BramVanroy commited on
Commit
3b80002
1 Parent(s): 8947c26

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -120
README.md CHANGED
@@ -11,12 +11,9 @@ pretty_name: Filtered CulturaX + Wikipedia for Dutch
11
 
12
  # Filtered CulturaX + Wikipedia for Dutch
13
 
14
- Warning: there's currently a mismatch between configs. the smallest ones (up to 100M) are counted as white-space tokens, the other ones are counted as tokenized by gemma. In the future, all configs will be based on white-space tokens.
15
-
16
-
17
  This is a combined and filtered version of [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia), only including Dutch. It is intended for the training of LLMs.
18
 
19
- Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokenization is done with the big vocabulary of the `google/gemma-2b` tokenizer so depending on your tokenizer these exact numbers may differ.
20
 
21
  Every config also has a test set (for validation) of 1% the total size of the dataset, minimally 1 max. 64k samples (~26M tokens).
22
 
@@ -161,122 +158,6 @@ BAD_PHRASES_DOC_LEVEL = {
161
 
162
  ## Config details
163
 
164
- `10k`
165
- - ratio_wikipedia: 100.00%
166
- - total_num_tokens: 10,078
167
- - train_num_tokens: 9,957
168
- - test_num_tokens: 121
169
- - total_num_samples: 38
170
- - train_num_samples: 37
171
- - test_num_samples: 1
172
-
173
- `100k`
174
- - ratio_wikipedia: 100.00%
175
- - total_num_tokens: 100,099
176
- - train_num_tokens: 99,537
177
- - test_num_tokens: 562
178
- - total_num_samples: 303
179
- - train_num_samples: 300
180
- - test_num_samples: 3
181
-
182
- `1M`
183
- - ratio_wikipedia: 100.00%
184
- - total_num_tokens: 1,000,104
185
- - train_num_tokens: 987,432
186
- - test_num_tokens: 12,672
187
- - total_num_samples: 2,722
188
- - train_num_samples: 2,695
189
- - test_num_samples: 27
190
-
191
- `10M`
192
- - ratio_wikipedia: 100.00%
193
- - total_num_tokens: 10,000,692
194
- - train_num_tokens: 9,905,387
195
- - test_num_tokens: 95,305
196
- - total_num_samples: 25,641
197
- - train_num_samples: 25,385
198
- - test_num_samples: 256
199
-
200
- `100M`
201
- - ratio_wikipedia: 100.00%
202
- - total_num_tokens: 100,000,049
203
- - train_num_tokens: 99,022,731
204
- - test_num_tokens: 977,318
205
- - total_num_samples: 237,578
206
- - train_num_samples: 235,203
207
- - test_num_samples: 2,375
208
-
209
- `1B`
210
- - ratio_wikipedia: 82.38%
211
- - total_num_tokens: 1,000,000,003
212
- - train_num_tokens: 990,064,856
213
- - test_num_tokens: 9,935,147
214
- - total_num_samples: 2,869,233
215
- - train_num_samples: 2,840,541
216
- - test_num_samples: 28,692
217
-
218
- `5B`
219
- - ratio_wikipedia: 35.62%
220
- - total_num_tokens: 5,000,000,224
221
- - train_num_tokens: 4,974,586,006
222
- - test_num_tokens: 25,414,218
223
- - total_num_samples: 12,603,939
224
- - train_num_samples: 12,539,939
225
- - test_num_samples: 64,000
226
-
227
- `10B`
228
- - ratio_wikipedia: 26.86%
229
- - total_num_tokens: 10,000,000,658
230
- - train_num_tokens: 9,973,803,589
231
- - test_num_tokens: 26,197,069
232
- - total_num_samples: 24,628,921
233
- - train_num_samples: 24,564,921
234
- - test_num_samples: 64,000
235
-
236
- `15B`
237
- - ratio_wikipedia: 23.85%
238
- - total_num_tokens: 15,000,001,092
239
- - train_num_tokens: 14,973,654,717
240
- - test_num_tokens: 26,346,375
241
- - total_num_samples: 36,653,903
242
- - train_num_samples: 36,589,903
243
- - test_num_samples: 64,000
244
-
245
- `20B`
246
- - ratio_wikipedia: 22.32%
247
- - total_num_tokens: 20,000,000,303
248
- - train_num_tokens: 19,973,764,973
249
- - test_num_tokens: 26,235,330
250
- - total_num_samples: 48,678,883
251
- - train_num_samples: 48,614,883
252
- - test_num_samples: 64,000
253
-
254
- `25B`
255
- - ratio_wikipedia: 21.40%
256
- - total_num_tokens: 25,000,000,737
257
- - train_num_tokens: 24,973,747,815
258
- - test_num_tokens: 26,252,922
259
- - total_num_samples: 60,703,865
260
- - train_num_samples: 60,639,865
261
- - test_num_samples: 64,000
262
-
263
- `30B`
264
- - ratio_wikipedia: 20.79%
265
- - total_num_tokens: 30,000,000,034
266
- - train_num_tokens: 29,973,830,841
267
- - test_num_tokens: 26,169,193
268
- - total_num_samples: 72,728,846
269
- - train_num_samples: 72,664,846
270
- - test_num_samples: 64,000
271
-
272
- `35B`
273
- - ratio_wikipedia: 20.35%
274
- - total_num_tokens: 35,000,000,468
275
- - train_num_tokens: 34,973,480,399
276
- - test_num_tokens: 26,520,069
277
- - total_num_samples: 84,753,828
278
- - train_num_samples: 84,689,828
279
- - test_num_samples: 64,000
280
 
281
  ## License information
282
 
 
11
 
12
  # Filtered CulturaX + Wikipedia for Dutch
13
 
 
 
 
14
  This is a combined and filtered version of [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia), only including Dutch. It is intended for the training of LLMs.
15
 
16
+ Different configs are available based on the number of tokens (see a section below with an overview). This can be useful if you want to know exactly how many tokens you have. Great for using as a streaming dataset, too. Tokens are counted as white-space tokens, so depending on your tokenizer, you'll likely end up with more tokens than indicated here.
17
 
18
  Every config also has a test set (for validation) of 1% the total size of the dataset, minimally 1 max. 64k samples (~26M tokens).
19
 
 
158
 
159
  ## Config details
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
  ## License information
163