bourdoiscatie commited on
Commit
6ee3315
1 Parent(s): ef89d28

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -7
README.md CHANGED
@@ -2,19 +2,29 @@
2
  language:
3
  - fr
4
  size_categories:
5
- - 10K<n<100K
6
  task_categories:
7
  - text-classification
8
  tags:
9
  - textual-entailment
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  # ling_fr_prompt_textual_entailment
13
  ## Summary
14
 
15
- **ling_fr_prompt_textual_entailment** is a subset of the [**Dataset of French Prompts (DFP)**]().
16
- It contains **X** rows that can be used for a textual entailment task.
17
- The original data (without prompts) comes from the dataset [multilingual-NLI-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) by Laurer et al. where only the ling French part has been kept.
18
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
19
 
20
 
@@ -59,9 +69,9 @@ targets = str(ling['label'][i]).replace("0","vrai").replace("1","incertain").rep
59
 
60
 
61
  # Splits
62
- - train with X samples
63
- - dev with Y samples
64
- - test with Z samples
65
 
66
 
67
  # How to use?
@@ -87,3 +97,6 @@ dataset = load_dataset("CATIE-AQ/ling_fr_prompt_textual_entailment")
87
 
88
  ## This Dataset
89
 
 
 
 
 
2
  language:
3
  - fr
4
  size_categories:
5
+ - 100K<n<1M
6
  task_categories:
7
  - text-classification
8
  tags:
9
  - textual-entailment
10
+ - DFP
11
+ - french prompts
12
+ annotations_creators:
13
+ - found
14
+ language_creators:
15
+ - found
16
+ multilinguality:
17
+ - monolingual
18
+ source_datasets:
19
+ - multilingual-NLI-26lang-2mil7
20
  ---
21
 
22
  # ling_fr_prompt_textual_entailment
23
  ## Summary
24
 
25
+ **ling_fr_prompt_textual_entailment** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).
26
+ It contains **110,000** rows that can be used for a textual entailment task.
27
+ The original data (without prompts) comes from the dataset [multilingual-NLI-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) by Laurer et al. where only the ling French part has been kept.
28
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
29
 
30
 
 
69
 
70
 
71
  # Splits
72
+ - `train` with 110,000 samples
73
+ - no `valid` split
74
+ - no `test` split
75
 
76
 
77
  # How to use?
 
97
 
98
  ## This Dataset
99
 
100
+
101
+ ## License
102
+ cc-by-nc-4.0