|
import os |
|
import random |
|
|
|
from datasets import load_dataset |
|
|
|
|
|
def whitespace_tokenize_with_offsets(text): |
|
tokens = [] |
|
start_tok_offsets = [] |
|
end_tok_offsets = [] |
|
current_token = "" |
|
current_token_start = None |
|
|
|
for i, char in enumerate(text): |
|
if char.isspace(): |
|
if current_token: |
|
tokens.append(current_token) |
|
start_tok_offsets.append(current_token_start) |
|
end_tok_offsets.append(i) |
|
current_token = "" |
|
current_token_start = None |
|
else: |
|
if current_token == "": |
|
current_token_start = i |
|
current_token += char |
|
|
|
|
|
if current_token: |
|
tokens.append(current_token) |
|
start_tok_offsets.append(current_token_start) |
|
end_tok_offsets.append(len(text)) |
|
|
|
return tokens, start_tok_offsets, end_tok_offsets |
|
|
|
|
|
def proc_dataset(dataset, max_text_length=200): |
|
r = [] |
|
for doc in dataset: |
|
text = doc["text"] |
|
covered_entities = set() |
|
for ent_id, entity in enumerate(doc["entities"]): |
|
if ent_id in covered_entities: |
|
continue |
|
target_text = text |
|
if len(text) > max_text_length: |
|
tokens, start_tok_offsets, end_tok_offsets = whitespace_tokenize_with_offsets(text) |
|
entity_start = entity["start"] |
|
entity_end = entity["end"] |
|
|
|
|
|
entity_start_idx = None |
|
entity_end_idx = None |
|
for idx, (start, end) in enumerate(zip(start_tok_offsets, end_tok_offsets)): |
|
if start <= entity_start < end: |
|
entity_start_idx = idx |
|
if start < entity_end <= end: |
|
entity_end_idx = idx |
|
break |
|
|
|
if entity_start_idx is None or entity_end_idx is None: |
|
continue |
|
|
|
allowed_tokens = max_text_length - len(tokens[entity_start_idx:entity_end_idx + 1]) - 20 |
|
before_tokens = random.randint(0, int(allowed_tokens * 0.8)) |
|
after_tokens = allowed_tokens - before_tokens |
|
|
|
|
|
if entity_start_idx - before_tokens < 0: |
|
after_tokens += - (entity_start_idx - before_tokens) |
|
elif entity_end_idx + after_tokens + 1 >= len(tokens): |
|
before_tokens += entity_end_idx + after_tokens + 1 - len(tokens) |
|
start_idx = max(0, entity_start_idx - before_tokens) |
|
end_idx = min(len(tokens), entity_end_idx + after_tokens + 1) |
|
|
|
|
|
initial_text = "" |
|
if start_idx > 20: |
|
initial_text = text[:end_tok_offsets[20]] + "... " |
|
|
|
|
|
start_offset = start_tok_offsets[start_idx] |
|
end_offset = end_tok_offsets[end_idx - 1] |
|
|
|
target_text = initial_text + text[start_offset:end_offset] |
|
|
|
|
|
this_answer_entities = [ent_id] |
|
answers = [entity["content"]] |
|
for ent_id2, entity2 in enumerate(doc["entities"]): |
|
if ent_id2 == ent_id: |
|
continue |
|
|
|
if entity2["category_str"] == entity["category_str"]: |
|
|
|
|
|
if entity2["content"] in target_text: |
|
this_answer_entities.append(ent_id2) |
|
answers.append(entity2["content"]) |
|
|
|
covered_entities.update(this_answer_entities) |
|
|
|
r.append({ |
|
"label": entity["category_str"], |
|
"answers": list(set(answers)), |
|
"text": target_text, |
|
}) |
|
return r |
|
|
|
|
|
d = load_dataset("fewshot-goes-multilingual/cs_czech-court-decisions-ner") |
|
train = list(d['train']) |
|
random.shuffle(train) |
|
new_dataset_train = proc_dataset(train[200:]) |
|
dataset_test_ftrain = proc_dataset(train[:200]) |
|
dataset_val = proc_dataset(d['validation']) |
|
dataset_test = proc_dataset(d['test']) |
|
|
|
|
|
new_dataset_test = dataset_test_ftrain + dataset_val + dataset_test |
|
random.shuffle(new_dataset_test) |
|
|
|
|
|
os.makedirs(".data/hf_dataset/ner_court_decisions", exist_ok=True) |
|
import jsonlines |
|
|
|
|
|
print("train", len(new_dataset_train)) |
|
print("test", len(new_dataset_test)) |
|
|
|
with jsonlines.open(".data/hf_dataset/ner_court_decisions/test.jsonl", "w") as f: |
|
f.write_all(new_dataset_test) |
|
with jsonlines.open(".data/hf_dataset/ner_court_decisions/train.jsonl", "w") as f: |
|
f.write_all(new_dataset_train) |
|
|