bourdoiscatie commited on
Commit
c29889f
1 Parent(s): f9aa9f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -8
README.md CHANGED
@@ -1,20 +1,31 @@
1
  ---
 
2
  language:
3
  - fr
4
  size_categories:
5
- - 10K<n<100K
6
  task_categories:
7
  - text-classification
8
  tags:
9
  - textual-entailment
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  # mnli_fr_prompt_textual_entailment
13
  ## Summary
14
 
15
- **mnli_fr_prompt_textual_entailment** is a subset of the [**Dataset of French Prompts (DFP)**]().
16
- It contains **X** rows that can be used for a textual entailment task.
17
- The original data (without prompts) comes from the dataset [multilingual-NLI-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) by Laurer et al. where only the mnli French part has been kept.
18
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
19
 
20
 
@@ -51,7 +62,7 @@ A list of prompts (see below) was then applied in order to build the input and t
51
  In the prompt list above, `premise`, `hypothesis` and `targets` have been constructed from:
52
  ```
53
  moritz = load_dataset('MoritzLaurer/multilingual-NLI-26lang-2mil7')
54
- mnli = moritz['fr_anli']
55
  mnli['premise'] = list(map(lambda i: i.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['premise'])))
56
  mnli['hypothesis'] = list(map(lambda x: x.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['hypothesis'])))
57
  targets = str(anli['label'][i]).replace("0","vrai").replace("1","incertain").replace("2","faux")
@@ -59,9 +70,9 @@ targets = str(anli['label'][i]).replace("0","vrai").replace("1","incertain").rep
59
 
60
 
61
  # Splits
62
- - train with X samples
63
- - dev with Y samples
64
- - test with Z samples
65
 
66
 
67
  # How to use?
@@ -87,3 +98,7 @@ dataset = load_dataset("CATIE-AQ/mnli_fr_prompt_textual_entailment")
87
 
88
  ## This Dataset
89
 
 
 
 
 
 
1
  ---
2
+ licence: mit
3
  language:
4
  - fr
5
  size_categories:
6
+ - 100K<n<1M
7
  task_categories:
8
  - text-classification
9
  tags:
10
  - textual-entailment
11
+ - DFP
12
+ - french prompts
13
+ annotations_creators:
14
+ - found
15
+ language_creators:
16
+ - found
17
+ multilinguality:
18
+ - monolingual
19
+ source_datasets:
20
+ - multilingual-NLI-26lang-2mil7
21
  ---
22
 
23
  # mnli_fr_prompt_textual_entailment
24
  ## Summary
25
 
26
+ **mnli_fr_prompt_textual_entailment** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).
27
+ It contains **550,000** rows that can be used for a textual entailment task.
28
+ The original data (without prompts) comes from the dataset [multilingual-NLI-26lang-2mil7](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7) by Laurer et al. where only the mnli French part has been kept.
29
  A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
30
 
31
 
 
62
  In the prompt list above, `premise`, `hypothesis` and `targets` have been constructed from:
63
  ```
64
  moritz = load_dataset('MoritzLaurer/multilingual-NLI-26lang-2mil7')
65
+ mnli = moritz['fr_mnli']
66
  mnli['premise'] = list(map(lambda i: i.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['premise'])))
67
  mnli['hypothesis'] = list(map(lambda x: x.replace(' . ','. ').replace(' .','. ').replace('( ','(').replace(' )',')').replace(' , ',', ').replace(', ',', ').replace("' ","'"), map(str,mnli['hypothesis'])))
68
  targets = str(anli['label'][i]).replace("0","vrai").replace("1","incertain").replace("2","faux")
 
70
 
71
 
72
  # Splits
73
+ - `train` with 550,000 samples
74
+ - no `valid` split
75
+ - no `test` split
76
 
77
 
78
  # How to use?
 
98
 
99
  ## This Dataset
100
 
101
+
102
+
103
+ ## License
104
+ mit