code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
#! /usr/bin/env python2 ############################################################ # Program is part of PySAR v1.2 # # Copyright(c) 2015, Heresh Fattahi, Zhang Yunjun # # Author: Heresh Fattahi, Zhang Yunjun # ############################################################ import os import sys import argparse import re try: import pyaps as pa except: sys.exit('Cannot import pyaps into Python!') import h5py import numpy as np import pysar._datetime as ptime import pysar._pysar_utilities as ut import pysar._readfile as readfile import pysar._writefile as writefile ############################################################### def get_delay(grib_file, atr, inps_dict): '''Get delay matrix using PyAPS for one acquisition Inputs: grib_file - strng, grib file path atr - dict, including the following attributes: dem_file - string, DEM file path grib_source - string, Weather re-analysis data source delay_type - string, comb/dry/wet ref_y/x - string, reference pixel row/col number inc_angle - np.array, 0/1/2 D Output: phs - 2D np.array, absolute tropospheric phase delay relative to ref_y/x ''' if 'X_FIRST' in atr.keys(): aps = pa.PyAPS_geo(grib_file, inps_dict['dem_file'], grib=inps_dict['grib_source'],\ verb=True, Del=inps_dict['delay_type']) else: aps = pa.PyAPS_rdr(grib_file, inps_dict['dem_file'], grib=inps_dict['grib_source'],\ verb=True, Del=inps_dict['delay_type']) phs = np.zeros((aps.ny, aps.nx), dtype=np.float32) aps.getdelay(phs, inc=0.0) # Get relative phase delay in space yref = int(atr['ref_y']) xref = int(atr['ref_x']) phs -= phs[yref, xref] # project into LOS direction phs /= np.cos(inps_dict['inc_angle']) # reverse the sign for consistency between different phase correction steps/methods phs *= -1 return phs def date_list2grib_file(date_list, hour, grib_source, grib_dir): grib_file_list = [] for d in date_list: grib_file = grib_dir+'/' if grib_source == 'ECMWF' : grib_file += 'ERA-Int_%s_%s.grb' % (d, hour) elif grib_source == 'ERA' : grib_file += 'ERA_%s_%s.grb' % (d, hour) elif grib_source == 'NARR' : grib_file += 'narr-a_221_%s_%s00_000.grb' % (d, hour) elif grib_source == 'MERRA' : grib_file += 'merra-%s-%s.nc4' % (d, hour) elif grib_source == 'MERRA1': grib_file += 'merra-%s-%s.hdf' % (d, hour) grib_file_list.append(grib_file) return grib_file_list def dload_grib(date_list, hour, grib_source='ECMWF', weather_dir='./'): '''Download weather re-analysis grib files using PyAPS Inputs: date_list : list of string in YYYYMMDD format hour : string in HH:MM or HH format grib_source : string, weather_dir : string, Output: grib_file_list : list of string ''' ## Grib data directory weather_dir = os.path.abspath(weather_dir) grib_dir = weather_dir+'/'+grib_source if not os.path.isdir(grib_dir): print 'making directory: '+grib_dir os.makedirs(grib_dir) ## Date list to grib file list grib_file_list = date_list2grib_file(date_list, hour, grib_source, grib_dir) ## Get date list to download (skip already downloaded files) grib_file_existed = ut.get_file_list(grib_file_list) if grib_file_existed: grib_filesize_digit = ut.mode([len(str(os.path.getsize(i))) for i in grib_file_existed]) grib_filesize_max2 = ut.mode([str(os.path.getsize(i))[0:2] for i in grib_file_existed]) grib_file_corrupted = [i for i in grib_file_existed if (len(str(os.path.getsize(i))) != grib_filesize_digit or\ str(os.path.getsize(i))[0:2] != grib_filesize_max2)] print 'file size mode: %se%d bytes' % (grib_filesize_max2, grib_filesize_digit-2) print 'number of grib files existed : %d' % len(grib_file_existed) if grib_file_corrupted: print '------------------------------------------------------------------------------' print 'corrupted grib files detected! Delete them and re-download...' print 'number of grib files corrupted : %d' % len(grib_file_corrupted) for i in grib_file_corrupted: rmCmd = 'rm '+i print rmCmd