷守恒,\n\n$\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+3 \\mathrm{c}\\left(\\mathrm{A}^{3-}\\right)+2 \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+3 \\mathrm{c}\\left(\\mathrm{A}^{3-}\\right)+3 \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)$, 另 $\\left(\\mathrm{H}^{+}\\right)>\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$,\n\n所以 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)<\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+3 \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)+3 \\mathrm{c}\\left(\\mathrm{A}^{3-}\\right)$; 故 C 正确;\n\nD. $K_{1}=\\frac{\\mathrm{c}^{2}\\left(\\mathrm{HA}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right) \\mathrm{c}\\left(\\mathrm{A}^{3-}\\right)}=\\frac{K_{a 2}}{K_{a 3}}=\\frac{10^{-4.77}}{10^{-6.39}}=10^{1.62}, \\quad K_{1}=\\frac{\\mathrm{c}^{2}\\left(\\mathrm{H}_{2} \\mathrm{~A}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~A}\\right) \\mathrm{c}\\left(\\mathrm{HA}^{2-}\\right)}=\\frac{K_{a 1}}{K_{a 2}}=\\frac{10^{-3.15}}{10^{-4.77}}=10^{1.62}$, $K_{1}=K_{2}$, 故 D 错误;\n\n故答案选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1545",
"problem": "In quantum mechanics, the movement of $\\pi$ electrons along a neutral chain of conjugated carbon atoms may be modeled using the 'particle in a box' method. The energy of the $\\pi$ electrons is given by the following equation:\n\n$$\nE_{\\mathrm{n}}=\\frac{n^{2} h^{2}}{8 m L^{2}}\n$$\n\nwhere $n$ is the quantum number $(n=1,2,3, \\ldots), h$ is Planck's constant, $m$ is the mass of electron, and $L$ is the length of the box which may be approximated by $L=(k+2) \\times 1.40 \\AA$ ( $k$ being the number of conjugated double bonds along the carbon chain in the molecule). A photon with the appropriate wavelength $\\lambda$ may promote $a$ m electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). An approximate semi-empirical formula based on this model which relates the wavelength $\\lambda$, to the number of double bonds $k$ and constant $B$ is as follows:\n\n$$\n\\lambda(\\mathrm{nm})=B \\times \\frac{(k+2)^{2}}{(2 k+1)}\n$$Using this semi-empirical formula with $B=65.01 \\mathrm{~nm}$ calculate the value of the wavelength $\\lambda(\\mathrm{nm})$ for octatetraene $\\left(\\mathrm{CH}_{2}=\\mathrm{CH}-\\mathrm{CH}=\\mathrm{CH}-\\mathrm{CH}=\\mathrm{CH}-\\mathrm{CH}=\\mathrm{CH}_{2}\\right)$.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\nHere is some context information for this question, which might assist you in solving it:\nIn quantum mechanics, the movement of $\\pi$ electrons along a neutral chain of conjugated carbon atoms may be modeled using the 'particle in a box' method. The energy of the $\\pi$ electrons is given by the following equation:\n\n$$\nE_{\\mathrm{n}}=\\frac{n^{2} h^{2}}{8 m L^{2}}\n$$\n\nwhere $n$ is the quantum number $(n=1,2,3, \\ldots), h$ is Planck's constant, $m$ is the mass of electron, and $L$ is the length of the box which may be approximated by $L=(k+2) \\times 1.40 \\AA$ ( $k$ being the number of conjugated double bonds along the carbon chain in the molecule). A photon with the appropriate wavelength $\\lambda$ may promote $a$ m electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). An approximate semi-empirical formula based on this model which relates the wavelength $\\lambda$, to the number of double bonds $k$ and constant $B$ is as follows:\n\n$$\n\\lambda(\\mathrm{nm})=B \\times \\frac{(k+2)^{2}}{(2 k+1)}\n$$\n\nproblem:\nUsing this semi-empirical formula with $B=65.01 \\mathrm{~nm}$ calculate the value of the wavelength $\\lambda(\\mathrm{nm})$ for octatetraene $\\left(\\mathrm{CH}_{2}=\\mathrm{CH}-\\mathrm{CH}=\\mathrm{CH}-\\mathrm{CH}=\\mathrm{CH}-\\mathrm{CH}=\\mathrm{CH}_{2}\\right)$.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of nm, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"260"
],
"solution": "From the given semi-empirical formula, the wavelength $\\lambda(\\mathrm{nm})$ is calculated as follows:\n\n$$\n\\lambda(\\mathrm{nm})=65.01 \\times \\frac{(k+2)^{2}}{(2 k+1)}\n$$\n\nFor octatetraene molecule, with $k=4 ; \\quad \\lambda=260.0 \\mathrm{~nm}$",
"answer_type": "NV",
"unit": [
"nm"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_568",
"problem": "常温下, $\\mathrm{FeS}$ 和 $\\mathrm{ZnS}$ 的饱和溶液中, 金属阳离子 $\\left(\\mathrm{M}^{2+}\\right)$ 与 $\\mathrm{S}^{2-}$ 的物质的量浓度的负对\n\n[图1]\nA: 取一定量主要含 $\\mathrm{Fe}^{2+} 、 \\mathrm{Zn}^{2+}$ 的浓缩液, 向其中滴加 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液, 当 $\\mathrm{ZnS}$ 开始沉淀时, 溶液中的 $\\frac{c\\left(\\mathrm{Fe}^{2+}\\right)}{c\\left(\\mathrm{Zn}^{2+}\\right)}=10^{-12}$\nB: 上述 $\\mathrm{FeS}$ 饱和溶液中, 只含有 $\\mathrm{Fe}^{2+}$ 和 $\\mathrm{S}^{2+}$, 不含其他离子\nC: 常温下, 将足量 $\\mathrm{ZnS}$ 分别加入体积均为 $100 \\mathrm{~mL}$ 的 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液和 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{ZnSO}_{4}$ 溶液中, 充分搅拌后, $\\mathrm{ZnSO}_{4}$ 溶液中 $c\\left(\\mathrm{Zn}^{2+}\\right)$ 较 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中 $c\\left(\\mathrm{Zn}^{2+}\\right)$ 大\nD: 常温下, 向 $\\mathrm{ZnS}$ 饱和溶液中加入稀硝酸, 发生的反应为 $\\mathrm{S}^{2-}+2 \\mathrm{H}^{+}=\\mathrm{H}_{2} \\mathrm{~S} \\uparrow$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n常温下, $\\mathrm{FeS}$ 和 $\\mathrm{ZnS}$ 的饱和溶液中, 金属阳离子 $\\left(\\mathrm{M}^{2+}\\right)$ 与 $\\mathrm{S}^{2-}$ 的物质的量浓度的负对\n\n[图1]\n\nA: 取一定量主要含 $\\mathrm{Fe}^{2+} 、 \\mathrm{Zn}^{2+}$ 的浓缩液, 向其中滴加 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液, 当 $\\mathrm{ZnS}$ 开始沉淀时, 溶液中的 $\\frac{c\\left(\\mathrm{Fe}^{2+}\\right)}{c\\left(\\mathrm{Zn}^{2+}\\right)}=10^{-12}$\nB: 上述 $\\mathrm{FeS}$ 饱和溶液中, 只含有 $\\mathrm{Fe}^{2+}$ 和 $\\mathrm{S}^{2+}$, 不含其他离子\nC: 常温下, 将足量 $\\mathrm{ZnS}$ 分别加入体积均为 $100 \\mathrm{~mL}$ 的 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{Na}_{2} \\mathrm{~S}$ 溶液和 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{ZnSO}_{4}$ 溶液中, 充分搅拌后, $\\mathrm{ZnSO}_{4}$ 溶液中 $c\\left(\\mathrm{Zn}^{2+}\\right)$ 较 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中 $c\\left(\\mathrm{Zn}^{2+}\\right)$ 大\nD: 常温下, 向 $\\mathrm{ZnS}$ 饱和溶液中加入稀硝酸, 发生的反应为 $\\mathrm{S}^{2-}+2 \\mathrm{H}^{+}=\\mathrm{H}_{2} \\mathrm{~S} \\uparrow$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_9ae9edb59ad378207fffg-060.jpg?height=406&width=525&top_left_y=251&top_left_x=340"
],
"answer": [
"C"
],
"solution": "【分析】取点 $(18,0)$, 计算硫化亚铁的溶度积常数为 $10^{-18}$; 取点 $(24,0)$, 计算硫化锌的溶度积常数为 $10^{-24}$ 。硫化锌的溶度积常数小于硫化亚铁。\n\n【详解】A. 向含 $\\mathrm{Fe}^{2+} 、 \\mathrm{Zn}^{2+}$ 的浓缩液中滴加 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液, 硫化锌的溶度积小于硫化亚铁, 当 $\\mathrm{ZnS}$ 开始沉淀时, 由于原溶液中亚铁离子的浓度未知, 无法判断亚铁离子是否沉淀, 无法计算 $\\frac{c\\left(\\mathrm{Fe}^{2+}\\right)}{c\\left(\\mathrm{Zn}^{2+}\\right)}, \\mathrm{A}$ 错误;\n\nB. $\\mathrm{FeS}$ 饱和溶液中还含有水电离的氢离子等离子, $\\mathrm{B}$ 错误;\n\nC. $\\mathrm{ZnS}$ 溶于 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中, $c\\left(\\mathrm{~S}^{2-}\\right)=0.1 \\mathrm{~mol} / \\mathrm{L}$, 则 $c\\left(\\mathrm{Zn}^{2+}\\right)=\\frac{K \\mathrm{sp}}{c\\left(\\mathrm{~S}^{2-}\\right)}=10^{-23} \\mathrm{~mol} / \\mathrm{L} ; \\mathrm{ZnS}$ 溶于硫酸锌溶液中, $c\\left(\\mathrm{Zn}^{2+}\\right)=0.1 \\mathrm{~mol} / \\mathrm{L}, \\mathrm{ZnSO}_{4}$ 溶液中 $c\\left(\\mathrm{Zn}^{2+}\\right)$ 较 $\\mathrm{Na}_{2} \\mathrm{~S}$ 溶液中 $c\\left(\\mathrm{Zn}^{2+}\\right)$大, $\\mathrm{C}$ 正确;\n\nD. 硝酸具有强氧化性, $\\mathrm{ZnS}$ 会与硝酸反应生成硫酸锌, 不是硫化氢, D 错误;故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1578",
"problem": "The second law of thermodynamics is a fundamental law of science. In this problem we consider the thermodynamics of an ideal gas, phase transitions and chemical equilibrium.\n\n3.00 mol of $\\mathrm{CO}_{2}$ gas expands isothermically (in thermal contact with the surroundings; temperature $=15^{\\circ} \\mathrm{C}$ ) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are $10.0 \\mathrm{dm}^{3}$ and $30.0 \\mathrm{dm}^{3}$, respectively.\n\nFrom the data given in the phase diagram, calculate the molar enthalpy change of sublimation of $\\mathrm{CO}_{2}$. Write down the formula used.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nThe second law of thermodynamics is a fundamental law of science. In this problem we consider the thermodynamics of an ideal gas, phase transitions and chemical equilibrium.\n\n3.00 mol of $\\mathrm{CO}_{2}$ gas expands isothermically (in thermal contact with the surroundings; temperature $=15^{\\circ} \\mathrm{C}$ ) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are $10.0 \\mathrm{dm}^{3}$ and $30.0 \\mathrm{dm}^{3}$, respectively.\n\nFrom the data given in the phase diagram, calculate the molar enthalpy change of sublimation of $\\mathrm{CO}_{2}$. Write down the formula used.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $\\mathrm{~kJ} \\mathrm{~mol}^{-1}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"26.1"
],
