Datasets:
File size: 3,675 Bytes
eea17d6 196c302 1f015e6 196c302 877a333 1f015e6 196c302 4d66662 196c302 a77ba61 196c302 a77ba61 eea17d6 842ea51 7a44f43 842ea51 5cd2808 842ea51 7a44f43 842ea51 5cd2808 7a44f43 5cd2808 7a44f43 842ea51 7a44f43 842ea51 7a44f43 5cd2808 7a44f43 5cd2808 7a44f43 5cd2808 7a44f43 842ea51 f953148 842ea51 7a44f43 842ea51 7a44f43 842ea51 7a44f43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
- zh
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: 'ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in
Multi-turn Conversation'
tags:
- speech-recognition
- code-switching
---
# Dataset Card for ASCEND
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
- [Data Splits](#data-instances)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Needs More Information]
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/2112.06223
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.
### Supported Tasks and Leaderboards
Code-switching
### Languages
Chinese and English
## Usage
To obtain the full dataset (complete with train, validation, and test set), simply run this:
```
import datasets
dataset = datasets.load_dataset("CAiRE/ASCEND")
```
## Dataset Structure
A typical data point comprises the path to the audio file, the loaded audio array, and its transcription. Additional fields include datapoint id, duration, language, speaker id, session id, and topic.
```
{
'id': '00644',
'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
'audio': {
'path': '.cache/huggingface/datasets/downloads/extracted/f0b33b5266cd9452ee310eef3577cf7adb7f29aa54dbff74b9a8ee406a55d614/waves/ses2_spk3_L13101_189.900_5.490.wav',
'array': array([-6.1035156e-05, -1.8310547e-04, 3.0517578e-05, ...,
0.0000000e+00, -3.0517578e-05, 0.0000000e+00
], dtype = float32),
'sampling_rate': 16000
},
'transcription': '因为你不可能邀你的female friends去说走我们去play basketball',
'duration': 5.489999771118164,
'language': 'mixed',
'original_speaker_id': 3,
'session_id': 2,
'topic': 'sports'
}
```
### Data Splits
Number of utterances: 9,869 train, 1,130 validation, and 1,315 test.
## Additional Information
For comprehensive explanations, please check [our paper](https://arxiv.org/pdf/2112.06223.pdf).
### Licensing Information
Creative Common Attribution Share-Alike 4.0 International (CC-BY-SA 4.0)
### Citation Information
If you use our dataset, please cite us:
```
@inproceedings{lovenia2022ascend,
title={ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},
author={Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},
booktitle={Proceedings of the 13th Language Resources and Evaluation Conference (LREC)},
year={2022}
``` |