bourdoiscatie commited on
Commit
33dc67a
1 Parent(s): 5d60266

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -6
README.md CHANGED
@@ -4,18 +4,28 @@ language:
4
  license:
5
  - mit
6
  size_categories:
7
- - 10K<n<100K
8
  task_categories:
9
  - text-classification
10
  tags:
11
  - binary-sentiment-analysis
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # allocine_fr_prompt_sentiment_analysis
15
  ## Summary
16
 
17
- **allocine_fr_prompt_sentiment_analysis** is a subset of the [**Dataset of French Prompts (DFP)**]().
18
- It contains **X** rows that can be used for a binary sentiment analysis task.
19
  The original data (without prompts) comes from the dataset [allocine](https://huggingface.co/datasets/allocine) by Blard.
20
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
21
 
@@ -66,9 +76,9 @@ targets = str(allocine['train'][i]['label']).replace("0", "neg").replace("1","po
66
 
67
 
68
  # Splits
69
- - train with X samples
70
- - dev with Y samples
71
- - test with Z samples
72
 
73
 
74
  # How to use?
 
4
  license:
5
  - mit
6
  size_categories:
7
+ - 100k<n<1M
8
  task_categories:
9
  - text-classification
10
  tags:
11
  - binary-sentiment-analysis
12
+ - DFP
13
+ - french prompts
14
+ annotations_creators:
15
+ - found
16
+ language_creators:
17
+ - found
18
+ multilinguality:
19
+ - monolingual
20
+ source_datasets:
21
+ - allocine
22
  ---
23
 
24
  # allocine_fr_prompt_sentiment_analysis
25
  ## Summary
26
 
27
+ **allocine_fr_prompt_sentiment_analysis** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).
28
+ It contains **5,600,000** rows that can be used for a binary sentiment analysis task.
29
  The original data (without prompts) comes from the dataset [allocine](https://huggingface.co/datasets/allocine) by Blard.
30
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
31
 
 
76
 
77
 
78
  # Splits
79
+ - `train` with 4,480,000 samples
80
+ - `valid` with 560,000 samples
81
+ - `test` with 560,000 samples
82
 
83
 
84
  # How to use?