"solution": "$\\ln \\frac{p_{2}}{p_{1}}=-\\frac{\\Delta H_{\\text {sub }}}{R}\\left(\\frac{1}{T_{1}}-\\frac{1}{T_{2}}\\right)$\n\n$\\Delta H_{\\text {sub }}=26.1 \\mathrm{~kJ} \\mathrm{~mol}^{-1}$",
"answer_type": "NV",
"unit": [
"$\\mathrm{~kJ} \\mathrm{~mol}^{-1}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_584",
"problem": "一定温度下, 向某二元弱酸 $\\mathrm{H}_{2} \\mathrm{~A}$ 溶液中加入 $\\mathrm{NaOH}$, 溶液中粒子浓度 $\\left(\\mathrm{H}_{2} \\mathrm{~A} 、 \\mathrm{HA}^{-}\\right.$、 $\\mathrm{A}^{2-} 、 \\mathrm{H}^{+} 、 \\mathrm{OH}^{-}$) 的负对数(用 $\\mathrm{pc}$ )表示, 与溶液 $\\mathrm{pH}$ 变化的关系如图, 下列说法正确的是\n\n[图1]\nA: 曲线 $\\mathrm{c}$ 是代表 HA-浓度的负对数\nB: $0.01 \\mathrm{~mol} / \\mathrm{LH}_{2} \\mathrm{~A}$ 的溶液, $\\mathrm{Ka}_{2}$ 的数量级为 $10^{-4}$\nC: $\\mathrm{Z}$ 点溶液中 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+2 \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\nD: $\\mathrm{X}$ 点对应的 $\\mathrm{pH}=-\\frac{1}{2}\\left(\\lg \\mathrm{K}_{\\mathrm{a} 1}+\\lg \\mathrm{K}_{\\mathrm{a} 2}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n一定温度下, 向某二元弱酸 $\\mathrm{H}_{2} \\mathrm{~A}$ 溶液中加入 $\\mathrm{NaOH}$, 溶液中粒子浓度 $\\left(\\mathrm{H}_{2} \\mathrm{~A} 、 \\mathrm{HA}^{-}\\right.$、 $\\mathrm{A}^{2-} 、 \\mathrm{H}^{+} 、 \\mathrm{OH}^{-}$) 的负对数(用 $\\mathrm{pc}$ )表示, 与溶液 $\\mathrm{pH}$ 变化的关系如图, 下列说法正确的是\n\n[图1]\n\nA: 曲线 $\\mathrm{c}$ 是代表 HA-浓度的负对数\nB: $0.01 \\mathrm{~mol} / \\mathrm{LH}_{2} \\mathrm{~A}$ 的溶液, $\\mathrm{Ka}_{2}$ 的数量级为 $10^{-4}$\nC: $\\mathrm{Z}$ 点溶液中 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)>2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+2 \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\nD: $\\mathrm{X}$ 点对应的 $\\mathrm{pH}=-\\frac{1}{2}\\left(\\lg \\mathrm{K}_{\\mathrm{a} 1}+\\lg \\mathrm{K}_{\\mathrm{a} 2}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-045.jpg?height=579&width=489&top_left_y=864&top_left_x=338",
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-045.jpg?height=52&width=1351&top_left_y=2367&top_left_x=338"
],
"answer": [
"D"
],
"solution": "【分析】根据图像分析, $\\mathrm{pc}$ 是指溶液中离子浓度的负对数, 所以 $\\mathrm{pc}$ 越大表示该离子浓度越小, 随着 $\\mathrm{NaOH}$ 的加入, 分别发生反应 $\\mathrm{H}_{2} \\mathrm{~A}+\\mathrm{NaOH}=\\mathrm{NaHA}+\\mathrm{H}_{2} \\mathrm{O} 、$\n\n$\\mathrm{NaHA}+\\mathrm{NaOH}=\\mathrm{Na}_{2} \\mathrm{~A}+\\mathrm{H}_{2} \\mathrm{O}$, 则溶液中离子浓度变化的曲线分别代表:曲线 $\\mathrm{a}$ 代表 $\\mathrm{H}_{2} \\mathrm{~A}$, b 代表 $\\mathrm{HA}^{-} , \\mathrm{c}$ 代表 $\\mathrm{A}^{2-}$, d 代表 $\\mathrm{H}^{+}$, e 代表 $\\mathrm{OH}^{-}$。\n\n【详解】A. 根据图像分析, 随着 $\\mathrm{NaOH}$ 的加入, 溶液中离子浓度变化的曲线分别代表:曲线 $\\mathrm{a}$ 代表 $\\mathrm{H}_{2} \\mathrm{~A}, \\mathrm{~b}$ 代表 $\\mathrm{HA}^{-}, \\mathrm{c}$ 代表 $\\mathrm{A}^{2-}, \\mathrm{d}$ 代表 $\\mathrm{H}^{+}, \\mathrm{e}$ 代表 $\\mathrm{OH}^{-}, \\mathrm{A}$ 错误;\n\n[图2]\n点 $\\mathrm{pH}$ 约为 4.2, $\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$近似为 $10^{-4.2}$, 故 $\\mathrm{Ka}_{2}$ 数量级为 $10^{-5}, \\mathrm{~B}$ 错误;\n\nC. 由电荷守恒, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$, 结合 $\\mathrm{Z}$ 点 $\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$得, $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+2 \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$, 则 $\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)<2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+2 \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right), \\mathrm{C}$ 错误;\n\nD. $\\mathrm{K}_{\\mathrm{a} 1} \\cdot \\mathrm{K}_{\\mathrm{a} 2}=\\frac{\\mathrm{c}^{2}\\left(\\mathrm{H}^{+}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)}$, 在 $\\mathrm{X}$ 点 $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)=\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)$ 则 $\\mathrm{K}_{\\mathrm{a} 1} \\cdot \\mathrm{K}_{\\mathrm{a} 2}=\\mathrm{c}^{2}\\left(\\mathrm{H}^{+}\\right)$两边取负对数 $\\mathrm{pH}=$ $=-\\frac{\\lg \\mathrm{K}_{\\mathrm{a} 1}+\\lg \\mathrm{K}_{\\mathrm{a} 2}}{2}, \\mathrm{D}$ 正确;\n\n故选 D。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_412",
"problem": "肼为二元弱碱, 在水中的电离方式与氨相似。常温下, 向一定浓度肼 $\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)$ 水溶液中通入 $\\mathrm{HCl}$, 保持溶液体积和温度不变, 测得 $\\mathrm{pOH}$ 与 $\\operatorname{lgX}\\left[\\mathrm{X}\\right.$ 为 $\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right) 、 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)$ 、\n\n$\\left.\\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}\\right]$的变化关系如图所示。下列说法正确的是\n\n[图1]\nA: 曲线 $M$ 表示- $\\lg \\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}$\nB: 常温下, $\\mathrm{K}_{\\mathrm{b} 1}\\left(\\mathrm{~N}_{2} \\mathrm{H}_{4}\\right)=1 \\times 10^{-6}$\nC: $a$ 点溶液中: $c\\left(\\mathrm{Cl}^{-}\\right)=c\\left(\\mathrm{~N}_{2} \\mathrm{H}_{4}\\right)+c\\left(\\mathrm{~N}_{2} \\mathrm{H}_{6}^{2+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)$\nD: b 点溶液中: $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)>3 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n肼为二元弱碱, 在水中的电离方式与氨相似。常温下, 向一定浓度肼 $\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)$ 水溶液中通入 $\\mathrm{HCl}$, 保持溶液体积和温度不变, 测得 $\\mathrm{pOH}$ 与 $\\operatorname{lgX}\\left[\\mathrm{X}\\right.$ 为 $\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right) 、 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)$ 、\n\n$\\left.\\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}\\right]$的变化关系如图所示。下列说法正确的是\n\n[图1]\n\nA: 曲线 $M$ 表示- $\\lg \\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}$\nB: 常温下, $\\mathrm{K}_{\\mathrm{b} 1}\\left(\\mathrm{~N}_{2} \\mathrm{H}_{4}\\right)=1 \\times 10^{-6}$\nC: $a$ 点溶液中: $c\\left(\\mathrm{Cl}^{-}\\right)=c\\left(\\mathrm{~N}_{2} \\mathrm{H}_{4}\\right)+c\\left(\\mathrm{~N}_{2} \\mathrm{H}_{6}^{2+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)$\nD: b 点溶液中: $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)>3 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-039.jpg?height=388&width=622&top_left_y=180&top_left_x=340",
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-039.jpg?height=160&width=1376&top_left_y=2076&top_left_x=343"
],
"answer": [
"B",
"D"
],
"solution": "【分析】肼为二元弱碱, 在水中的电离方式与氨相似, $\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}+\\mathrm{OH}^{-}$, 则 $\\mathrm{K}_{\\mathrm{b} 2}=\\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}, \\frac{\\mathrm{K}_{\\mathrm{b} 2}}{\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}=\\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}$, 则 $-\\lg \\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}=-\\lg K_{\\mathrm{b} 2}-\\mathrm{pOH}$, pOH 与 $-\\lg X$ 为线性关系, 则 $\\mathrm{L}$ 为 $-\\lg \\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}$曲线, 由点 $(15,0)$ 可知, $\\mathrm{K}_{\\mathrm{b} 2}=10^{-15}$; 常温下,向一定浓度肼 $\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)$ 水溶液中通入 $\\mathrm{HCl}$, 保持溶液体积和温度不变, 随着溶液酸性增强, $\\mathrm{N}_{2} \\mathrm{H}_{4}$ 的量不断减小、 $\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}$的量先增大后减小、 $\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}$ 的量增加, 可知 $\\mathrm{M} 、 \\mathrm{~N}$ 分别为 $-\\mathrm{lg}$ $c\\left(\\mathrm{~N}_{2} \\mathrm{H}_{4}\\right) 、-\\lg \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)$ 曲线;\n\n【详解】A. 由分析可知, 曲线 M 表示- $\\lg \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right), \\mathrm{A}$ 错误;\n\nB. 常温下, $\\mathrm{N}_{2} \\mathrm{H}_{4}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{N}_{2} \\mathrm{H}_{5}^{+}+\\mathrm{OH}^{-}$,\n\n[图2]\n\n知 $\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)=\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right) 、 \\mathrm{pOH}=10.5$, 结合分析可知, $\\frac{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)}{\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)}=\\frac{\\mathrm{K}_{\\mathrm{b} 2}}{\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}=10^{-4.5}$, 故\n\n$\\mathrm{K}_{\\mathrm{b} 1}=\\frac{10^{-10.5}}{10^{-4.5}}=10^{-6}$, B 正确;\n\nC. $a$ 点溶液中 $\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)=\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)$, 由电荷守恒可知,\n\n$\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)+2 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)$\n\n, 此时溶液显酸性, 则 $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)<\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 故 $\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)>\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{4}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right), \\mathrm{C}$ 错误\n\nD. b 点溶液显酸性, $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)<\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$, 且 $\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)$; 由电荷守恒可知,\n\n$$\n\\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)+2 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right)+\\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{5}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)+3 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}_{6}^{2+}\\right) \\text {, 则 } \\mathrm{c}\\left(\\mathrm{Cl}^{-}\\right)>3 \\mathrm{c}\\left(\\mathrm{N}_{2} \\mathrm{H}\\right.\n$$\n\n$\\left.{ }_{5}^{+}\\right)$, D 正确;\n\n故选 BD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1454",
