File size: 5,638 Bytes
8a9f0f8 0b245d5 8a9f0f8 b439fbf 8a9f0f8 fe43834 1be4e98 8a9f0f8 e965e8b 8a9f0f8 70c12b2 a855f45 8a9f0f8 70c12b2 a855f45 8a9f0f8 70c12b2 8a9f0f8 015d35f 8a9f0f8 015d35f 1be4e98 8a9f0f8 9b9edf8 8a9f0f8 e67e171 8a9f0f8 9b9edf8 8a9f0f8 47c7204 8a9f0f8 825b04e 8a9f0f8 2088dbb c82f912 8a9f0f8 cc1d1d8 8a9f0f8 e67e171 a97afcb e67e171 8a9f0f8 d51dd4b 36c4567 e67e171 8a9f0f8 e67e171 8a9f0f8 9b9edf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
from collections import defaultdict
_CITATION = ""
languages = {'yoruba':'yo',
'hausa':'ha',
'swahili':'sw',
'somali':'so'}
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset consists of the queries and relevance judgements in the CIRAL test collection.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {
lang: {
'train': [
f'https://huggingface.co/datasets/CIRAL/ciral/resolve/main/ciral-{lang}/topics/topics.ciral-v1.0-{lang_code}-train.tsv',
f'https://huggingface.co/datasets/CIRAL/ciral/resolve/main/ciral-{lang}/qrels/qrels.ciral-v1.0-{lang_code}-train.tsv'
],
'test':[
f'https://huggingface.co/datasets/CIRAL/ciral/resolve/main/ciral-{lang}/topics/topics.ciral-v1.0-{lang_code}-test.tsv'
]
} for lang, lang_code in languages.items()
}
def load_queries(_file):
if _file is None:
return []
queries = {}
with open(_file, encoding="utf-8") as query_file:
for line in query_file:
line = line.strip()
id, query = (line.split('\t')) if len(line.split('\t')) == 2 else ("", "")
queries[id] = query
return queries
def load_qrels(_file):
if _file is None:
return None
qrels = defaultdict(dict)
with open(_file, encoding="utf-8") as qrel_file:
for line in qrel_file:
line = line.strip()
qid, _, docid, rel = (line.split('\t')) if len(line.split('\t')) == 4 else ("", "", "",False)
qrels[qid][docid] = int(rel)
#print(qrels)
return qrels
class CIRAL(datasets.GeneratorBasedBuilder):
#VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=lang,
version=datasets.Version("1.1.0"),
description=f"CIRAL data for {lang}.") for lang in languages.keys()
]
def _info(self):
features = datasets.Features(
{
"query_id": datasets.Value("string"),
"query": datasets.Value("string"),
# "judgements": [{
# "docid": datasets.Value("string"),
# "judgement": datasets.Value("string"),
# "text": datasets.Value("string")}]
"positive_passages": [{
'docid': datasets.Value("string"),
'text': datasets.Value("string"),
}],
"negative_passages": [{
"docid": datasets.Value("string"),
"text": datasets.Value("string")}]
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.name
downloaded_files = dl_manager.download_and_extract(_URLS[lang])
return [
datasets.SplitGenerator(
name='train',
gen_kwargs={
'filepaths': downloaded_files['train'],
},
),
datasets.SplitGenerator(
name='test',
gen_kwargs={
'filepaths': downloaded_files['test'],
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepaths):
lang = self.config.name
corpus = datasets.load_dataset('ciral/ciral-corpus', lang)['train']
docid2doc = {doc['docid']: doc['text'] for doc in corpus}
query_file, qrel_file = (filepaths) if len(filepaths) == 2 else (filepaths[0], None)
queries = load_queries(query_file)
qrels = load_qrels(qrel_file)
for query_id in queries:
positive_docids = [docid for docid, judgement in qrels[query_id].items() if judgement==1] if qrels is not None else []
negative_docids = [docid for docid, judgement in qrels[query_id].items() if judgement==0] if qrels is not None else []
data = {}
data['query_id'] = query_id
data['query'] = queries[query_id]
data['positive_passages'] = [{
'docid': docid,
'text': docid2doc[docid]
} for docid in positive_docids if docid in docid2doc]
data['negative_passages'] = [{
'docid': docid,
'text': docid2doc[docid]
} for docid in negative_docids if docid in docid2doc]
yield query_id, data |