bourdoiscatie
commited on
Commit
•
c29889f
1
Parent(s):
f9aa9f6
Update README.md
Browse files
README.md
CHANGED
@@ -1,20 +1,31 @@
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- fr
|
4 |
size_categories:
|
5 |
-
-
|
6 |
task_categories:
|
7 |
- text-classification
|
8 |
tags:
|
9 |
- textual-entailment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# mnli_fr_prompt_textual_entailment
|
13 |
## Summary
|
14 |
|
15 |
-
**mnli_fr_prompt_textual_entailment** is a subset of the [**Dataset of French Prompts (DFP)**]().
|
16 |
-
It contains **
|
17 |
-
The original data (without prompts) comes from the dataset [multilingual-NLI-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) by Laurer et al. where only the mnli French part has been kept.
|
18 |
A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
|
19 |
|
20 |
|
@@ -51,7 +62,7 @@ A list of prompts (see below) was then applied in order to build the input and t
|
|
51 |
In the prompt list above, `premise`, `hypothesis` and `targets` have been constructed from:
|
52 |
```
|
53 |
moritz = load_dataset('MoritzLaurer/multilingual-NLI-26lang-2mil7')
|
54 |
-
mnli = moritz['
|
55 |
mnli['premise'] = list(map(lambda i: i.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['premise'])))
|
56 |
mnli['hypothesis'] = list(map(lambda x: x.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['hypothesis'])))
|
57 |
targets = str(anli['label'][i]).replace("0","vrai").replace("1","incertain").replace("2","faux")
|
@@ -59,9 +70,9 @@ targets = str(anli['label'][i]).replace("0","vrai").replace("1","incertain").rep
|
|
59 |
|
60 |
|
61 |
# Splits
|
62 |
-
- train with
|
63 |
-
-
|
64 |
-
- test
|
65 |
|
66 |
|
67 |
# How to use?
|
@@ -87,3 +98,7 @@ dataset = load_dataset("CATIE-AQ/mnli_fr_prompt_textual_entailment")
|
|
87 |
|
88 |
## This Dataset
|
89 |
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
licence: mit
|
3 |
language:
|
4 |
- fr
|
5 |
size_categories:
|
6 |
+
- 100K<n<1M
|
7 |
task_categories:
|
8 |
- text-classification
|
9 |
tags:
|
10 |
- textual-entailment
|
11 |
+
- DFP
|
12 |
+
- french prompts
|
13 |
+
annotations_creators:
|
14 |
+
- found
|
15 |
+
language_creators:
|
16 |
+
- found
|
17 |
+
multilinguality:
|
18 |
+
- monolingual
|
19 |
+
source_datasets:
|
20 |
+
- multilingual-NLI-26lang-2mil7
|
21 |
---
|
22 |
|
23 |
# mnli_fr_prompt_textual_entailment
|
24 |
## Summary
|
25 |
|
26 |
+
**mnli_fr_prompt_textual_entailment** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).
|
27 |
+
It contains **550,000** rows that can be used for a textual entailment task.
|
28 |
+
The original data (without prompts) comes from the dataset [multilingual-NLI-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) by Laurer et al. where only the mnli French part has been kept.
|
29 |
A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
|
30 |
|
31 |
|
|
|
62 |
In the prompt list above, `premise`, `hypothesis` and `targets` have been constructed from:
|
63 |
```
|
64 |
moritz = load_dataset('MoritzLaurer/multilingual-NLI-26lang-2mil7')
|
65 |
+
mnli = moritz['fr_mnli']
|
66 |
mnli['premise'] = list(map(lambda i: i.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['premise'])))
|
67 |
mnli['hypothesis'] = list(map(lambda x: x.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['hypothesis'])))
|
68 |
targets = str(anli['label'][i]).replace("0","vrai").replace("1","incertain").replace("2","faux")
|
|
|
70 |
|
71 |
|
72 |
# Splits
|
73 |
+
- `train` with 550,000 samples
|
74 |
+
- no `valid` split
|
75 |
+
- no `test` split
|
76 |
|
77 |
|
78 |
# How to use?
|
|
|
98 |
|
99 |
## This Dataset
|
100 |
|
101 |
+
|
102 |
+
|
103 |
+
## License
|
104 |
+
mit
|