"problem": "Acid-base equilibria in water\n\nA solution $(\\mathbf{X}$ ) contains two weak monoprotic acids (those having one acidic proton); HA with the acid dissociation constant of $K_{H A}=1.74 \\times 10^{-7}$, and $H B$ with the acid dissociation constant of $K_{H B}=1.34 \\times 10^{-7}$. The solution $\\mathbf{X}$ has a $\\mathrm{pH}$ of 3.75.Titration of $100 \\mathrm{~cm}^{3}$ of solution $\\mathbf{X}$ requires $100 \\mathrm{~cm}^{3}$ of $\\mathrm{NaOH}$ solution $\\left(c=0.220 \\mathrm{~mol} \\cdot \\mathrm{dm}^{-}{ }^{3}\\right)$ for completion. Calculate the initial (total) concentration $\\left(\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}\\right.$ ) of each acid in the solution $\\mathbf{X}$.\n\nUse reasonable approximations where appropriate. $\\left[K_{w}=1.00 \\times 10^{-14}\\right.$ at $\\left.298 \\mathrm{~K}\\right]$",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThis question involves multiple quantities to be determined.\nHere is some context information for this question, which might assist you in solving it:\nAcid-base equilibria in water\n\nA solution $(\\mathbf{X}$ ) contains two weak monoprotic acids (those having one acidic proton); HA with the acid dissociation constant of $K_{H A}=1.74 \\times 10^{-7}$, and $H B$ with the acid dissociation constant of $K_{H B}=1.34 \\times 10^{-7}$. The solution $\\mathbf{X}$ has a $\\mathrm{pH}$ of 3.75.\n\nproblem:\nTitration of $100 \\mathrm{~cm}^{3}$ of solution $\\mathbf{X}$ requires $100 \\mathrm{~cm}^{3}$ of $\\mathrm{NaOH}$ solution $\\left(c=0.220 \\mathrm{~mol} \\cdot \\mathrm{dm}^{-}{ }^{3}\\right)$ for completion. Calculate the initial (total) concentration $\\left(\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}\\right.$ ) of each acid in the solution $\\mathbf{X}$.\n\nUse reasonable approximations where appropriate. $\\left[K_{w}=1.00 \\times 10^{-14}\\right.$ at $\\left.298 \\mathrm{~K}\\right]$\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nYour final quantities should be output in the following order: [Calculate the initial (total) concentration of HA, Calculate the initial (total) concentration of HB].\nTheir units are, in order, [$\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}$, $\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}$], but units shouldn't be included in your concluded answer.\nTheir answer types are, in order, [numerical value, numerical value].\nPlease end your response with: \"The final answers are \\boxed{ANSWER}\", where ANSWER should be the sequence of your final answers, separated by commas, for example: 5, 7, 2.5",
"figure_urls": null,
"answer": [
"0.053",
"0.167"
],
"solution": "In solution $\\mathrm{X}, \\mathrm{H}^{+}$was produced from the reactions :\n\n$\\mathrm{HA} \\leftrightharpoons \\mathrm{H}^{+}+\\mathrm{A}^{-}$and $\\mathrm{HB} \\leftrightharpoons \\mathrm{H}^{+}+\\mathrm{B}^{-}$and $\\mathrm{H}_{2} \\mathrm{O} \\leftrightharpoons \\mathrm{H}^{+}+\\mathrm{OH}^{-}$\n\nThe positive and negative charges in an aqueous solution must balance. Thus the charge balance expression is:\n\n$\\left[\\mathrm{OH}^{-}\\right]+\\left[\\mathrm{A}^{-}\\right]+\\left[\\mathrm{B}^{-}\\right]=\\left[\\mathrm{H}^{+}\\right]$\n\nIn the acidic solution $(\\mathrm{pH}=3.75)$ the concentration of $\\left[\\mathrm{OH}^{-}\\right]$can be neglected, and thus:\n\n$\\left[\\mathrm{A}^{-}\\right]+\\left[\\mathrm{B}^{-}\\right]=\\left[\\mathrm{H}^{+}\\right]$\n\nFrom the equilibrium expression:\n\n$$\n\\frac{\\left[\\mathrm{H}^{+}\\right]\\left[\\mathrm{A}^{-}\\right]}{[\\mathrm{HA}]}=K_{\\mathrm{HA}}\n$$\n\nand $[\\mathrm{HA}]=[\\mathrm{HA}]_{\\mathrm{i}}-\\left[\\mathrm{A}^{-}\\right]$(where $[\\mathrm{HA}]_{\\mathrm{i}}$ is the initial concentration)\n\nThen $\\left[\\mathrm{H}^{+}\\right]\\left[\\mathrm{A}^{-}\\right]=K_{\\mathrm{HA}}[\\mathrm{HA}]=K_{\\mathrm{HA}}\\left([\\mathrm{HA}]_{\\mathrm{i}}-\\left[\\mathrm{A}^{-}\\right]\\right)$\n\nThus, the equilibrium concentration of $\\left[\\mathrm{A}^{-}\\right]$can be presented as:\n\n$$\n\\left[\\mathrm{A}^{-}\\right]=\\frac{K_{\\mathrm{HA}}[\\mathrm{HA}]_{\\mathrm{i}}}{K_{\\mathrm{HA}}+\\left[\\mathrm{H}^{+}\\right]}\n$$\n\nSimilarly, the equilibrium concentration of $\\left[\\mathrm{B}^{-}\\right]$can be presented as:\n\n$$\n\\left[\\mathrm{B}^{-}\\right]=\\frac{K_{\\mathrm{HB}}[\\mathrm{HB}]_{\\mathrm{i}}}{K_{\\mathrm{HB}}+\\left[\\mathrm{H}^{+}\\right]}\n$$\n\nSubstitute equilibrium concentrations of $\\left[\\mathrm{A}^{-}\\right]$and $\\left[\\mathrm{B}^{-}\\right]$into Eq.2:\n\n$$\n\\frac{K_{\\mathrm{HA}}[\\mathrm{HA}]_{\\mathrm{i}}}{K_{\\mathrm{HA}}+\\left[\\mathrm{H}^{+}\\right]}+\\frac{K_{\\mathrm{HB}}[\\mathrm{HB}]_{\\mathrm{i}}}{K_{\\mathrm{HB}}+\\left[\\mathrm{H}^{+}\\right]}=\\left[\\mathrm{H}^{+}\\right]\n$$\n\nSince $K_{H A}, K_{H B}$ are much smaller than $\\left[\\mathrm{H}^{+}\\right]$:\n\n$$\n\\frac{K_{\\mathrm{HA}}[\\mathrm{HA}]_{\\mathrm{i}}}{\\left[\\mathrm{H}^{+}\\right]}+\\frac{K_{\\mathrm{HB}}[\\mathrm{HB}]_{\\mathrm{i}}}{\\left[\\mathrm{H}^{+}\\right]}=\\left[\\mathrm{H}^{+}\\right]\n$$\n\nor $\\quad 1.74 \\times 10^{-7} \\times[\\mathrm{HA}]_{\\mathrm{i}}+1.34 \\times 10^{-7} \\times[\\mathrm{HB}]_{\\mathrm{i}}=\\left[\\mathrm{H}^{+}\\right]^{2}=\\left(10^{-3.75}\\right)^{2}$\n$1.74 \\times[\\mathrm{HA}]_{\\mathrm{i}}+1.34 \\times[\\mathrm{HB}]_{\\mathrm{i}}=0.316$\n\nNeutralization reactions:\n\n$\\mathrm{HA}+\\mathrm{NaOH} \\longrightarrow \\mathrm{NaA}+\\mathrm{H}_{2} \\mathrm{O}$\n$\\mathrm{HB}+\\mathrm{NaOH} \\longrightarrow \\mathrm{NaB}+\\mathrm{H}_{2} \\mathrm{O}$\n\n$n_{\\mathrm{HA}}+n_{\\mathrm{HB}}=n_{\\mathrm{NaOH}}$\n\nor $\\left([\\mathrm{HA}]_{\\mathrm{i}}+[\\mathrm{HB}]_{\\mathrm{i}}\\right) \\times 0.1 \\mathrm{dm}^{3}=0.220 \\mathrm{~mol} \\mathrm{dm}^{-3} \\times 0.1 \\mathrm{dm}^{3}$\n\n$[\\mathrm{HA}]_{\\mathrm{i}}+[\\mathrm{HB}]_{\\mathrm{i}}=0.220 \\mathrm{~mol} \\mathrm{dm}^{-3}$\n\nSolving Eq. 3 and Eq. 4 gives: $[\\mathrm{HA}]_{\\mathrm{i}}=0.053 \\mathrm{~mol} \\mathrm{dm}^{-3}$ and $[\\mathrm{HB}]_{\\mathrm{i}}=0.167 \\mathrm{~mol} \\mathrm{dm}^{-3}$\n\nConcentration of $\\mathrm{HA}=0.053 \\mathrm{~mol} \\mathrm{dm}^{-3}$\n\nConcentration of $\\mathrm{HB}=0.167 \\mathrm{~mol} \\mathrm{dm}^{-3}$",
"answer_type": "MPV",
"unit": [
"$\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}$",
"$\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}$"
],
"answer_sequence": [
"Calculate the initial (total) concentration of HA",
"Calculate the initial (total) concentration of HB"
],
"type_sequence": [
"NV",
"NV"
],
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_943",
"problem": "$25^{\\circ} \\mathrm{C}$ 时, $1 \\mathrm{~L} 0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的某二元酸 $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 溶液中各含 $\\mathrm{R}$ 物种的 pc-pOH 关系如图所示。图中 $\\mathrm{pc}$ 表示各含 $\\mathrm{R}$ 物种的浓度负对数 $[\\mathrm{pc}=-\\operatorname{lgc}, \\mathrm{pOH}=-\\operatorname{lgc}(\\mathrm{OH})]$ 。下列说法正确的是\n\n[图1]\nA: 曲线(3)表示 $\\mathrm{pc}\\left(\\mathrm{RO}_{3}^{2-}\\right)$ 随 $\\mathrm{pOH}$ 的变化\nB: $y$ 点的溶液中: $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)+2 \\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nC: $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 的 $\\mathrm{K}_{\\mathrm{a} 1}=1.0 \\times 10^{-6.7}$\nD: $2 \\mathrm{HRO}_{3}^{-} \\rightleftharpoons \\mathrm{H}_{2} \\mathrm{RO}_{3}+\\mathrm{RO}_{3}^{2-}$ 的平衡常数 $\\mathrm{K}=1.0 \\times 10^{-5.3}$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n$25^{\\circ} \\mathrm{C}$ 时, $1 \\mathrm{~L} 0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的某二元酸 $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 溶液中各含 $\\mathrm{R}$ 物种的 pc-pOH 关系如图所示。图中 $\\mathrm{pc}$ 表示各含 $\\mathrm{R}$ 物种的浓度负对数 $[\\mathrm{pc}=-\\operatorname{lgc}, \\mathrm{pOH}=-\\operatorname{lgc}(\\mathrm{OH})]$ 。下列说法正确的是\n\n[图1]\n\nA: 曲线(3)表示 $\\mathrm{pc}\\left(\\mathrm{RO}_{3}^{2-}\\right)$ 随 $\\mathrm{pOH}$ 的变化\nB: $y$ 点的溶液中: $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)+2 \\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nC: $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 的 $\\mathrm{K}_{\\mathrm{a} 1}=1.0 \\times 10^{-6.7}$\nD: $2 \\mathrm{HRO}_{3}^{-} \\rightleftharpoons \\mathrm{H}_{2} \\mathrm{RO}_{3}+\\mathrm{RO}_{3}^{2-}$ 的平衡常数 $\\mathrm{K}=1.0 \\times 10^{-5.3}$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_9ae9edb59ad378207fffg-102.jpg?height=782&width=808&top_left_y=1551&top_left_x=316"
],
"answer": [
"D"
],
