|
import random |
|
import re |
|
from pathlib import Path |
|
from typing import Dict, Iterator, List, Optional, Union |
|
|
|
import numpy as np |
|
from datasets import Dataset, load_dataset, Audio, load_from_disk, DatasetDict |
|
from datasets import concatenate_datasets |
|
from pydantic import BaseModel, ConfigDict |
|
from tqdm import tqdm |
|
|
|
from multilingual_dataset.commonvoice_stats import STATS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FOREIGN_TOKEN = "<|muted|>" |
|
|
|
|
|
def replace_consecutive_muted(text): |
|
|
|
pattern = fr'(\s*{re.escape(FOREIGN_TOKEN)}\s*)+' |
|
|
|
|
|
cleaned_text = re.sub(pattern, FOREIGN_TOKEN, text) |
|
|
|
return cleaned_text |
|
|
|
|
|
class AudioSample(BaseModel): |
|
model_config = ConfigDict( |
|
arbitrary_types_allowed=True |
|
) |
|
path: Optional[str] |
|
array: np.ndarray |
|
sampling_rate: int |
|
|
|
|
|
class CommonVoiceSample(BaseModel): |
|
audio: AudioSample |
|
sentence: str |
|
locale: str |
|
|
|
|
|
class MultilingualDatasetSampler: |
|
|
|
def __init__(self, split: str): |
|
self.split = split |
|
self.country_codes = list(STATS["locales"].keys()) |
|
self.datasets = { |
|
code: self.prepare_dataset( |
|
load_dataset("mozilla-foundation/common_voice_13_0", code, split=split, streaming=True)) |
|
for code in self.country_codes} |
|
|
|
@staticmethod |
|
def prepare_dataset(dataset: Dataset) -> Iterator[Dict]: |
|
dataset = dataset.remove_columns(list(set(dataset.column_names) - {"sentence", "audio", "locale"})) |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
return dataset.iter(1) |
|
|
|
def get_sample(self, is_french: bool) -> CommonVoiceSample: |
|
while True: |
|
if is_french: |
|
code = "fr" |
|
else: |
|
code = random.choice(self.country_codes) |
|
try: |
|
item = next(self.datasets[code]) |
|
item = {k: v[0] for k, v in item.items()} |
|
return CommonVoiceSample.model_validate(item) |
|
except StopIteration: |
|
continue |
|
|
|
|
|
def merge_samples(samples: List[CommonVoiceSample]) -> CommonVoiceSample: |
|
sentences = [] |
|
for sample in samples: |
|
if sample.locale == "fr": |
|
sentences.append(sample.sentence.strip()) |
|
else: |
|
sentences.append(FOREIGN_TOKEN) |
|
return CommonVoiceSample( |
|
audio=AudioSample( |
|
path="", |
|
sampling_rate=16000, |
|
array=np.concat([sample.audio.array for sample in samples], axis=0)), |
|
locale="fr", |
|
sentence=replace_consecutive_muted(" ".join(sentences)) |
|
) |
|
|
|
|
|
def build_small_multilingual_dataset(sampler: MultilingualDatasetSampler, french_prob: float = 0.3, |
|
dataset_size: int = 10000) -> Iterator[Dict]: |
|
max_audio_length = 16000 * 30 |
|
for _ in range(dataset_size): |
|
sample_len = 0 |
|
samples = [] |
|
while True: |
|
is_french = random.random() <= french_prob |
|
sample = sampler.get_sample(is_french) |
|
sample_len += sample.audio.array.shape[0] |
|
if sample_len > max_audio_length: |
|
if samples: |
|
yield merge_samples(samples).dict() |
|
break |
|
samples.append(sample) |
|
|
|
|
|
def load_splitted_local_ds(folder: Path): |
|
datasets = [] |
|
for dataset_path in folder.iterdir(): |
|
datasets.append(load_from_disk(dataset_path)) |
|
dataset = concatenate_datasets(datasets) |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
return dataset |
|
|
|
|
|
def save_and_split_dataset(dataset_size: int, split: str, save_folder: Union[str, Path]): |
|
split_size = 1000 |
|
i = 0 |
|
sampler = MultilingualDatasetSampler(split=split) |
|
dataset_items = [] |
|
save_folder = Path(save_folder) |
|
|
|
def save(): |
|
dataset = Dataset.from_list(dataset_items) |
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) |
|
dataset.save_to_disk(save_folder / str(i)) |
|
|
|
for item in tqdm(build_small_multilingual_dataset(sampler=sampler, dataset_size=dataset_size), total=dataset_size, |
|
desc="building dataset"): |
|
dataset_items.append(item) |
|
if len(dataset_items) == split_size: |
|
save() |
|
i += 1 |
|
dataset_items = [] |
|
if dataset_items: |
|
save() |
|
|
|
|
|
if __name__ == "__main__": |
|
save_and_split_dataset(100000, "train", "dataset_splits_train") |
|
save_and_split_dataset(1000, "test", "dataset_splits_test") |
|
|
|
train_dataset = load_splitted_local_ds(Path("dataset_splits_train")) |
|
test_dataset = load_splitted_local_ds(Path("dataset_splits_test")) |
|
|
|
dataset = DatasetDict( |
|
train=train_dataset, |
|
test=test_dataset |
|
) |
|
dataset.push_to_hub("mixed_multilingual_commonvoice_all_languages_100k") |
|
|
|
|