import os import cv2 import numpy as np import supervision as sv from ultralytics import YOLO import yaml from pathlib import Path import torch print(torch.cuda.is_available()) def setup_dataset_config(dataset_path, class_names): data_yaml = { 'path': os.path.abspath(dataset_path), 'train': 'train/images', 'val': 'valid/images', 'test': 'test/images', 'names': {i: name for i, name in enumerate(class_names)}, 'nc': len(class_names) } with open(os.path.join(dataset_path, 'dataset.yaml'), 'w') as f: yaml.dump(data_yaml, f, sort_keys=False) print(f"Dataset config saved to {os.path.join(dataset_path, 'dataset.yaml')}") return os.path.join(dataset_path, 'dataset.yaml') def train_yolov8_model(dataset_config, epochs=100, img_size=640, batch_size=16): model = YOLO('yolov8n.pt') device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Training on device: {device}") results = model.train( data=dataset_config, epochs=epochs, imgsz=img_size, batch=batch_size, name='accessory_detection', patience=20, save=True, device=device, verbose=True ) print("Training completed!") return model def validate_model(model): metrics = model.val() print(f"Validation metrics: {metrics}") return metrics def run_webcam_detection(model_path=None): if model_path is None: runs_dir = Path('runs/detect') if runs_dir.exists(): model_dirs = [d for d in runs_dir.iterdir() if d.is_dir() and d.name.startswith('accessory_detection')] if model_dirs: latest_model = max(model_dirs, key=os.path.getmtime) / 'weights' / 'best.pt' if latest_model.exists(): model_path = str(latest_model) print(f"Using latest model: {model_path}") model = YOLO(model_path) if model_path else YOLO('yolov8n.pt') print(f"Model loaded from {model_path if model_path else 'Pretrained YOLOv8n'}") cap = cv2.VideoCapture(0, cv2.CAP_V4L2) if not cap.isOpened(): print("Error: Could not open webcam.") return box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=2, text_scale=1) print("Press 'q' to quit") while True: ret, frame = cap.read() if not ret: print("Error: Failed to capture image") break results = model(frame, conf=0.25) detections = sv.Detections.from_ultralytics(results[0]) class_names = model.names if hasattr(model, 'names') else {0: "unknown"} labels = [ f"{class_names[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections ] frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels) cv2.putText(frame, "Press 'q' to quit", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.imshow("YOLOv8 Accessory Detection", frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() def prepare_custom_dataset(source_dir, target_dir, split_ratios=(0.7, 0.2, 0.1)): import shutil from sklearn.model_selection import train_test_split os.makedirs(os.path.join(target_dir, 'train', 'images'), exist_ok=True) os.makedirs(os.path.join(target_dir, 'train', 'labels'), exist_ok=True) os.makedirs(os.path.join(target_dir, 'valid', 'images'), exist_ok=True) os.makedirs(os.path.join(target_dir, 'valid', 'labels'), exist_ok=True) os.makedirs(os.path.join(target_dir, 'test', 'images'), exist_ok=True) os.makedirs(os.path.join(target_dir, 'test', 'labels'), exist_ok=True) print("YOLOv8 directory structure created") files = [f for f in os.listdir(source_dir) if f.endswith('.txt') and not f.endswith('classes.txt')] train_files, temp_files = train_test_split(files, test_size=(split_ratios[1]+split_ratios[2]), random_state=42) val_ratio = split_ratios[1] / (split_ratios[1] + split_ratios[2]) val_files, test_files = train_test_split(temp_files, test_size=(1-val_ratio), random_state=42) print(f"Split dataset: {len(train_files)} train, {len(val_files)} validation, {len(test_files)} test images") setup_dataset_config(target_dir, ["hat", "scarf", "sunglasses", "spectacles", "headphones", "ears_visible"]) print("Dataset preparation completed!") return os.path.join(target_dir, 'dataset.yaml') if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="YOLOv8 Face Accessory Detection System") parser.add_argument('--train', action='store_true', help='Train model') parser.add_argument('--detect', action='store_true', help='Run detection on webcam') parser.add_argument('--config', type=str, help='Path to dataset config file') parser.add_argument('--model', type=str, help='Path to trained model') parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs') args = parser.parse_args() if args.train: if not args.config: print("Error: Dataset config is required for training") else: model = train_yolov8_model(args.config, epochs=args.epochs) validate_model(model) if args.detect: run_webcam_detection(args.model) if not (args.train or args.detect): parser.print_help()