"solution": "【分析】由题可知, $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 为二元弱酸, $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 在溶液中发生电离的方程式为\n\n$\\mathrm{H}_{2} \\mathrm{RO}_{3} \\rightleftharpoons \\mathrm{H}^{+}+\\mathrm{HRO}_{3}{ }^{-}, \\quad \\mathrm{HRO}_{3}{ }^{-} \\rightleftharpoons \\mathrm{RO}_{3}{ }^{2-}+\\mathrm{H}^{+}, \\mathrm{pOH}=-\\operatorname{lgc}\\left(\\mathrm{OH}^{-}\\right), \\mathrm{pc}=-\\operatorname{lgc}$, 则 $\\mathrm{pOH}$ 值越大, 溶液的碱性越弱, $\\mathrm{pc}$ 值越大, 粒子的浓度越小, $\\mathrm{pOH}=0$ 时, 溶液的碱性最强, 此时对于 $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 溶液, 各粒子浓度关系为 $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)<\\mathrm{c}\\left(\\mathrm{HRO}_{3}{ }^{-}\\right)<\\mathrm{c}\\left(\\mathrm{RO}_{3}{ }^{2-}\\right)$, 因此曲线 (1)为 $\\mathrm{pc}\\left(\\mathrm{RO}_{3}{ }^{2-}\\right)$ 随 $\\mathrm{pOH}$ 的变化, 曲线(2)为 $\\mathrm{pc}\\left(\\mathrm{HRO}_{3}{ }^{-}\\right)$随 $\\mathrm{pOH}$ 的变化, 曲线(3)为 $\\mathrm{pc}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)$ 随 $\\mathrm{pOH}$的变化\n\n【详解】A. 根据以上分析可知, 曲线 (3)表示 $\\mathrm{pc}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)$ 随 $\\mathrm{pOH}$ 的变化, $\\mathrm{A}$ 错误;\n\nB. $y$ 点的溶液, $\\mathrm{pOH}=10$ 即 $\\mathrm{pH}=4$, 由图可知此时, $\\mathrm{pc}\\left(\\mathrm{RO}_{3}^{2-}\\right)=\\mathrm{pc}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)$, 即 $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)=\\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)$, 而 $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)+\\mathrm{c}\\left(\\mathrm{HRO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$, 故 $\\mathrm{c}\\left(\\mathrm{HRO}_{3}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)=0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}, \\mathrm{~B}$ 错误;\n\nC. $\\mathrm{H}_{2} \\mathrm{RO}_{3}$ 为二元弱酸, 发生电离: $\\mathrm{H}_{2} \\mathrm{RO}_{3} \\rightleftharpoons \\mathrm{H}^{+}+\\mathrm{HRO}_{3}{ }^{-}, \\mathrm{HRO}_{3}{ }^{-} \\rightleftharpoons \\mathrm{RO}_{3}{ }^{2-}+\\mathrm{H}^{+}$, 曲线(1)为 $\\mathrm{pc}\\left(\\mathrm{RO}_{3}{ }^{2-}\\right)$ 随 $\\mathrm{pOH}$ 的变化, 曲线(2)为 $\\left.\\mathrm{pc}\\left(\\mathrm{HRO}_{3}\\right)^{-}\\right)$随 $\\mathrm{pOH}$ 的变化, 曲线(3)为 $\\mathrm{pc}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)$, $\\mathrm{z}$ 表示 $\\mathrm{pc}\\left(\\mathrm{HRO}_{3}^{-}\\right)=\\mathrm{pc}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right), \\quad \\mathrm{K}_{\\mathrm{al}}=\\frac{\\mathrm{c}\\left(\\mathrm{HPO}_{3}^{-}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{PO}_{3}\\right)}=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right), \\quad \\mathrm{pOH}=12.6$, $\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=10^{-12.6} \\mathrm{~mol} / \\mathrm{L}, \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-1.4} \\mathrm{~mol} \\cdot \\mathrm{L}$, 所以 $\\mathrm{K}_{\\mathrm{a} 1}=10^{-1.4} ; \\mathrm{C}$ 错误;\n\nD. 由 $\\mathrm{HRO}_{3}{ }^{-} \\rightleftharpoons \\mathrm{RO}_{3}{ }^{2-}+\\mathrm{H}^{+}$减去 $\\mathrm{H}_{2} \\mathrm{RO}_{3} \\rightleftharpoons \\mathrm{H}^{+}+\\mathrm{HRO}_{3}{ }^{-}$, 可得 $2 \\mathrm{HRO}_{3}^{-} \\rightleftharpoons \\mathrm{H}_{2} \\mathrm{RO}_{3}+\\mathrm{RO}_{3}^{2-}$,其平衡常数 $\\mathrm{K}=\\frac{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)}{\\mathrm{c}^{2}\\left(\\mathrm{HRO}_{3}^{-}\\right)}, \\mathrm{z}$ 点时, $\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{RO}_{3}\\right)=\\mathrm{c}\\left(\\mathrm{HRO}_{3}^{-}\\right)$, 此时 $\\mathrm{pOH}=12.6$, 则 $c\\left(\\mathrm{OH}^{-}\\right)=10^{-12.6} \\mathrm{~mol} / \\mathrm{L}, \\quad c\\left(\\mathrm{H}^{+}\\right)=\\frac{\\mathrm{K}_{\\mathrm{w}}}{\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}=\\frac{10^{-14}}{10^{-12.6}} \\mathrm{~mol} / \\mathrm{L}=10^{-1.4} \\mathrm{~mol} / \\mathrm{L}$, $\\frac{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)}=\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=10^{-1.4}, \\mathrm{x}$ 点时, $\\mathrm{c}\\left(\\mathrm{RO}_{3}^{2-}\\right)=\\mathrm{c}\\left(\\mathrm{HRO}_{3}^{-}\\right)$, 此时 $\\mathrm{pOH}=7.3$, 则 $c\\left(\\mathrm{OH}^{-}\\right)=10^{-7.3} \\mathrm{~mol} / \\mathrm{L}, \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\frac{\\mathrm{K}_{\\mathrm{w}}}{\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}=\\frac{10^{-14}}{10^{-7.3}} \\mathrm{~mol} / \\mathrm{L}=10^{-6.7} \\mathrm{~mol} / \\mathrm{L}$, 则平衡常数 $\\mathrm{K}=\\frac{\\mathrm{K}_{\\mathrm{a} 2}}{\\mathrm{~K}_{\\mathrm{a} 1}}=\\frac{10^{-6.7}}{10^{-1.4}}=10^{-5.3}$, D 正确故答案为 D。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_903",
"problem": "已知常温下水溶液中 $\\mathrm{H}_{2} \\mathrm{~A} 、 \\mathrm{HA}^{-} 、 \\mathrm{~A}^{2-} 、 \\mathrm{HB} 、 \\mathrm{~B}^{-}$的分布分数 $\\delta$ [如 $\\delta\\left(\\mathrm{A}^{2-}\\right)=\\frac{\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)+\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}$ 表示 $\\mathrm{A}^{2-}$ 的分布分数]随 $\\mathrm{pH}$ 变化曲线如图 1; 溶液中 $-\\lg \\mathrm{c}\\left(\\mathrm{Ca}^{2+}\\right)$ 和 $-\\lg \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)$ 关系如图 2。用 $0.0100 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~A}$ 溶液滴定 $20.00 \\mathrm{~mL} 0.0100 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{CaB}_{2}$ 溶液, 下列说法错误的是\n\n[图1]\n\n图1\n\n[图2]\n\n图2\nA: 曲线 $\\mathrm{a}$ 表示 $\\delta\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)$\nB: 酸性: $\\mathrm{HA}^{-}>\\mathrm{HB}$\nC: 滴定过程中溶液会有 $\\mathrm{CaA}$ 沉淀, $\\mathrm{K}_{\\mathrm{sp}}(\\mathrm{CaA})=10^{-10.4}$\nD: 滴定过程中始终存在: $\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}(\\mathrm{HB})+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n已知常温下水溶液中 $\\mathrm{H}_{2} \\mathrm{~A} 、 \\mathrm{HA}^{-} 、 \\mathrm{~A}^{2-} 、 \\mathrm{HB} 、 \\mathrm{~B}^{-}$的分布分数 $\\delta$ [如 $\\delta\\left(\\mathrm{A}^{2-}\\right)=\\frac{\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)+\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}$ 表示 $\\mathrm{A}^{2-}$ 的分布分数]随 $\\mathrm{pH}$ 变化曲线如图 1; 溶液中 $-\\lg \\mathrm{c}\\left(\\mathrm{Ca}^{2+}\\right)$ 和 $-\\lg \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)$ 关系如图 2。用 $0.0100 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{H}_{2} \\mathrm{~A}$ 溶液滴定 $20.00 \\mathrm{~mL} 0.0100 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{CaB}_{2}$ 溶液, 下列说法错误的是\n\n[图1]\n\n图1\n\n[图2]\n\n图2\n\nA: 曲线 $\\mathrm{a}$ 表示 $\\delta\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)$\nB: 酸性: $\\mathrm{HA}^{-}>\\mathrm{HB}$\nC: 滴定过程中溶液会有 $\\mathrm{CaA}$ 沉淀, $\\mathrm{K}_{\\mathrm{sp}}(\\mathrm{CaA})=10^{-10.4}$\nD: 滴定过程中始终存在: $\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)=\\mathrm{c}(\\mathrm{HB})+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_9ae9edb59ad378207fffg-054.jpg?height=385&width=786&top_left_y=2012&top_left_x=338",
"https://cdn.mathpix.com/cropped/2024_03_31_9ae9edb59ad378207fffg-054.jpg?height=406&width=600&top_left_y=2010&top_left_x=1139"
],
"answer": [
"D"
],
"solution": "【分析】 $\\mathrm{H}_{2} \\mathrm{~A}$ 为二元弱酸, $\\mathrm{H}_{2} \\mathrm{~A} \\rightleftharpoons \\mathrm{HA}^{-}+\\mathrm{H}^{+} 、 \\mathrm{HA}^{-} \\rightleftharpoons \\mathrm{A}^{2-}+\\mathrm{H}^{+}$, 酸性越强, $\\mathrm{H}_{2} \\mathrm{~A}$ 越多,碱性越强, $\\mathrm{HA}^{-}$先增多后减少, $\\mathrm{A}^{2-}$ 越多, 所以 $\\mathrm{a} 、 \\mathrm{~b} 、 \\mathrm{c}$ 为水溶液中含 $\\mathrm{A}$ 微粒随 $\\mathrm{pH}$ 变化的分布分数曲线, 曲线 $\\mathrm{a}$ 代表 $\\mathrm{H}_{2} \\mathrm{~A}$, 曲线 $\\mathrm{b}$ 代表 $\\mathrm{HA}^{-}$, 曲线 $\\mathrm{c}$ 代表 $\\mathrm{A}^{2-}$; $\\mathrm{HB}$ 为一元弱酸, $\\mathrm{HB} \\rightleftharpoons \\mathrm{H}^{+}+\\mathrm{B}^{-}$, 酸性越强 $\\mathrm{HB}$ 越多, 碱性越强 $\\mathrm{B}^{-}$越多, 所以 $\\mathrm{d} 、 \\mathrm{e}$ 为水溶液中含 $\\mathrm{B}$ 微粒随 $\\mathrm{pH}$ 变化的分布分数曲线, 曲线 $\\mathrm{d}$ 为 $\\mathrm{HB}$, 曲线 $\\mathrm{e}$ 为 $\\mathrm{B}^{-}$。由图 2 中点 (5.2,\n\n5.2), 可计算 $\\mathrm{K}_{\\mathrm{sp}}(\\mathrm{CaA})=\\mathrm{c}\\left(\\mathrm{Ca}^{2+}\\right) \\times \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)=10^{-5.2} \\times 10^{-5.2}=10^{-10.4}$ 。\n\n【详解】A. 由分析可知, 曲线 $\\mathrm{a}$ 代表 $\\delta\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)$, A 正确;\n\nB. 根据图 1 中 $\\mathrm{b}$ 与 $\\mathrm{c}$ 的交点有 $\\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)=\\mathrm{c}\\left(H A^{-}\\right), \\mathrm{pH}=6.7$, 可计算 $\\mathrm{K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{~A}\\right)=$ $\\frac{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\times \\mathrm{c}\\left(\\mathrm{A}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{HA}^{-}\\right)}=10^{-6.7}$, 同理, $\\mathrm{d}$ 与 $\\mathrm{e}$ 的交点有 $\\mathrm{c}\\left(\\mathrm{B}^{-}\\right)=\\mathrm{c}(H B), \\mathrm{pH}=8.3$, 可计算 $\\mathrm{K}_{\\mathrm{a}}(\\mathrm{HB})=10^{-8.3}$, 酸性: $H A^{-}>\\mathrm{HB}, \\mathrm{B}$ 正确;\n\nC. $\\mathrm{H}_{2} \\mathrm{~A}$ 的酸性 $H A^{-}, H A^{-}$的酸性大于 $\\mathrm{HB}$, 则 $\\mathrm{H}_{2} \\mathrm{~A}$ 的酸性大于 $\\mathrm{HB}$, 用 $0.0100 \\mathrm{~mol} \\cdot \\mathrm{L}-1$ $\\mathrm{H}_{2} \\mathrm{~A}$ 溶液滴定 $20.00 \\mathrm{~mL} 0.0100 \\mathrm{~mol} \\cdot \\mathrm{L}-1 C a B_{2}$ 溶液, 发生反应: $\\mathrm{H}_{2} \\mathrm{~A}+C a B_{2}=2 H B+C a A \\downarrow$,滴定过程中有 $\\mathrm{CaA}$ 沉淀产生, 由分析可知, $\\mathrm{K}_{\\mathrm{sp}}(\\mathrm{CaA})=10^{-10.4}, \\mathrm{C}$ 正确;\n\nD. 若滴定过程中不产生沉淀, 则根据电荷守恒:\n\n$c\\left(\\mathrm{HA}^{-}\\right)+2 c\\left(\\mathrm{~A}^{2-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{~B}^{-}\\right)=c\\left(\\mathrm{H}^{+}\\right)+2 c\\left(\\mathrm{Ca}^{2+}\\right)$, 根据物料守恒:\n\n$c(\\mathrm{HB})+c\\left(\\mathrm{~B}^{-}\\right)=2 c\\left(\\mathrm{Ca}^{2+}\\right)$, 则 $c\\left(\\mathrm{HA}^{-}\\right)+2 c\\left(\\mathrm{~A}^{2-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)=c\\left(\\mathrm{H}^{+}\\right)+c(\\mathrm{HB})$, 但随着 $\\mathrm{H}_{2} \\mathrm{~A}$ 溶\n\n液的滴入, $\\mathrm{Ca}^{2+}$ 产生 $\\mathrm{CaA}$ 沉淀而析出, 溶液中 $c(\\mathrm{HB})+c\\left(\\mathrm{~B}^{-}\\right) \\neq 2 c\\left(\\mathrm{Ca}^{2+}\\right)$, 则\n\n$c\\left(\\mathrm{HA}^{-}\\right)+2 c\\left(\\mathrm{~A}^{2-}\\right)+c\\left(\\mathrm{OH}^{-}\\right) \\neq c\\left(\\mathrm{H}^{+}\\right)+c(\\mathrm{HB}), \\quad \\mathrm{D}$ 错误;\n\n故选: D。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1406",
