File size: 12,038 Bytes
c4c4a36
 
6cf1302
 
 
 
 
 
 
 
 
 
d8e1654
 
6cf1302
d8e1654
 
 
ffddd15
9296ab6
 
 
 
 
 
 
 
 
 
27a4ec5
 
9296ab6
27a4ec5
5169fda
27a4ec5
ffddd15
2a2e736
 
 
 
 
 
 
 
 
 
51a3ad1
 
2a2e736
51a3ad1
2a2e736
51a3ad1
ffddd15
23f481c
 
 
 
 
 
 
 
 
 
fe797a4
 
23f481c
fe797a4
a71e352
fe797a4
ffddd15
9296ab6
c4c4a36
 
 
 
 
 
 
 
 
3452f79
 
c4c4a36
3452f79
c4c4a36
3452f79
 
7391095
 
 
 
 
 
 
 
 
 
b9ddcd3
 
7391095
b9ddcd3
7391095
b9ddcd3
ffddd15
23bcf1d
 
 
 
 
 
 
 
 
 
34cd74b
 
23bcf1d
34cd74b
 
 
ffddd15
74175ff
 
 
 
 
 
 
 
 
 
f191d0c
 
74175ff
f191d0c
 
 
ffddd15
3570478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffddd15
4700d8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffddd15
d6098e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffddd15
65db075
 
 
 
 
 
 
 
 
 
8314884
 
65db075
8314884
65db075
8314884
ffddd15
c4c4a36
6cf1302
 
 
 
 
 
9296ab6
 
 
 
 
 
2a2e736
 
 
 
 
 
23f481c
 
 
 
 
 
c4c4a36
 
 
 
 
 
7391095
 
 
 
 
 
23bcf1d
 
 
 
 
 
74175ff
 
 
 
 
 
3570478
 
 
 
 
 
4700d8b
 
 
 
 
 
d6098e9
 
 
 
 
 
65db075
 
 
 
 
 
ffddd15
 
 
c4c4a36
490daab
ffddd15
 
 
 
 
 
490daab
 
 
ffddd15
 
490daab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffddd15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
---
dataset_info:
- config_name: 100M
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 368158357.95775706
    num_examples: 235203
  - name: test
    num_bytes: 3717538.0422429685
    num_examples: 2375
  download_size: 224184711
  dataset_size: 371875896
- config_name: 100k
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 365453.4653465347
    num_examples: 300
  - name: test
    num_bytes: 3654.5346534653463
    num_examples: 3
  download_size: 212072
  dataset_size: 369108
- config_name: 10B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 39904320962.76584
    num_examples: 24564921
  - name: test
    num_bytes: 103964370.23416495
    num_examples: 64000
  download_size: 25249998174
  dataset_size: 40008285333
- config_name: 10M
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 37059125.991965994
    num_examples: 25385
  - name: test
    num_bytes: 373730.00803400803
    num_examples: 256
  download_size: 22486785
  dataset_size: 37432856
- config_name: 10k
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 37658.21052631579
    num_examples: 37
  - name: test
    num_bytes: 472
    num_examples: 1
  download_size: 30893
  dataset_size: 38130.21052631579
- config_name: 15B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 60014708510.13879
    num_examples: 36589903
  - name: test
    num_bytes: 104972711.86121707
    num_examples: 64000
  download_size: 37966833792
  dataset_size: 60119681222
- config_name: 1B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 3805376695.1198378
    num_examples: 2840541
  - name: test
    num_bytes: 38437701.880162396
    num_examples: 28692
  download_size: 2346974411
  dataset_size: 3843814397
- config_name: 1M
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 3695065.7880235123
    num_examples: 2695
  - name: test
    num_bytes: 37019.21197648787
    num_examples: 27
  download_size: 2183019
  dataset_size: 3732085
- config_name: 20B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 80125589478.94254
    num_examples: 48614883
  - name: test
    num_bytes: 105482877.0574707
    num_examples: 64000
  download_size: 50682523292
  dataset_size: 80231072356
- config_name: 25B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 100236677321.01715
    num_examples: 60639865
  - name: test
    num_bytes: 105790923.98284689
    num_examples: 64000
  download_size: 63397565382
  dataset_size: 100342468245
- config_name: 30B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 120347862572.46747
    num_examples: 72664846
  - name: test
    num_bytes: 105997103.53253783
    num_examples: 64000
  download_size: 76111936677
  dataset_size: 120453859676
- config_name: 5B
  features:
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 19795857463.09181
    num_examples: 12539939
  - name: test
    num_bytes: 101031980.90819068
    num_examples: 64000
  download_size: 12526141470
  dataset_size: 19896889444
configs:
- config_name: 100M
  data_files:
  - split: train
    path: 100M/train-*
  - split: test
    path: 100M/test-*
- config_name: 100k
  data_files:
  - split: train
    path: 100k/train-*
  - split: test
    path: 100k/test-*
- config_name: 10B
  data_files:
  - split: train
    path: 10B/train-*
  - split: test
    path: 10B/test-*
- config_name: 10M
  data_files:
  - split: train
    path: 10M/train-*
  - split: test
    path: 10M/test-*
- config_name: 10k
  data_files:
  - split: train
    path: 10k/train-*
  - split: test
    path: 10k/test-*
- config_name: 15B
  data_files:
  - split: train
    path: 15B/train-*
  - split: test
    path: 15B/test-*
- config_name: 1B
  data_files:
  - split: train
    path: 1B/train-*
  - split: test
    path: 1B/test-*
- config_name: 1M
  data_files:
  - split: train
    path: 1M/train-*
  - split: test
    path: 1M/test-*
- config_name: 20B
  data_files:
  - split: train
    path: 20B/train-*
  - split: test
    path: 20B/test-*
- config_name: 25B
  data_files:
  - split: train
    path: 25B/train-*
  - split: test
    path: 25B/test-*
- config_name: 30B
  data_files:
  - split: train
    path: 30B/train-*
  - split: test
    path: 30B/test-*
- config_name: 5B
  data_files:
  - split: train
    path: 5B/train-*
  - split: test
    path: 5B/test-*
task_categories:
- text-generation
- text2text-generation
---

