sushku commited on
Commit
fc2a0c4
·
verified ·
1 Parent(s): f69fa10

Update yolov8.py

Browse files
Files changed (1) hide show
  1. yolov8.py +153 -0
yolov8.py CHANGED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import supervision as sv
5
+ from ultralytics import YOLO
6
+ import yaml
7
+ from pathlib import Path
8
+ import torch
9
+
10
+ print(torch.cuda.is_available())
11
+
12
+ def setup_dataset_config(dataset_path, class_names):
13
+ data_yaml = {
14
+ 'path': os.path.abspath(dataset_path),
15
+ 'train': 'train/images',
16
+ 'val': 'valid/images',
17
+ 'test': 'test/images',
18
+ 'names': {i: name for i, name in enumerate(class_names)},
19
+ 'nc': len(class_names)
20
+ }
21
+
22
+ with open(os.path.join(dataset_path, 'dataset.yaml'), 'w') as f:
23
+ yaml.dump(data_yaml, f, sort_keys=False)
24
+
25
+ print(f"Dataset config saved to {os.path.join(dataset_path, 'dataset.yaml')}")
26
+ return os.path.join(dataset_path, 'dataset.yaml')
27
+
28
+
29
+ def train_yolov8_model(dataset_config, epochs=100, img_size=640, batch_size=16):
30
+ model = YOLO('yolov8n.pt')
31
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
32
+ print(f"Training on device: {device}")
33
+
34
+ results = model.train(
35
+ data=dataset_config,
36
+ epochs=epochs,
37
+ imgsz=img_size,
38
+ batch=batch_size,
39
+ name='accessory_detection',
40
+ patience=20,
41
+ save=True,
42
+ device=device,
43
+ verbose=True
44
+ )
45
+
46
+ print("Training completed!")
47
+ return model
48
+
49
+
50
+ def validate_model(model):
51
+ metrics = model.val()
52
+ print(f"Validation metrics: {metrics}")
53
+ return metrics
54
+
55
+
56
+ def run_webcam_detection(model_path=None):
57
+ if model_path is None:
58
+ runs_dir = Path('runs/detect')
59
+ if runs_dir.exists():
60
+ model_dirs = [d for d in runs_dir.iterdir() if d.is_dir() and d.name.startswith('accessory_detection')]
61
+ if model_dirs:
62
+ latest_model = max(model_dirs, key=os.path.getmtime) / 'weights' / 'best.pt'
63
+ if latest_model.exists():
64
+ model_path = str(latest_model)
65
+ print(f"Using latest model: {model_path}")
66
+
67
+ model = YOLO(model_path) if model_path else YOLO('yolov8n.pt')
68
+ print(f"Model loaded from {model_path if model_path else 'Pretrained YOLOv8n'}")
69
+
70
+ cap = cv2.VideoCapture(0, cv2.CAP_V4L2)
71
+ if not cap.isOpened():
72
+ print("Error: Could not open webcam.")
73
+ return
74
+
75
+ box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=2, text_scale=1)
76
+ print("Press 'q' to quit")
77
+
78
+ while True:
79
+ ret, frame = cap.read()
80
+ if not ret:
81
+ print("Error: Failed to capture image")
82
+ break
83
+
84
+ results = model(frame, conf=0.25)
85
+ detections = sv.Detections.from_ultralytics(results[0])
86
+ class_names = model.names if hasattr(model, 'names') else {0: "unknown"}
87
+
88
+ labels = [
89
+ f"{class_names[class_id]} {confidence:.2f}"
90
+ for _, confidence, class_id, _ in detections
91
+ ]
92
+
93
+ frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels)
94
+ cv2.putText(frame, "Press 'q' to quit", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
95
+
96
+ cv2.imshow("YOLOv8 Accessory Detection", frame)
97
+
98
+ if cv2.waitKey(1) & 0xFF == ord('q'):
99
+ break
100
+
101
+ cap.release()
102
+ cv2.destroyAllWindows()
103
+
104
+
105
+ def prepare_custom_dataset(source_dir, target_dir, split_ratios=(0.7, 0.2, 0.1)):
106
+ import shutil
107
+ from sklearn.model_selection import train_test_split
108
+
109
+ os.makedirs(os.path.join(target_dir, 'train', 'images'), exist_ok=True)
110
+ os.makedirs(os.path.join(target_dir, 'train', 'labels'), exist_ok=True)
111
+ os.makedirs(os.path.join(target_dir, 'valid', 'images'), exist_ok=True)
112
+ os.makedirs(os.path.join(target_dir, 'valid', 'labels'), exist_ok=True)
113
+ os.makedirs(os.path.join(target_dir, 'test', 'images'), exist_ok=True)
114
+ os.makedirs(os.path.join(target_dir, 'test', 'labels'), exist_ok=True)
115
+
116
+ print("YOLOv8 directory structure created")
117
+
118
+ files = [f for f in os.listdir(source_dir) if f.endswith('.txt') and not f.endswith('classes.txt')]
119
+
120
+ train_files, temp_files = train_test_split(files, test_size=(split_ratios[1]+split_ratios[2]), random_state=42)
121
+ val_ratio = split_ratios[1] / (split_ratios[1] + split_ratios[2])
122
+ val_files, test_files = train_test_split(temp_files, test_size=(1-val_ratio), random_state=42)
123
+
124
+ print(f"Split dataset: {len(train_files)} train, {len(val_files)} validation, {len(test_files)} test images")
125
+
126
+ setup_dataset_config(target_dir, ["hat", "scarf", "sunglasses", "spectacles", "headphones", "ears_visible"])
127
+ print("Dataset preparation completed!")
128
+
129
+ return os.path.join(target_dir, 'dataset.yaml')
130
+
131
+
132
+ if __name__ == "__main__":
133
+ import argparse
134
+ parser = argparse.ArgumentParser(description="YOLOv8 Face Accessory Detection System")
135
+ parser.add_argument('--train', action='store_true', help='Train model')
136
+ parser.add_argument('--detect', action='store_true', help='Run detection on webcam')
137
+ parser.add_argument('--config', type=str, help='Path to dataset config file')
138
+ parser.add_argument('--model', type=str, help='Path to trained model')
139
+ parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs')
140
+ args = parser.parse_args()
141
+
142
+ if args.train:
143
+ if not args.config:
144
+ print("Error: Dataset config is required for training")
145
+ else:
146
+ model = train_yolov8_model(args.config, epochs=args.epochs)
147
+ validate_model(model)
148
+
149
+ if args.detect:
150
+ run_webcam_detection(args.model)
151
+
152
+ if not (args.train or args.detect):
153
+ parser.print_help()