# Install required package # pip install ultralytics from ultralytics import YOLO # Dataset structure expected: # ├── dataset/ # │ ├── train/ # │ │ ├── images/ # │ │ └── labels/ # │ ├── valid/ # │ │ ├── images/ # │ │ └── labels/ # │ └── test/ # │ ├── images/ # │ └── labels/ # data.yaml example: # path: /path/to/dataset # train: train/images # val: valid/images # test: test/images # names: # 0: class1 # 1: class2 # ... def train_yolov8(): # Load the YOLOv8 Large model model = YOLO('yolov8l.pt') # pretrained model # Train the model results = model.train( data='data.yaml', epochs=100, batch=16, imgsz=640, device='0', # 'cpu' or '0' for GPU name='yolov8l_custom', optimizer='Adam', lr0=0.001, warmup_epochs=3, augment=True, patience=50, pretrained=True ) # Validate the model metrics = model.val() # Validate on validation set print(f"Validation mAP@0.5: {metrics.box.map}") # Test the model (optional) test_model = YOLO('runs/detect/yolov8l_custom/weights/best.pt') test_metrics = test_model.val(data='data.yaml', split='test') print(f"Test mAP@0.5: {test_metrics.box.map}") # Export to ONNX format (optional) model.export(format='onnx') if __name__ == '__main__': train_yolov8()