"problem": "When the fresh-water rivers that run into the Chesapeake Bay flood after heavy rains in the spring, the increase in fresh water in the Bay causes a decrease in the salinity in the areas where oysters grow. The minimum concentration of chloride ions needed in oyster beds for normal growth is $8 \\mathrm{ppm}\\left(8 \\mathrm{mg} \\mathrm{dm}^{-3}\\right)$.\n\nAfter one week of heavy rain, the following analysis is done on water from the bay. To a $50.00 \\mathrm{~cm}^{3}$ sample of bay water a few drops of a $\\mathrm{K}_{2} \\mathrm{CrO}_{4}$ solution are added. The sample is then titrated with $16.16 \\mathrm{~cm}^{3}$ of a $0.00164 \\mathrm{M} \\mathrm{AgNO}_{3}$ solution. After $\\mathrm{AgNO}_{3}$ solution has been added to the sample a bright red-orange precipitate forms.\n\nThe chloride concentration in another $50.00 \\mathrm{~cm}^{3}$ sample of bay water was determined by the Volhard method. In this method an excess of $\\mathrm{AgNO}_{3}$ is added to the sample. The excess $\\mathrm{Ag}^{+}$is titrated with standardized $\\mathrm{KSCN}$, forming a precipitate of $\\mathrm{AgSCN}$. The endpoint is signalled by the formation of the reddish-brown $\\mathrm{FeSCN}^{2+}$ complex that forms when $\\mathrm{Ag}^{+}$is depleted. If the excess $\\mathrm{Ag}^{+}$from the addition of $50.00 \\mathrm{~cm}^{3}$ of $0.00129 \\mathrm{M} \\mathrm{AgNO}_{3}$ to the water sample required $27.46 \\mathrm{~cm}^{3}$ of $1.4110^{-3}$ M KSCN for titration, calculate the concentration of chloride in the bay water sample.\n\nIn natural waters with much higher concentration of $\\mathrm{Cl}^{-}$, the $\\mathrm{Cl}^{-}$can be determined gravimetrically by precipitating the $\\mathrm{Cl}^{-}$as $\\mathrm{AgCl}$. A complicating feature of this method is the fact that $\\mathrm{AgCl}$ is susceptible to photodecomposition as shown by the reaction:\n\n$$\n\\mathrm{AgCl}(\\mathrm{s}) \\rightarrow \\mathrm{Ag}(\\mathrm{s})+1 / 2 \\mathrm{Cl}_{2}(\\mathrm{~g})\n$$\n\nFurthermore, if this photodecomposition occurs in the presence of excess $\\mathrm{Ag}^{+}$, the following additional reaction occurs:\n\n$3 \\mathrm{Cl}_{2}(\\mathrm{~g})+3 \\mathrm{H}_{2} \\mathrm{O}+5 \\mathrm{Ag}^{+} \\rightarrow 5 \\mathrm{AgCl}+\\mathrm{ClO}_{3}{ }^{-}+6 \\mathrm{H}^{+}$\n\nIf $0.010 \\mathrm{~g}$ of a $3.000 \\mathrm{~g}$ sample of $\\mathrm{AgCl}$ contaminated with excess $\\mathrm{Ag}^{+}$undergoes photodecomposition by the above equations",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\n\nproblem:\nWhen the fresh-water rivers that run into the Chesapeake Bay flood after heavy rains in the spring, the increase in fresh water in the Bay causes a decrease in the salinity in the areas where oysters grow. The minimum concentration of chloride ions needed in oyster beds for normal growth is $8 \\mathrm{ppm}\\left(8 \\mathrm{mg} \\mathrm{dm}^{-3}\\right)$.\n\nAfter one week of heavy rain, the following analysis is done on water from the bay. To a $50.00 \\mathrm{~cm}^{3}$ sample of bay water a few drops of a $\\mathrm{K}_{2} \\mathrm{CrO}_{4}$ solution are added. The sample is then titrated with $16.16 \\mathrm{~cm}^{3}$ of a $0.00164 \\mathrm{M} \\mathrm{AgNO}_{3}$ solution. After $\\mathrm{AgNO}_{3}$ solution has been added to the sample a bright red-orange precipitate forms.\n\nThe chloride concentration in another $50.00 \\mathrm{~cm}^{3}$ sample of bay water was determined by the Volhard method. In this method an excess of $\\mathrm{AgNO}_{3}$ is added to the sample. The excess $\\mathrm{Ag}^{+}$is titrated with standardized $\\mathrm{KSCN}$, forming a precipitate of $\\mathrm{AgSCN}$. The endpoint is signalled by the formation of the reddish-brown $\\mathrm{FeSCN}^{2+}$ complex that forms when $\\mathrm{Ag}^{+}$is depleted. If the excess $\\mathrm{Ag}^{+}$from the addition of $50.00 \\mathrm{~cm}^{3}$ of $0.00129 \\mathrm{M} \\mathrm{AgNO}_{3}$ to the water sample required $27.46 \\mathrm{~cm}^{3}$ of $1.4110^{-3}$ M KSCN for titration, calculate the concentration of chloride in the bay water sample.\n\nIn natural waters with much higher concentration of $\\mathrm{Cl}^{-}$, the $\\mathrm{Cl}^{-}$can be determined gravimetrically by precipitating the $\\mathrm{Cl}^{-}$as $\\mathrm{AgCl}$. A complicating feature of this method is the fact that $\\mathrm{AgCl}$ is susceptible to photodecomposition as shown by the reaction:\n\n$$\n\\mathrm{AgCl}(\\mathrm{s}) \\rightarrow \\mathrm{Ag}(\\mathrm{s})+1 / 2 \\mathrm{Cl}_{2}(\\mathrm{~g})\n$$\n\nFurthermore, if this photodecomposition occurs in the presence of excess $\\mathrm{Ag}^{+}$, the following additional reaction occurs:\n\n$3 \\mathrm{Cl}_{2}(\\mathrm{~g})+3 \\mathrm{H}_{2} \\mathrm{O}+5 \\mathrm{Ag}^{+} \\rightarrow 5 \\mathrm{AgCl}+\\mathrm{ClO}_{3}{ }^{-}+6 \\mathrm{H}^{+}$\n\nIf $0.010 \\mathrm{~g}$ of a $3.000 \\mathrm{~g}$ sample of $\\mathrm{AgCl}$ contaminated with excess $\\mathrm{Ag}^{+}$undergoes photodecomposition by the above equations\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nRemember, your answer should be calculated in the unit of $ \\mathrm{~mol} \\mathrm{dm}^{-3}$, but when concluding your final answer, do not include the unit.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value without any units.",
"figure_urls": null,
"answer": [
"$5.16 \\times 10^{-4}$"
],
"solution": "$\\mathrm{~mol} \\mathrm{Ag}$ added: $n\\left(\\mathrm{Ag}^{+}\\right)_{\\mathrm{ad}}=0.05 \\mathrm{dm}^{3} \\times 0.00129 \\mathrm{~mol} \\mathrm{dm}^{-3}=6.45 \\times 10^{-5} \\mathrm{~mol}$ mol Ag left over: $n\\left(\\mathrm{Ag}^{+}\\right)_{\\text {left }}=0.02746 \\mathrm{dm}^{3} \\times 0.0141 \\mathrm{~mol} \\mathrm{dm}^{-3}=3.87 \\times 10^{-5} \\mathrm{~mol}$ mol $\\mathrm{Cl}^{-}$in sample:\n\n$$\n\\begin{aligned}\n& n(\\mathrm{Cl})=n\\left(\\mathrm{Ag}^{+}\\right)_{\\mathrm{ad}}-n\\left(\\mathrm{Ag}^{+}\\right)_{\\text {left }}=\\left(6.45 \\times 10^{-5} \\mathrm{~mol}\\right)-\\left(3.87 \\times 10^{-5} \\mathrm{~mol}\\right)=2.58 \\times 10^{-5} \\mathrm{~mol} \\\\\n& \\Rightarrow \\quad[\\mathrm{Cl}]=\\frac{2.58 \\times 10^{-5}}{0.050}=5.16 \\times 10^{-4} \\mathrm{~mol} \\mathrm{dm}^{-3}\n\\end{aligned}\n$$",
"answer_type": "NV",
"unit": [
"$ \\mathrm{~mol} \\mathrm{dm}^{-3}$"
],
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_1575",
"problem": "Acid-base equilibria in water\n\nA solution $(\\mathbf{X}$ ) contains two weak monoprotic acids (those having one acidic proton); HA with the acid dissociation constant of $K_{H A}=1.74 \\times 10^{-7}$, and $H B$ with the acid dissociation constant of $K_{H B}=1.34 \\times 10^{-7}$. The solution $\\mathbf{X}$ has a $\\mathrm{pH}$ of 3.75.Calculate the $\\mathrm{pH}$ of the solution $\\mathbf{Y}$ in which the concentration of $\\mathrm{NaA}$ initially was $6.00 \\times 10^{-2}$ $\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}$ and that of $\\mathrm{NaB}$ $4.00 \\times 10^{-2} \\mathrm{~mol} \\cdot \\mathrm{dm}^{-3}$.",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThe answer to this question is a numerical value.\nHere is some context information for this question, which might assist you in solving it:\nAcid-base equilibria in water\n\nA solution $(\\mathbf{X}$ ) contains two weak monoprotic acids (those having one acidic proton); HA with the acid dissociation constant of $K_{H A}=1.74 \\times 10^{-7}$, and $H B$ with the acid dissociation constant of $K_{H B}=1.34 \\times 10^{-7}$. The solution $\\mathbf{X}$ has a $\\mathrm{pH}$ of 3.75.\n\nproblem:\nCalculate the $\\mathrm{pH}$ of the solution $\\mathbf{Y}$ in which the concentration of $\\mathrm{NaA}$ initially was $6.00 \\times 10^{-2}$ $\\mathrm{mol} \\cdot \\mathrm{dm}^{-3}$ and that of $\\mathrm{NaB}$ $4.00 \\times 10^{-2} \\mathrm{~mol} \\cdot \\mathrm{dm}^{-3}$.\n\nAll mathematical formulas and symbols you output should be represented with LaTeX!\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER is the numerical value.",
