Create new.py
Browse files
new.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install required package
|
2 |
+
# pip install ultralytics
|
3 |
+
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
# Dataset structure expected:
|
7 |
+
# βββ dataset/
|
8 |
+
# β βββ train/
|
9 |
+
# β β βββ images/
|
10 |
+
# β β βββ labels/
|
11 |
+
# β βββ valid/
|
12 |
+
# β β βββ images/
|
13 |
+
# β β βββ labels/
|
14 |
+
# β βββ test/
|
15 |
+
# β βββ images/
|
16 |
+
# β βββ labels/
|
17 |
+
|
18 |
+
# data.yaml example:
|
19 |
+
# path: /path/to/dataset
|
20 |
+
# train: train/images
|
21 |
+
# val: valid/images
|
22 |
+
# test: test/images
|
23 |
+
# names:
|
24 |
+
# 0: class1
|
25 |
+
# 1: class2
|
26 |
+
# ...
|
27 |
+
|
28 |
+
def train_yolov8():
|
29 |
+
# Load the YOLOv8 Large model
|
30 |
+
model = YOLO('yolov8l.pt') # pretrained model
|
31 |
+
|
32 |
+
# Train the model
|
33 |
+
results = model.train(
|
34 |
+
data='data.yaml',
|
35 |
+
epochs=100,
|
36 |
+
batch=16,
|
37 |
+
imgsz=640,
|
38 |
+
device='0', # 'cpu' or '0' for GPU
|
39 |
+
name='yolov8l_custom',
|
40 |
+
optimizer='Adam',
|
41 |
+
lr0=0.001,
|
42 |
+
warmup_epochs=3,
|
43 |
+
augment=True,
|
44 |
+
patience=50,
|
45 |
+
pretrained=True
|
46 |
+
)
|
47 |
+
|
48 |
+
# Validate the model
|
49 |
+
metrics = model.val() # Validate on validation set
|
50 |
+
print(f"Validation [email protected]: {metrics.box.map}")
|
51 |
+
|
52 |
+
# Test the model (optional)
|
53 |
+
test_model = YOLO('runs/detect/yolov8l_custom/weights/best.pt')
|
54 |
+
test_metrics = test_model.val(data='data.yaml', split='test')
|
55 |
+
print(f"Test [email protected]: {test_metrics.box.map}")
|
56 |
+
|
57 |
+
# Export to ONNX format (optional)
|
58 |
+
model.export(format='onnx')
|
59 |
+
|
60 |
+
if __name__ == '__main__':
|
61 |
+
train_yolov8()
|