jtz18 commited on
Commit
d216585
·
1 Parent(s): e750619

Create DocTamper.py

Browse files
Files changed (1) hide show
  1. DocTamper.py +169 -0
DocTamper.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """
16
+ DocTamper dataset
17
+ """
18
+
19
+
20
+ import csv
21
+ import json
22
+ import os
23
+ import lmdb
24
+ import io
25
+ from PIL import Image
26
+
27
+ import datasets
28
+
29
+ from datasets.tasks import ImageClassification
30
+
31
+
32
+ # TODO: Add BibTeX citation
33
+ # Find for instance the citation on arxiv or on the dataset repo/website
34
+ _CITATION = """\
35
+ @InProceedings{huggingface:dataset,
36
+ title = {A great new dataset},
37
+ author={huggingface, Inc.
38
+ },
39
+ year={2020}
40
+ }
41
+ """
42
+
43
+ # TODO: Add description of the dataset here
44
+ # You can copy an official description
45
+ _DESCRIPTION = """\
46
+ This dataset was designed to train models to determine image tampering on documents.
47
+ """
48
+
49
+ # TODO: Add a link to an official homepage for the dataset here
50
+ _HOMEPAGE = "https://github.com/qcf-568/DocTamper"
51
+
52
+ # TODO: Add the licence for the dataset here if you can find it
53
+ _LICENSE = ""
54
+
55
+ # TODO: Add link to the official dataset URLs here
56
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
57
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
58
+ _URL = "https://storage.googleapis.com/document-image-tampering-dataset/DocTamperV1.zip"
59
+
60
+
61
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
62
+ class DocTamper(datasets.GeneratorBasedBuilder):
63
+ """TODO: Short description of my dataset."""
64
+
65
+ VERSION = datasets.Version("1.1.0")
66
+
67
+ # This is an example of a dataset with multiple configurations.
68
+ # If you don't want/need to define several sub-sets in your dataset,
69
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
70
+
71
+ # If you need to make complex sub-parts in the datasets with configurable options
72
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
73
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
74
+
75
+ # You will be able to load one or the other configurations in the following list with
76
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
77
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
78
+ # BUILDER_CONFIGS = [
79
+ # datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
80
+ # # datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
81
+ # ]
82
+
83
+ # DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
84
+
85
+ def _info(self):
86
+ return datasets.DatasetInfo(
87
+ description=_DESCRIPTION,
88
+ features=datasets.Features(
89
+ {
90
+ "image": datasets.Image(),
91
+ "label": datasets.Image(),
92
+ }
93
+ ),
94
+ homepage=_HOMEPAGE,
95
+ citation=_CITATION,
96
+ license=_LICENSE
97
+ )
98
+
99
+
100
+ def _split_generators(self, dl_manager):
101
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
102
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
103
+
104
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
105
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
106
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
107
+ urls = _URL
108
+ data_dir = dl_manager.download_and_extract(urls)
109
+ return [
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.TRAIN,
112
+ # These kwargs will be passed to _generate_examples
113
+ gen_kwargs={
114
+ "filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-TrainingSet"),
115
+ "split": "train",
116
+ },
117
+ ),
118
+ datasets.SplitGenerator(
119
+ name=datasets.Split.VALIDATION,
120
+ # These kwargs will be passed to _generate_examples
121
+ gen_kwargs={
122
+ "filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-FCD"),
123
+ "split": "dev",
124
+ },
125
+ ),
126
+ datasets.SplitGenerator(
127
+ name=datasets.Split.TEST,
128
+ # These kwargs will be passed to _generate_examples
129
+ gen_kwargs={
130
+ "filepath": os.path.join(data_dir, "DocTamperV1/DocTamperV1-TestingSet"),
131
+ "split": "test"
132
+ },
133
+ ),
134
+ ]
135
+
136
+
137
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
138
+ def _generate_examples(self, filepath, split):
139
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
140
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
141
+ lmdb_path = filepath
142
+
143
+ env = lmdb.open(lmdb_path, readonly=True)
144
+ txn = env.begin()
145
+
146
+ idx = 0
147
+ while True:
148
+ image_key = f"image-{idx:09}"
149
+ label_key = f"label-{idx:09}"
150
+
151
+ image_data = txn.get(image_key.encode())
152
+ label_data = txn.get(label_key.encode())
153
+
154
+ if not image_data or not label_data:
155
+ break
156
+
157
+
158
+ # Yields examples as (key, example) tuples
159
+ yield idx, {
160
+ "image": Image.open(io.BytesIO(image_data)),
161
+ "label": Image.open(io.BytesIO(label_data)),
162
+ }
163
+
164
+ idx += 1
165
+
166
+ env.close()
167
+
168
+
169
+ # datasets-cli shared/vision-transformers/doctamper_loading_script.py --save_info --all_configs