"figure_urls": null,
"answer": [
"9.90"
],
"solution": "Solution $\\mathrm{Y}$ contains $\\mathrm{NaA}\\left(0.06 \\mathrm{~mol} \\mathrm{dm}^{-3}\\right)$ and $\\mathrm{NaB}\\left(0.04 \\mathrm{~mol} \\mathrm{dm}^{-3}\\right)$. The solution is basic since $\\mathrm{OH}^{-}$is produced from the reactions:\n\n$\\begin{array}{ll}\\mathrm{NaA}+\\mathrm{H}_{2} \\mathrm{O} \\leftrightharpoons \\mathrm{HA}+\\mathrm{OH}^{-} & K_{b, A}=K_{w} / K_{H A}=5.75 \\times 10^{-8} \\\\ \\mathrm{NaB}+\\mathrm{H}_{2} \\mathrm{O} \\leftrightharpoons \\mathrm{HB}+\\mathrm{OH}^{-} & K_{b, B}=K_{w} / K_{H B}=7.46 \\times 10^{-8} \\\\ \\mathrm{H}_{2} \\mathrm{O} \\leftrightharpoons \\mathrm{H}^{+}+\\mathrm{OH}^{-} & K_{w}=1.0010^{-14}\\end{array}$\n\nThen\n\n$\\left[\\mathrm{H}^{+}\\right]+[\\mathrm{HA}]+[\\mathrm{HB}]=\\left[\\mathrm{OH}^{-}\\right]$\n\nIn the basic solution $\\left[\\mathrm{H}^{+}\\right]$can be neglected, and thus:\n\n$[\\mathrm{HA}]+[\\mathrm{HB}]=\\left[\\mathrm{OH}^{-}\\right]$\n\nFrom equilibrium expression:\n\n$$\n\\frac{\\left[\\mathrm{OH}^{-}\\right][\\mathrm{HA}]}{\\left[\\mathrm{A}^{-}\\right]}=K_{b, \\mathrm{~A}}\n$$\n\nand $\\quad\\left[\\mathrm{A}^{-}\\right]=0.06-[\\mathrm{HA}]$\n\nThus, the equilibrium concentration of HA can be presented as:\n\n$$\n[\\mathrm{HA}]=\\frac{K_{b, \\mathrm{~A}} \\times 0.06}{K_{b, A}+\\left[\\mathrm{OH}^{-}\\right]}\n$$\n\nSimilarly, the equilibrium concentration of HB can be presented as:\n\n$$\n[\\mathrm{HB}]=\\frac{K_{\\mathrm{b}, \\mathrm{B}} \\times 0.04}{K_{b, \\mathrm{~B}}+\\left[\\mathrm{OH}^{-}\\right]}\n$$\n\nSubstitution of equilibrium concentrations of HA and HB into Eq. 6:\n\n$$\n\\frac{K_{b, \\mathrm{~A}} \\times 0.06}{K_{b, \\mathrm{~A}}+\\left[\\mathrm{OH}^{-}\\right]}+\\frac{K_{\\mathrm{b}, \\mathrm{B}} \\times 0.04}{K_{b, \\mathrm{~B}}+\\left[\\mathrm{OH}^{-}\\right]}=\\left[\\mathrm{OH}^{-}\\right]\n$$\n\nWhen assumed that $K_{b, A}$ and $K_{b, B}$ are much smaller than $\\left[\\mathrm{OH}^{-}\\right]\\left({ }^{*}\\right)$, then:\n\n$\\left[\\mathrm{OH}^{-}\\right]^{2}=5.75 \\times 10^{-8} \\times 0.06+7.46 \\times 10^{-8} \\times 0.04$\n\n$\\left[\\mathrm{OH}^{-}\\right]=8.02 \\times 10^{-5}$ (the assumption ( ${ }^{*}$ ) is justified)\n\nand $\\mathrm{pOH}=4.10$ and $\\mathrm{pH}=9.90$",
"answer_type": "NV",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_649",
"problem": "随着各地“限牌”政策的推出, 电动汽车成为汽车届的“新宠”。特斯拉全电动汽车使用的是钴酸锂 $\\left(\\mathrm{LiCoO}_{2}\\right)$ 电池, 其工作原理如图, $\\mathrm{A}$ 极材料是金属锂和碳的复合材料(碳作为金属锂的载体), 电解质为一种能传导 $\\mathrm{Li}^{+}$的高分子材料, 隔膜只允许 $\\mathrm{Li}^{+}$通过,电池反应式 $\\mathrm{Li}_{x} \\mathrm{C}_{6}+\\mathrm{Li}_{1-x} \\mathrm{CoO}_{2} \\xlongequal[\\text { 充电 }]{\\text { 放电 }} \\mathrm{C}_{6}+\\mathrm{LiCoO}_{2}$ 。下列说法不正确的是\n\n[图1]\nA: 充电时 $\\mathrm{Li}^{+}$从右边流向左边\nB: 放电时,正极锂的化合价未发生改变\nC: 充电时 $\\mathrm{B}$ 作阳极, 该电极放电时的电极反应式为: $\\mathrm{Li}_{1-\\mathrm{x}} \\mathrm{CoO}_{2}+\\mathrm{xLi}^{+}+\\mathrm{xe}^{-}=\\mathrm{LiCoO}_{2}$\nD: 废旧钴酸锂 $\\left(\\mathrm{LiCoO}_{2}\\right)$ 电池进行“放电处理”让 $\\mathrm{Li}^{+}$进入石墨中而有利于回收\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n随着各地“限牌”政策的推出, 电动汽车成为汽车届的“新宠”。特斯拉全电动汽车使用的是钴酸锂 $\\left(\\mathrm{LiCoO}_{2}\\right)$ 电池, 其工作原理如图, $\\mathrm{A}$ 极材料是金属锂和碳的复合材料(碳作为金属锂的载体), 电解质为一种能传导 $\\mathrm{Li}^{+}$的高分子材料, 隔膜只允许 $\\mathrm{Li}^{+}$通过,电池反应式 $\\mathrm{Li}_{x} \\mathrm{C}_{6}+\\mathrm{Li}_{1-x} \\mathrm{CoO}_{2} \\xlongequal[\\text { 充电 }]{\\text { 放电 }} \\mathrm{C}_{6}+\\mathrm{LiCoO}_{2}$ 。下列说法不正确的是\n\n[图1]\n\nA: 充电时 $\\mathrm{Li}^{+}$从右边流向左边\nB: 放电时,正极锂的化合价未发生改变\nC: 充电时 $\\mathrm{B}$ 作阳极, 该电极放电时的电极反应式为: $\\mathrm{Li}_{1-\\mathrm{x}} \\mathrm{CoO}_{2}+\\mathrm{xLi}^{+}+\\mathrm{xe}^{-}=\\mathrm{LiCoO}_{2}$\nD: 废旧钴酸锂 $\\left(\\mathrm{LiCoO}_{2}\\right)$ 电池进行“放电处理”让 $\\mathrm{Li}^{+}$进入石墨中而有利于回收\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_8494b19d3cbb27e021b1g-56.jpg?height=488&width=494&top_left_y=858&top_left_x=353"
],
"answer": [
"D"
],
"solution": "【详解】试题分析: 放电时 $\\mathrm{A}$ 为负极, $\\mathrm{B}$ 为正极, 充电时 $\\mathrm{A}$ 为阴极, $\\mathrm{B}$ 为阳极。 $\\mathrm{A}$ 、充电时 $\\mathrm{A}$ 附近的反应为 $\\mathrm{C}_{6}+\\mathrm{xe}^{-+}+\\mathrm{xLi}^{+}=\\mathrm{Li}_{\\mathrm{x}} \\mathrm{C}_{6}$, 锂离子从右边流向左边, 正确, 不选 $\\mathrm{A} ; \\mathrm{B} 、$放电时, 正极反应为 $\\mathrm{Li}_{1-\\mathrm{x}} \\mathrm{CoO}_{2}+\\mathrm{xLi}^{+}+\\mathrm{xe}^{-}=\\mathrm{LiCoO}_{2}$, 锂的化合价不变, 正确, 不选 $\\mathrm{B}$; $\\mathrm{C} 、$ 充电时 $\\mathrm{B}$ 为阳极, 正确, 不选 $\\mathrm{C}$; $\\mathrm{D}$ 、进行放电处理, 是使锂离子从负极中脱出,经由电解质向正极移动并进入正极材料中, 有利于锂在正极的回收, 选 D。考点: 原电池和电解池的原理应用。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_521",
"problem": "室温下, 等物质的量的 HA 与强碱 $\\mathrm{MOH}$ 混合, 得到 MA 悬浊液, 静置, 取上层清液, 通入 $\\mathrm{HCl}(\\mathrm{g})$, 混合溶液中 $\\mathrm{pH}$ 与 $c(\\mathrm{HA})$ 的关系如图。已知: $K_{\\mathrm{sp}}(\\mathrm{MA})=4.9 \\times 10^{-5} 、$ $K_{\\mathrm{a}}(\\mathrm{HA})=2.0 \\times 10^{-6}$ 。下列说法正确的\n\n[图1]\nA: 上层清液中 $c\\left(\\mathrm{~A}^{-}\\right)=7.0 \\times 10^{-4} \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nB: $\\mathrm{a} \\longrightarrow \\mathrm{b}$ 的溶液中 $\\frac{c\\left(\\mathrm{M}^{+}\\right)}{c\\left(\\mathrm{~A}^{-}\\right)}$将逐渐减小\nC: $\\mathrm{c}(\\mathrm{HA})=\\mathrm{c}\\left(\\mathrm{A}^{-}\\right)$时, $c\\left(\\mathrm{Cl}^{-}\\right)>c\\left(\\mathrm{~A}^{-}\\right)$\nD: $\\mathrm{pH}=7$ 时, $c\\left(\\mathrm{M}^{+}\\right)=c\\left(\\mathrm{~A}^{-}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n室温下, 等物质的量的 HA 与强碱 $\\mathrm{MOH}$ 混合, 得到 MA 悬浊液, 静置, 取上层清液, 通入 $\\mathrm{HCl}(\\mathrm{g})$, 混合溶液中 $\\mathrm{pH}$ 与 $c(\\mathrm{HA})$ 的关系如图。已知: $K_{\\mathrm{sp}}(\\mathrm{MA})=4.9 \\times 10^{-5} 、$ $K_{\\mathrm{a}}(\\mathrm{HA})=2.0 \\times 10^{-6}$ 。下列说法正确的\n\n[图1]\n\nA: 上层清液中 $c\\left(\\mathrm{~A}^{-}\\right)=7.0 \\times 10^{-4} \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$\nB: $\\mathrm{a} \\longrightarrow \\mathrm{b}$ 的溶液中 $\\frac{c\\left(\\mathrm{M}^{+}\\right)}{c\\left(\\mathrm{~A}^{-}\\right)}$将逐渐减小\nC: $\\mathrm{c}(\\mathrm{HA})=\\mathrm{c}\\left(\\mathrm{A}^{-}\\right)$时, $c\\left(\\mathrm{Cl}^{-}\\right)>c\\left(\\mathrm{~A}^{-}\\right)$\nD: $\\mathrm{pH}=7$ 时, $c\\left(\\mathrm{M}^{+}\\right)=c\\left(\\mathrm{~A}^{-}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-015.jpg?height=474&width=440&top_left_y=757&top_left_x=337"
],
"answer": [
"C"
],
"solution": "【详解】A. MA 悬浊液中 $M A(s) \\rightleftharpoons \\mathrm{A}^{-}(\\mathrm{aq})+\\mathrm{M}^{+}(\\mathrm{aq})$, 则上层清液中 $c\\left(\\mathrm{~A}^{-}\\right)=\\sqrt{K_{\\mathrm{sp}}(\\mathrm{MA})}=7.0 \\times 10^{-3} \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}, \\mathrm{~A}$ 错误;\n\nB. $\\mathrm{a} \\longrightarrow \\mathrm{b}$ 的溶液中, 酸性增强, 氢离子浓度变大, $\\mathrm{HA}$ 电离平衡逆向移动, $\\mathrm{c}\\left(\\mathrm{A}^{-}\\right)$减小, 结合 $\\mathrm{K}_{s p}(\\mathrm{MA})=\\mathrm{c}\\left(\\mathrm{A}^{-}\\right) \\mathrm{c}\\left(\\mathrm{M}^{+}\\right)$不变可知 $\\mathrm{c}\\left(\\mathrm{M}^{+}\\right)$增大, 则 $\\frac{c\\left(\\mathrm{M}^{+}\\right)}{c\\left(\\mathrm{~A}^{-}\\right)}$将逐渐增大, $\\mathrm{B}$ 错误;\n\nC. 电荷守恒: $c\\left(\\mathrm{M}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{Cl}^{-}\\right)+c\\left(\\mathrm{~A}^{-}\\right)$, 物料守恒:\n\n$c\\left(\\mathrm{M}^{+}\\right)=c(\\mathrm{HA})+c\\left(\\mathrm{~A}^{-}\\right)$, 联立二式子可得 $c(\\mathrm{HA})+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{Cl}^{-}\\right)$, 因为\n\n$\\mathrm{c}(\\mathrm{HA})=\\mathrm{c}\\left(\\mathrm{A}^{-}\\right)$, 则 $K_{\\mathrm{a}}(\\mathrm{HA})=\\frac{c\\left(\\mathrm{~A}^{-}\\right) c\\left(\\mathrm{H}^{+}\\right)}{c(\\mathrm{HA})}=c\\left(\\mathrm{H}^{+}\\right)=2.0 \\times 10^{-6}$, 则\n\n$c\\left(\\mathrm{~A}^{-}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{Cl}^{-}\\right)$, 溶液显酸性, 则 $c\\left(\\mathrm{H}^{+}\\right)>c\\left(\\mathrm{OH}^{-}\\right)$, 故 $c\\left(\\mathrm{Cl}^{-}\\right)>c\\left(\\mathrm{~A}^{-}\\right)$,\n\nC 正确;\n\nD. 由电荷守恒可知, $c\\left(\\mathrm{M}^{+}\\right)+c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)+c\\left(\\mathrm{Cl}^{-}\\right)+c\\left(\\mathrm{~A}^{-}\\right), \\mathrm{pH}=7$ 时, 则 $c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)$, 故 $c\\left(\\mathrm{M}^{+}\\right)=c\\left(\\mathrm{~A}^{-}\\right)+c\\left(\\mathrm{Cl}^{-}\\right), \\mathrm{D}$ 错误;\n\n故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_410",
