Datasets:
File size: 3,741 Bytes
2fa581b cf7a362 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
annotations_creators:
- no-annotation
language_creators:
- crowdsourced
language:
- ko
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: laion2B-multi-korean-subset
size_categories:
- 10M<n<100M
task_categories:
- feature-extraction
---
# laion2B-multi-korean-subset
## Dataset Description
- **Homepage:** [laion-5b](https://laion.ai/blog/laion-5b/)
- **Huggingface:** [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)
## About dataset
Data organized by extracting only Korean data from [laion/laion2B-multi](https://huggingface.co/datasets/laion/laion2B-multi)
### Lisence
CC-BY-4.0
## Data Structure
### Data Instance
```pycon
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/laion2B-multi-korean-subset")
>>> dataset
DatasetDict({
train: Dataset({
features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'],
num_rows: 11376263
})
})
```
```pycon
>>> dataset["train"].features
{'SAMPLE_ID': Value(dtype='int64', id=None),
'URL': Value(dtype='string', id=None),
'TEXT': Value(dtype='string', id=None),
'HEIGHT': Value(dtype='int32', id=None),
'WIDTH': Value(dtype='int32', id=None),
'LICENSE': Value(dtype='string', id=None),
'LANGUAGE': Value(dtype='string', id=None),
'NSFW': Value(dtype='string', id=None),
'similarity': Value(dtype='float32', id=None)}
```
### Data Size
download: 1.56 GiB<br>
generated: 2.37 GiB<br>
total: 3.93 GiB
### Data Field
- 'SAMPLE_ID': `int`
- 'URL': `string`
- 'TEXT': `string`
- 'HEIGHT': `int`
- 'WIDTH': `int`
- 'LICENSE': `string`
- 'LANGUAGE': `string`
- 'NSFW': `string`
- 'similarity': `float`
### Data Splits
| | train |
| ---------- | -------- |
| # of texts | 11376263 |
## Note
### Height, Width
λͺ¨λ λ°μ΄ν°λ₯Ό μ΄ν΄λ³Έ κ²μ μλμ§λ§, μ΄λ―Έμ§μ κ°λ‘κ° `HEIGHT`λ‘, μΈλ‘κ° `WIDTH`λ‘ λμ΄μλ κ² κ°μ΅λλ€.
```pycon
>>> dataset["train"][98]
{'SAMPLE_ID': 2937471001780,
'URL': 'https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png',
'TEXT': 'μΈμ²μκ΅μ‘μ², μΈμ² μꡰꡬλ°μ νμν μμμ§κ³Όμ κ°λ΄ν κ°μ΅',
'HEIGHT': 640,
'WIDTH': 321,
'LICENSE': '?',
'LANGUAGE': 'ko',
'NSFW': 'UNLIKELY',
'similarity': 0.33347243070602417}
```
[image](https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png)
### Code used to generate
```py
import csv
import re
from datasets import load_dataset
from tqdm import tqdm
pattern = re.compile(r"[κ°-ν£]")
def quote(s: str) -> str:
s = s.replace('"""', "")
return s
def filter_func(example) -> bool:
lang = example.get("LANGUAGE")
text = example.get("TEXT")
if not isinstance(lang, str) or not isinstance(text, str):
return False
return lang == "ko" or pattern.search(text) is not None
file = open("./laion2B-mulit_korean_subset.csv", "w", encoding="utf-8", newline="")
ds = load_dataset("laion/laion2B-multi", split="train", streaming=True)
dsf = ds.filter(filter_func)
header = [
"SAMPLE_ID",
"URL",
"TEXT",
"HEIGHT",
"WIDTH",
"LICENSE",
"LANGUAGE",
"NSFW",
"similarity",
]
writer = csv.DictWriter(file, fieldnames=header, delimiter="\t")
writer.writeheader()
try:
for data in tqdm(dsf):
data["TEXT"] = quote(data.get("TEXT", ""))
if data["TEXT"]:
writer.writerow(data)
finally:
file.close()
print("Done!")
```
μ΄νμ `HEIGHT`λ `WIDTH`κ° NoneμΈ λ°μ΄ν°λ₯Ό μ κ±°νκ³ μ
λ‘λνμμ΅λλ€.
### img2dataset
[img2dataset](https://github.com/rom1504/img2dataset)μ μ¬μ©νμ¬ URLλ‘λ μ΄λ―Έμ§λ€μ λ°μ΄ν°μ
ννλ‘ λ§λ€ μ μμ΅λλ€.
|