# Filtered CulturaX + Wikipedia for Dutch

This is a combined and filtered version of [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia), only including Dutch. It is intended for the training of LLMs.

Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokenization is done with the big vocabulary of the `google/gemma-2b` tokenizer so depending on your tokenizer these exact numbers may differ.


## Filtering

While CultruaX already has done a lot of filtering, some more filtering can be done to improve the quality of the corpus. These filters are described below.

The baseline ratios (punctuation, uppercase, digits) were calculated on the SONAR-500 corpus (excluding WRPEA WRPED WRUEA WRUED WRUEB).

**CulturaX**:
- removed documents that contain the text "rechten voorbehouden" or "rights reserved"
- remove document's whose URL contained "wikipedia.org" (because we include a cleaned version of Wikipedia ourselves)
- removed documents that contain a "bad word" (see the section below)
- removed documents that contain any non-latin characters. The idea is that "knowledge"-based information (e.g. original writing of a name) are allowed
 when the data comes from Wikipedia, but not from any other webcrawl, to avoid unsollicited noise.

**CulturaX + Wikipedia**:
- removed documents where ratio of punctuation marks vs. non-whitespace characters is higher than 0.2
- removed documents where ratio of uppercase vs. non-whitespace characters is higher than 0.22
- removed documents where ratio of digits vs. non-whitespace characters is higher than 0.16
- removed documents where the average token length is < 2 or > 20

## Bad words

```python
BAD_PHRASES_DOC_LEVEL = {
    # https://en.wikipedia.org/wiki/Dutch_profanity
    "achterlijk",
    "debiel",
    "downie",
    "idioot",
    "kankerlijer",
    "klere",
    "kolere",
    "minkukel",
    "pestkop",
    "pleuris",
    "pleuritis",
    "teringlijer",
    "tyfuslijer",
    "gadver",
    "getver",
    "godver",
    "godskolere",
    "godverork",
    "graftak",
    "kopvod",
    "verdomme",
    "anaalgeneraal",
    "bitch",
    "dikzak",
    "flikker",
    "fok",
    "fuck",
    "hoer",
    "klootzak",
    "klote",
    "kreng",
    "kringspiermusketier",
    "kut",
    "lamzak",
    "lul",
    "manwijf",
    "matennaai",
    "neuken",
    "neuker",
    "ouwehoer",
    "reet",
    "reetkever",
    "reetridder",
    "rotzak",
    "schijt",
    "shit",
    "slet",
    "slijmbal",
    "slons",
    "sodemieter",
    "stoephoer",
    "swaffel",
    "teef",
    "trut",
    "tut",
    "zak",
    "uilskuiken",
    "zeik",
    "bamivreter",
    "bosneger",
    "neger",
    "fransoos",
    "geitenneuker",
    "kaaskop",
    "kakker",
    "koelie",
    "lijp",
    "medelander",
    "mocro",
    "mof",
    "nikker",
    "poepchinees",
    "roetmop",
    "spaghettivreter",
    "loempiavouwer",
    "spanjool",
    "spleetoog",
    "tatta",
    "tokkie",
    "zandneger",
    "zwartzak",
    "halvezool",
    "kenau",
    "klootviool",
    "knuppel",
    "koekert",
    "koekwaus",
    "oelewapper",
    "smeerlap",
    "sukkel",
    "sul",
    "wappie",
    "wijf",
    "zooi",
    # xxx (a.o. https://gitlab.com/yhavinga/c4nlpreproc/-/blob/master/clean/badwords_ennl.py?ref_type=heads)
    "xxx",
    "anal",
    "blowjob",
    "buttplug",
    "cock",
    "cunt",
    "geil",
    "sex",  # Standaardnederlands = seks, maybe we catch some porn or socialmedia sites with this misspelling
    "porn",
    # extra
    "nigger",
    "nigga",
    "hoerig",
    "klojo",
}
```