"problem": "常温下, 向 $0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NH}_{4} \\mathrm{HCO}_{3}$ 溶液中逐滴滴入 $\\mathrm{NaOH}$ 溶液并恢复至常温, 溶液中 $\\mathrm{NH}_{4}^{+} 、 \\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O} 、 \\mathrm{HCO}_{3}^{-} 、 \\mathrm{CO}_{3}^{2-}$ 的分布比例如图(忽略溶液体积的变化)。已知常温下 $\\mathrm{K}_{\\mathrm{b}}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)=1.8 \\times 10^{-5}, \\mathrm{~K}_{\\mathrm{a} 1}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=4.2 \\times 10^{-7}, \\mathrm{~K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=5.6 \\times 10^{-11}$ 。下列说法错误的是\n\n[图1]\nA: 曲线 $m$ 表示的是 $\\mathrm{HCO}_{3}^{-}$的变化\nB: $\\mathrm{HCO}_{3}^{-}$比 $\\mathrm{NH}_{4}^{+}$更易于与 $\\mathrm{OH}^{-}$离子反应\nC: 溶液中任意一点存在: $\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)}=756$\nD: $\\mathrm{X}$ 点溶液中: $\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)<3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n常温下, 向 $0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NH}_{4} \\mathrm{HCO}_{3}$ 溶液中逐滴滴入 $\\mathrm{NaOH}$ 溶液并恢复至常温, 溶液中 $\\mathrm{NH}_{4}^{+} 、 \\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O} 、 \\mathrm{HCO}_{3}^{-} 、 \\mathrm{CO}_{3}^{2-}$ 的分布比例如图(忽略溶液体积的变化)。已知常温下 $\\mathrm{K}_{\\mathrm{b}}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)=1.8 \\times 10^{-5}, \\mathrm{~K}_{\\mathrm{a} 1}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=4.2 \\times 10^{-7}, \\mathrm{~K}_{\\mathrm{a} 2}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)=5.6 \\times 10^{-11}$ 。下列说法错误的是\n\n[图1]\n\nA: 曲线 $m$ 表示的是 $\\mathrm{HCO}_{3}^{-}$的变化\nB: $\\mathrm{HCO}_{3}^{-}$比 $\\mathrm{NH}_{4}^{+}$更易于与 $\\mathrm{OH}^{-}$离子反应\nC: 溶液中任意一点存在: $\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\cdot \\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)}=756$\nD: $\\mathrm{X}$ 点溶液中: $\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)<3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-087.jpg?height=565&width=1036&top_left_y=1739&top_left_x=333"
],
"answer": [
"B"
],
"solution": "【详解】A. 向 $0.2 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1} \\mathrm{NH}_{4} \\mathrm{HCO}_{3}$ 溶液中逐滴商入 $\\mathrm{NaOH}$ 溶液, $\\mathrm{NH}_{4}^{+}+\\mathrm{OH}^{-}=\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}$,\n\n$\\mathrm{K}_{1}=\\frac{1}{\\mathrm{~K}_{\\mathrm{b}}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)} \\approx 5.6 \\times 10^{4} ; \\quad \\mathrm{HCO}_{3}^{-}+\\mathrm{OH}^{-}=\\mathrm{H}_{2} \\mathrm{O}+\\mathrm{CO}_{3}^{2-}, \\quad \\mathrm{K}_{2}=$ $\\frac{\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)}{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}=\\frac{\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}=\\frac{\\mathrm{K}_{\\mathrm{a} 2}}{\\mathrm{~K}_{\\mathrm{w}}} \\approx 5.6 \\times 10^{3}, \\mathrm{~K}_{1}>\\mathrm{K}_{2}$, 所以铵根离子首先反应, 浓度首先减小, 故曲线 $\\mathrm{m}$ 表示的是 $\\mathrm{HCO}_{3}^{-}$的变化, $\\mathrm{A}$ 正确;\n\nB. 由 $\\mathrm{A}$ 分析可知, $\\mathrm{NH}_{4}^{+}$比 $\\mathrm{HCO}_{3}^{-}$更易于与 $\\mathrm{OH}^{-}$离子反应, B 错误;\n\nC. $\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right) \\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)}=\\frac{\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}{\\mathrm{c}\\left(\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O}\\right)} \\times \\frac{\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right) \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{2} \\mathrm{CO}_{3}\\right)} \\times \\frac{1}{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)}$\n\n$=1.8 \\times 10^{-5} \\times 4.2 \\times 10^{-7} \\times \\frac{1}{10^{-14}}=756, \\mathrm{C}$ 正确;\n\nD. 由电荷守恒可知, $\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+2 \\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)$, 由 $\\mathrm{A}$ 分析可知, $m$ 为 $\\mathrm{HCO}_{3}^{-} 、 n$ 为 $\\mathrm{NH}_{4}^{+} 、 p$ 为 $\\mathrm{NH}_{3} \\cdot \\mathrm{H}_{2} \\mathrm{O} 、 \\mathrm{q}$ 为 $\\mathrm{CO}_{3}^{2-}, \\mathrm{X}$ 点时 $\\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)=\\mathrm{c}\\left(\\mathrm{CO}_{3}^{2-}\\right)$, 则 $\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{Na}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right)+3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)$, 故 $\\mathrm{c}\\left(\\mathrm{NH}_{4}^{+}\\right)+\\mathrm{c}\\left(\\mathrm{H}^{+}\\right)<3 \\mathrm{c}\\left(\\mathrm{HCO}_{3}^{-}\\right)+\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right), \\mathrm{D}$ 正确;\n\n故选 B。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_1447",
"problem": "The second law of thermodynamics is a fundamental law of science. In this problem we consider the thermodynamics of an ideal gas, phase transitions and chemical equilibrium.\n\n3.00 mol of $\\mathrm{CO}_{2}$ gas expands isothermically (in thermal contact with the surroundings; temperature $=15^{\\circ} \\mathrm{C}$ ) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are $10.0 \\mathrm{dm}^{3}$ and $30.0 \\mathrm{dm}^{3}$, respectively.\n\n$\\mathrm{CO}_{2}$ gas, initially at a pressure of 4.0 bar and temperature of $10.0{ }^{\\circ} \\mathrm{C}$ is cooled at constant pressure. In this process,\n\nA: it goes first to the liquid phase and then to the solid phase.\n\nB: it goes to the solid phase without going through the liquid phase.\nA: it goes first to the liquid phase and then to the solid phase.\nB: it goes to the solid phase without going through the liquid phase.\n",
"prompt": "You are participating in an international Chemistry competition and need to solve the following question.\nThis is a multiple choice question (only one correct answer).\n\nproblem:\nThe second law of thermodynamics is a fundamental law of science. In this problem we consider the thermodynamics of an ideal gas, phase transitions and chemical equilibrium.\n\n3.00 mol of $\\mathrm{CO}_{2}$ gas expands isothermically (in thermal contact with the surroundings; temperature $=15^{\\circ} \\mathrm{C}$ ) against a fixed external pressure of 1.00 bar. The initial and final volumes of the gas are $10.0 \\mathrm{dm}^{3}$ and $30.0 \\mathrm{dm}^{3}$, respectively.\n\n$\\mathrm{CO}_{2}$ gas, initially at a pressure of 4.0 bar and temperature of $10.0{ }^{\\circ} \\mathrm{C}$ is cooled at constant pressure. In this process,\n\nA: it goes first to the liquid phase and then to the solid phase.\n\nB: it goes to the solid phase without going through the liquid phase.\n\nA: it goes first to the liquid phase and then to the solid phase.\nB: it goes to the solid phase without going through the liquid phase.\n\nYou can solve it step by step.\nPlease end your response with: \"The final answer is $\\boxed{ANSWER}$\", where ANSWER should be one of the options: [A, B].",
"figure_urls": null,
"answer": [
"B"
],
"solution": "Correct answer:\n\nB: it goes to the solid phase without going through the liquid phase.",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "EN",
"modality": "text-only"
},
{
"id": "Chemistry_849",
"problem": "工业上用 $\\mathrm{CO}_{2}$ 和 $\\mathrm{H}_{2}$ 合成甲醇涉及以下反应:\n\nI. $\\mathrm{CO}_{2}(\\mathrm{~g})+3 \\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{CH}_{3} \\mathrm{OH}(\\mathrm{g})+\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g}) \\quad \\Delta \\mathrm{H}_{1}$\n\nII. $\\mathrm{CO}_{2}(\\mathrm{~g})+\\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{CO}(\\mathrm{g})+\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g}) \\quad \\Delta \\mathrm{H}_{2}$\n\n在催化剂作用下, 将 $1 \\mathrm{~mol} \\mathrm{CO}_{2}$ 和 $2 \\mathrm{~mol} \\mathrm{H}_{2}$ 的混合气体充入一恒容密闭容器中进行反应,\n\n达到平衡时, $\\mathrm{CO}_{2}$ 的转化率和容器中混合气体的平均相对分子质量随温度变化如图。下列判断合理的是\n\n[图1]\n\n已知: 平衡时甲醇的选择性为生成甲醇消耗的 $\\mathrm{CO}_{2}$ 在 $\\mathrm{CO}_{2}$ 总消耗量中占比。\nA: $\\Delta H_{1}<0, \\Delta H_{2}<0$\nB: $250^{\\circ} \\mathrm{C}$ 前以反应II为主\nC: $T^{\\circ} \\mathrm{C}$, 平衡时甲醇的选择性为 $60 \\%$\nD: 为同时提高 $\\mathrm{CO}_{2}$ 的平衡转化率和平衡时甲醇的选择性, 应选择的反应条件为高温、高压\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n工业上用 $\\mathrm{CO}_{2}$ 和 $\\mathrm{H}_{2}$ 合成甲醇涉及以下反应:\n\nI. $\\mathrm{CO}_{2}(\\mathrm{~g})+3 \\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{CH}_{3} \\mathrm{OH}(\\mathrm{g})+\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g}) \\quad \\Delta \\mathrm{H}_{1}$\n\nII. $\\mathrm{CO}_{2}(\\mathrm{~g})+\\mathrm{H}_{2}(\\mathrm{~g}) \\rightleftharpoons \\mathrm{CO}(\\mathrm{g})+\\mathrm{H}_{2} \\mathrm{O}(\\mathrm{g}) \\quad \\Delta \\mathrm{H}_{2}$\n\n在催化剂作用下, 将 $1 \\mathrm{~mol} \\mathrm{CO}_{2}$ 和 $2 \\mathrm{~mol} \\mathrm{H}_{2}$ 的混合气体充入一恒容密闭容器中进行反应,\n\n达到平衡时, $\\mathrm{CO}_{2}$ 的转化率和容器中混合气体的平均相对分子质量随温度变化如图。下列判断合理的是\n\n[图1]\n\n已知: 平衡时甲醇的选择性为生成甲醇消耗的 $\\mathrm{CO}_{2}$ 在 $\\mathrm{CO}_{2}$ 总消耗量中占比。\n\nA: $\\Delta H_{1}<0, \\Delta H_{2}<0$\nB: $250^{\\circ} \\mathrm{C}$ 前以反应II为主\nC: $T^{\\circ} \\mathrm{C}$, 平衡时甲醇的选择性为 $60 \\%$\nD: 为同时提高 $\\mathrm{CO}_{2}$ 的平衡转化率和平衡时甲醇的选择性, 应选择的反应条件为高温、高压\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_1f04a2abf501b4d5eb93g-005.jpg?height=503&width=691&top_left_y=1442&top_left_x=320"
],
"answer": [
"C"
],
"solution": "【详解】A. 由图可知, 温度越高, $\\mathrm{CO}_{2}$ 的转化率越小, 平衡逆向移动, 所以反应 $\\mathrm{I}$ 为放热反应, 反应 II 为吸热反应, $\\mathrm{A}$ 错误;\n\nB. 由图可知, 当温度高于 $250^{\\circ} \\mathrm{C}, \\mathrm{CO}_{2}$ 的转化率随温度的升高而增大, 则 $250^{\\circ} \\mathrm{C}$ 以后以反应 II 为主, $\\mathrm{B}$ 错误;\n\nC. $T^{\\circ} \\mathrm{C}, \\mathrm{CO}_{2}$ 转化率为 $50 \\%$, 平均相对分子质量为 20 , 混合气体总物质的量为:\n\n$\\frac{44+2 \\times 2}{20}=2.4 \\mathrm{~mol}$ 则 $\\mathrm{CO}_{2}$ 为 $0.5 \\mathrm{~mol}$, 设甲醇为 $\\mathrm{xmol}, \\mathrm{CO}$ 为 $\\mathrm{ymol}, \\mathrm{x}+\\mathrm{y}=0.5$,\n\n$\\mathrm{n}\\left(\\mathrm{H}_{2}\\right)=2-(3 \\mathrm{x}+\\mathrm{y}), \\mathrm{n}\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)=\\mathrm{x}+\\mathrm{y}, \\mathrm{n}\\left(\\mathrm{CH}_{3} \\mathrm{OH}\\right)+\\mathrm{n}(\\mathrm{CO})+\\mathrm{n}\\left(\\mathrm{CO}_{2}\\right)+\\mathrm{n}\\left(\\mathrm{H}_{2}\\right)+\\mathrm{n}\\left(\\mathrm{H}_{2} \\mathrm{O}\\right)=2.4$, 计算\n\n$\\mathrm{n}\\left(\\mathrm{CH}_{3} \\mathrm{OH}\\right)=0.3 \\mathrm{~mol}, \\mathrm{n}(\\mathrm{CO})=0.2 \\mathrm{~mol}$, 甲醇的选择性为 $\\frac{0.3}{0.5} \\times 100 \\%=60 \\%$, $\\mathrm{C}$ 正确;\n\nD. 因为反应 $\\mathrm{I}$ 为放热反应, 升高温度, $\\mathrm{CO}_{2}$ 的平衡转化率降低, $\\mathrm{D}$ 错误;\n\n故选 C。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_811",
"problem": "已知: $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-} \\rightleftharpoons \\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}+\\mathrm{H}^{+} K_{1}$,\n\n$\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}+\\mathrm{OH}^{-} \\quad K_{2}$ 。 $25^{\\circ} \\mathrm{C}$ 时, 甘氨酸溶液中通入 $\\mathrm{HCl}$或加入氢氧化钠, 含氮微粒的浓度对数与 $\\mathrm{pH}$ 的关系如图所示, 下列说法错误的是\n\n[图1]\nA: $\\mathrm{a}$ 点时, $\\mathrm{pH}=14+\\lg K_{2}$\nB: $\\mathrm{pH}$ 从 4 变化到 9, 溶液中 $c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)$不变\nC: $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的甘氨酸水溶液中 $c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)$\nD: 在 $\\mathrm{H}_{3} \\mathrm{NClCH}_{2} \\mathrm{COOH}$ 溶液中 $c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个多选题(有多个正确答案)。\n\n问题:\n已知: $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-} \\rightleftharpoons \\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}+\\mathrm{H}^{+} K_{1}$,\n\n$\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}+\\mathrm{OH}^{-} \\quad K_{2}$ 。 $25^{\\circ} \\mathrm{C}$ 时, 甘氨酸溶液中通入 $\\mathrm{HCl}$或加入氢氧化钠, 含氮微粒的浓度对数与 $\\mathrm{pH}$ 的关系如图所示, 下列说法错误的是\n\n[图1]\n\nA: $\\mathrm{a}$ 点时, $\\mathrm{pH}=14+\\lg K_{2}$\nB: $\\mathrm{pH}$ 从 4 变化到 9, 溶液中 $c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)$不变\nC: $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的甘氨酸水溶液中 $c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)$\nD: 在 $\\mathrm{H}_{3} \\mathrm{NClCH}_{2} \\mathrm{COOH}$ 溶液中 $c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为两个或更多的选项:[A, B, C, D]",
"figure_urls": [
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-044.jpg?height=440&width=756&top_left_y=151&top_left_x=336",
"https://cdn.mathpix.com/cropped/2024_03_31_94f971e8ac2d3727b8beg-044.jpg?height=480&width=1378&top_left_y=1296&top_left_x=339"
],
"answer": [
"B",
"D"
],
"solution": "[图2]\n\n和羧基, 氨基有碱性, 在酸性较强的溶液中会结合 $\\mathrm{H}^{+}$形成 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}$; 羧基有酸性, 在碱性较强的溶液中会与 $\\mathrm{OH}^{-}$反应生成 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$和\n\n$\\mathrm{H}_{2} \\mathrm{O}$, 故随着 $\\mathrm{pH}$ 增大, 曲线 I III分别表示 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH} 、 \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}$ 、 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$。\n\n【详解】A. 由分析可知, 曲线 I 表示 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}$, 曲线II表示 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}$, a 点 $\\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)=\\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)$, 已知:\n\n$$\n\\begin{aligned}\n& \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}+\\mathrm{H}_{2} \\mathrm{O} \\rightleftharpoons \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}+\\mathrm{OH}^{-} \\mathrm{K}_{2}= \\\\\n& \\frac{\\mathrm{c}\\left(\\mathrm{OH}^{-}\\right) \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)}{\\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)}=\\frac{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}\\left(\\mathrm{OH}^{-}\\right) \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)}{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)}=\\frac{\\mathrm{K}_{\\mathrm{w}} \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)}{\\mathrm{c}\\left(\\mathrm{H}^{+}\\right) \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)} \\\\\n& , \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\\frac{\\mathrm{K}_{\\mathrm{w}} \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)}{\\mathrm{K}_{2} \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)}, \\text {因为 } \\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)=\\mathrm{c}\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right) \\text {, 所以 } \\mathrm{c}\\left(\\mathrm{H}^{+}\\right)=\n\\end{aligned}\n$$\n\n$\\frac{\\mathrm{K}_{\\mathrm{W}}}{\\mathrm{K}_{2}}, \\mathrm{pH}=-\\operatorname{lgc}\\left(\\mathrm{H}^{+}\\right)=-\\lg \\frac{\\mathrm{K}_{\\mathrm{W}}}{\\mathrm{K}_{2}}=-\\lg \\mathrm{K}_{\\mathrm{W}}+\\lg \\mathrm{K}_{2}=14+\\lg \\mathrm{K}_{2}$, 故 $\\mathrm{A}$ 正确;\n\nB. 由分析可知, 曲线II表示 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}, \\mathrm{pH}$ 从 4 变化到 $6, \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}$ 的浓度逐渐减小, 由物料守恒可知, $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}$的浓度要逐渐增大; $\\mathrm{pH}$ 从 6 变化到 9 , $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$的浓度逐渐增大, 则溶液中 $c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)$逐渐减小, 图中虽然显示基本不变, 实际上是有变化的, 故 B 错误;\n\nC. $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的甘氨酸水溶液中, 甘氨酸主要以两性离子 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}$形式存在,由图中信息可知, 其水溶液呈弱酸性 (约为 6 ), $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}$ 发生电离生成 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$和 $\\mathrm{H}^{+}, \\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COOH}$ 与水反应生成 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}$ 和 $\\mathrm{OH}^{-}$, 由此可知 $0.1 \\mathrm{~mol} \\cdot \\mathrm{L}^{-1}$ 的甘氨酸水溶液中, $c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)>c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}\\right)$, 故 C 正确;\n\nD. 在 $\\mathrm{H}_{3} \\mathrm{NClCH}_{2} \\mathrm{COOH}$ 是甘氨酸的盐酸盐, 其在水溶液中电离出 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH} 、 \\mathrm{H}^{+}$和 $\\mathrm{Cl}^{-}, \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COOH}$ 可以离为 $\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}$和 $\\mathrm{H}^{+}, \\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}$能继续电离生成 $\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}$和 $\\mathrm{H}^{+}$, 水分子能电离出 $\\mathrm{H}^{+}$和 $\\mathrm{OH}^{-}$; 根据质子守恒可知, 若无其他物质影响, 水电离产生的 $c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{OH}^{-}\\right)$, 溶液中的 $\\mathrm{H}^{+}$由 $\\mathrm{H}_{3} \\mathrm{NClCH}_{2} \\mathrm{COOH}$ 和水电离产生, 则有 $c\\left(\\mathrm{H}^{+}\\right)-c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)-2 c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)=c\\left(\\mathrm{OH}^{-}\\right)$, 即 $c\\left(\\mathrm{H}^{+}\\right)=c\\left(\\mathrm{H}_{3} \\mathrm{~N}^{+} \\mathrm{CH}_{2} \\mathrm{COO}^{-}\\right)+2 c\\left(\\mathrm{H}_{2} \\mathrm{NCH}_{2} \\mathrm{COO}^{-}\\right)+c\\left(\\mathrm{OH}^{-}\\right)$, 故 D 错误;故选 BD。",
"answer_type": "MC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "multi-modal"
},
{
"id": "Chemistry_423",
"problem": "有三个烧杯, 分别盛有氯化铜、氯化钾和硝酸银三种溶液, 均以 $\\mathrm{Pt}$ 作电极, 将它们串联在一起电解一定时间, 测得电极增重总和 $2.8 \\mathrm{~g}$, 这时产生的有色气体与无色气体的物质的量之比为\nA: $4: 1$\nB: $1: 1$\nC: $4: 3$\nD: $3: 4$\n",
"prompt": "你正在参加一个国际化学竞赛,并需要解决以下问题。\n这是一个单选题(只有一个正确答案)。\n\n问题:\n有三个烧杯, 分别盛有氯化铜、氯化钾和硝酸银三种溶液, 均以 $\\mathrm{Pt}$ 作电极, 将它们串联在一起电解一定时间, 测得电极增重总和 $2.8 \\mathrm{~g}$, 这时产生的有色气体与无色气体的物质的量之比为\n\nA: $4: 1$\nB: $1: 1$\nC: $4: 3$\nD: $3: 4$\n\n你可以一步一步来解决这个问题,并输出详细的解答过程。\n你需要在输出的最后用以下格式总结答案:“最终答案是$\\boxed{ANSWER}$”,其中ANSWER应为以下选项之一:[A, B, C, D]",
"figure_urls": null,
"answer": [
"C"
],
"solution": "【详解】串联电路中, 相同时间内各电极得或失的电子的物质的量相同, 各电极上放出气体的物质的量之比为定值。不必注意电极增重是多少, 只要判断出生成何种气体及生成该气体一定物质的量所得失电子的物质的量, 就可以通过得失电子守恒, 判断气体体积之比, 第一个烧杯中放出 $\\mathrm{Cl}_{2}$, 第二个烧杯中放出 $\\mathrm{Cl}_{2}$ 和 $\\mathrm{H}_{2}$, 第三个烧杯中放出 $\\mathrm{O}_{2}$ 。在有 $1 \\mathrm{~mol}$ 电子转移时, 生成的气体的物质的量分别是 $0.5 \\mathrm{~mol} 、 0.5 \\mathrm{~mol} 、 0.5 \\mathrm{~mol}$ 和 0.25 $\\mathrm{mol}$, 所以共放出有色气体 $\\left(\\mathrm{Cl}_{2}\\right) 0.5 \\mathrm{~mol}+0.5 \\mathrm{~mol}=1 \\mathrm{~mol}$, 无色气体 $\\left(\\mathrm{O}_{2}\\right.$ 和 $\\left.\\mathrm{H}_{2}\\right) 0.5 \\mathrm{~mol}+0.25$ $\\mathrm{mol}=0.75 \\mathrm{~mol}$, 答案选 $\\mathrm{C}$ 。",
"answer_type": "SC",
"unit": null,
"answer_sequence": null,
"type_sequence": null,
"test_cases": null,
"subject": "Chemistry",
"language": "ZH",
"modality": "text-only"
}
]