## Config details

`10k`
- ratio_wikipedia: 100.00%
- total_num_tokens: 10,078
- train_num_tokens: 9,957
- test_num_tokens: 121
- total_num_samples: 38
- train_num_samples: 37
- test_num_samples: 1

`100k`
- ratio_wikipedia: 100.00%
- total_num_tokens: 100,099
- train_num_tokens: 99,537
- test_num_tokens: 562
- total_num_samples: 303
- train_num_samples: 300
- test_num_samples: 3

`1M`
- ratio_wikipedia: 100.00%
- total_num_tokens: 1,000,104
- train_num_tokens: 987,432
- test_num_tokens: 12,672
- total_num_samples: 2,722
- train_num_samples: 2,695
- test_num_samples: 27

`10M`
- ratio_wikipedia: 100.00%
- total_num_tokens: 10,000,692
- train_num_tokens: 9,905,387
- test_num_tokens: 95,305
- total_num_samples: 25,641
- train_num_samples: 25,385
- test_num_samples: 256

`100M`
- ratio_wikipedia: 100.00%
- total_num_tokens: 100,000,049
- train_num_tokens: 99,022,731
- test_num_tokens: 977,318
- total_num_samples: 237,578
- train_num_samples: 235,203
- test_num_samples: 2,375

`1B`
- ratio_wikipedia: 82.38%
- total_num_tokens: 1,000,000,003
- train_num_tokens: 990,064,856
- test_num_tokens: 9,935,147
- total_num_samples: 2,869,233
- train_num_samples: 2,840,541
- test_num_samples: 28,692

`5B`
- ratio_wikipedia: 35.62%
- total_num_tokens: 5,000,000,224
- train_num_tokens: 4,974,586,006
- test_num_tokens: 25,414,218
- total_num_samples: 12,603,939
- train_num_samples: 12,539,939
- test_num_samples: 64,000

`10B`
- ratio_wikipedia: 26.86%
- total_num_tokens: 10,000,000,658
- train_num_tokens: 9,973,803,589
- test_num_tokens: 26,197,069
- total_num_samples: 24,628,921
- train_num_samples: 24,564,921
- test_num_samples: 64,000

`15B`
- ratio_wikipedia: 23.85%
- total_num_tokens: 15,000,001,092
- train_num_tokens: 14,973,654,717
- test_num_tokens: 26,346,375
- total_num_samples: 36,653,903
- train_num_samples: 36,589,903
- test_num_samples: 64,000

`20B`
- ratio_wikipedia: 22.32%
- total_num_tokens: 20,000,000,303
- train_num_tokens: 19,973,764,973
- test_num_tokens: 26,235,330
- total_num_samples: 48,678,883
- train_num_samples: 48,614,883
- test_num_samples: 64,000

`25B`
- ratio_wikipedia: 21.40%
- total_num_tokens: 25,000,000,737
- train_num_tokens: 24,973,747,815
- test_num_tokens: 26,252,922
- total_num_samples: 60,703,865
- train_num_samples: 60,639,865
- test_num_samples: 64,000

`30B`
- ratio_wikipedia: 20.79%
- total_num_tokens: 30,000,000,034
- train_num_tokens: 29,973,830,841
- test_num_tokens: 26,169,193
- total_num_samples: 72,728,846
- train_num_samples: 72,664,846
- test_num_samples: 64,000

`35B`
- ratio_wikipedia: 20.35%
- total_num_tokens: 35,000,000,468
- train_num_tokens: 34,973,480,399
- test_num_tokens: 26,520,069
- total_num_samples: 84,753,828
- train_num_samples: 84,689,828
- test_num_samples: 64,000