os.system(rmCmd) grib_file_existed.remove(i) print '------------------------------------------------------------------------------' grib_file2download = sorted(list(set(grib_file_list) - set(grib_file_existed))) date_list2download = [str(re.findall('\d{8}', i)[0]) for i in grib_file2download] print 'number of grib files to download: %d' % len(date_list2download) print '------------------------------------------------------------------------------\n' ## Download grib file using PyAPS if grib_source == 'ECMWF' : pa.ECMWFdload( date_list2download, hour, grib_dir) elif grib_source == 'ERA' : pa.ERAdload( date_list2download, hour, grib_dir) elif grib_source == 'NARR' : pa.NARRdload( date_list2download, hour, grib_dir) elif grib_source == 'MERRA' : pa.MERRAdload( date_list2download, hour, grib_dir) elif grib_source == 'MERRA1': pa.MERRA1dload(date_list2download, hour, grib_dir) return grib_file_existed ############################################################### EXAMPLE='''example: tropcor_pyaps.py timeseries.h5 -d geometryRadar.h5 -i geometryRadar.h5 tropcor_pyaps.py timeseries.h5 -d geometryGeo.h5 -i geometryGeo.h5 --weather-dir /famelung/data/WEATHER tropcor_pyaps.py -d srtm1.dem -i 30 --hour 00 --ref-yx 2000 2500 --date-list date_list.txt tropcor_pyaps.py timeseries.h5 -d demRadar.h5 -s NARR tropcor_pyaps.py timeseries.h5 -d demRadar.h5 -s MERRA --delay dry -i 23 tropcor_pyaps.py timeseries_LODcor.h5 -d demRadar.h5 tropcor_pyaps.py -s ECMWF --hour 18 --date-list date_list.txt --download tropcor_pyaps.py -s ECMWF --hour 18 --date-list bl_list.txt --download ''' REFERENCE='''reference: Jolivet, R., R. Grandin, C. Lasserre, M.-P. Doin and G. Peltzer (2011), Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data, Geophys. Res. Lett., 38, L17311, doi:10.1029/2011GL048757 ''' TEMPLATE=''' ## 7. Tropospheric Delay Correction (optional and recommended) ## correct tropospheric delay using the following methods: ## a. pyaps - use weather re-analysis data (Jolivet et al., 2011, GRL, need to install PyAPS; Dee et al., 2011) ## b. height_correlation - correct stratified tropospheric delay (Doin et al., 2009, J Applied Geop) ## c. base_trop_cor - (not recommend) baseline error and stratified tropo simultaneously (Jo et al., 2010, Geo J) pysar.troposphericDelay.method = auto #[pyaps / height_correlation / base_trop_cor / no], auto for pyaps pysar.troposphericDelay.weatherModel = auto #[ECMWF / MERRA / NARR], auto for ECMWF, for pyaps method pysar.troposphericDelay.polyOrder = auto #[1 / 2 / 3], auto for 1, for height_correlation method pysar.troposphericDelay.looks = auto #[1-inf], auto for 8, Number of looks to be applied to interferogram ''' DATA_INFO=''' re-analysis_dataset coverage temporal_resolution spatial_resolution latency analysis ------------------------------------------------------------------------------------------------------------ ERA-Interim (by ECMWF) Global 00/06/12/18 UTC 0.75 deg (~83 km) 2-month 4D-var MERRA2 (by NASA Goddard) Global 00/06/12/18 UTC 0.5 * 0.625 (~50 km) 2-3 weeks 3D-var To download MERRA2, you need an Earthdata account, and pre-authorize the "NASA GESDISC DATA ARCHIVE" application, following https://disc.gsfc.nasa.gov/earthdata-login. ''' def cmdLineParse(): parser = argparse.ArgumentParser(description='Tropospheric correction using weather models\n'+\ ' PyAPS is used to download and calculate the delay for each time-series epoch.',\ formatter_class=argparse.RawTextHelpFormatter,\ epilog=REFERENCE+'\n'+DATA_INFO+'\n'+EXAMPLE) parser.add_argument(dest='timeseries_file', nargs='?', help='timeseries HDF5 file, i.e. timeseries.h5') parser.add_argument('-d','--dem', dest='dem_file',\ help='DEM file, i.e. radar_4rlks.hgt, srtm1.dem') parser.add_argument('-i', dest='inc_angle', default='30',\ help='a file containing all incidence angles, or a number representing for the whole image.') parser.add_argument('--weather-dir', dest='weather_dir', \ help='directory to put downloaded weather data, i.e. ./../WEATHER\n'+\ 'use directory of input timeseries_file if not specified.') parser.add_argument('--delay', dest='delay_type', default='comb', choices={'comb','dry','wet'},\ help='Delay type to calculate, comb contains both wet and dry delays') parser.add_argument('--download', action='store_true', help='Download weather data only.') parser.add_argument('--date-list', dest='date_list_file',\ help='Read the first column of text file as list of date to download data\n'+\ 'in YYYYMMDD or YYMMDD format') parser.add_argument('--ref-yx', dest='ref_yx', type=int, nargs=2, help='reference pixel in y/x') parser.add_argument('-s', dest='weather_model',\ default='ECMWF', choices={'ECMWF','ERA-Interim','ERA','MERRA','MERRA1','NARR'},\ help='source of the atmospheric data.\n'+\ 'By the time of 2018-Mar-06, ERA and ECMWF data download link is working.\n'+\ 'NARR is working for 1979-Jan to 2014-Oct.\n'+\ 'MERRA(2) is not working.') parser.add_argument('--hour', help='time of data in HH, e.g. 12, 06') parser.add_argument('--template', dest='template_file',\ help='template file with input options below:\n'+TEMPLATE) parser.add_argument('-o', dest='out_file', help='Output file name for trospheric corrected timeseries.') inps = parser.parse_args() # Calculate DELAY or DOWNLOAD DATA ONLY, required one of them if not inps.download and not inps.dem_file and ( not inps.timeseries_file or not inps.date_list_file ): parser.print_help() sys.exit(1) return inps ############################################################### def main(argv): inps = cmdLineParse() k = None atr = dict() if inps.timeseries_file: inps.timeseries_file = ut.get_file_list([inps.timeseries_file])[0] atr = readfile.read_attribute(inps.timeseries_file) k = atr['FILE_TYPE'] elif inps.dem_file: inps.dem_file = ut.get_file_list([inps.dem_file])[0] atr = readfile.read_attribute(inps.dem_file) if 'ref_y' not in atr.keys() and inps.ref_yx: print 'No reference info found in input file, use input ref_yx: '+str(inps.ref_yx) atr['ref_y'] = inps.ref_yx[0] atr['ref_x'] = inps.ref_yx[1] ##Read Incidence angle: to map the zenith delay to the slant delay if os.path.isfile(inps.inc_angle): inps.inc_angle = readfile.read(inps.inc_angle, epoch='incidenceAngle')[0] else: inps.inc_angle = float(inps.inc_angle) print 'incidence angle: '+str(inps.inc_angle) inps.inc_angle = inps.inc_angle*np.pi/180.0 ##Prepare DEM file in ROI_PAC format for PyAPS to read if inps.dem_file: inps.dem_file = ut.get_file_list([inps.dem_file])[0] if os.path.splitext(inps.dem_file)[1] in ['.h5']: print 'convert DEM file to ROIPAC format' dem, atr_dem = readfile.read(inps.dem_file, epoch='height') if 'Y_FIRST' in atr.keys(): atr_dem['FILE_TYPE'] = '.dem' else: atr_dem['FILE_TYPE'] = '.hgt' outname = os.path.splitext(inps.dem_file)[0]+'4pyaps'+atr_dem['FILE_TYPE'] inps.dem_file = writefile.write(dem, atr_dem, outname) print '*******************************************************************************' print 'Downloading weather model data ...' ## Get Grib Source if inps.weather_model in ['ECMWF','ERA-Interim']: inps.grib_source = 'ECMWF' elif inps.weather_model == 'ERA' : inps.grib_source = 'ERA' elif inps.weather_model == 'MERRA': inps.grib_source = 'MERRA' elif inps.weather_model == 'NARR' : inps.grib_source = 'NARR' else: raise Reception('Unrecognized weather model: '+inps.weather_model) print 'grib source: '+inps.grib_source # Get weather directory if not inps.weather_dir: if inps.timeseries_file: inps.weather_dir = os.path.dirname(os.path.abspath(inps.timeseries_file))+'/../WEATHER' elif inps.dem_file: inps.weather_dir = os.path.dirname(os.path.abspath(inps.dem_file))+'/../WEATHER' else: inps.weather_dir = os.path.abspath(os.getcwd()) print 'Store weather data into directory: '+inps.weather_dir # Get date list to download if not inps.date_list_file: print 'read date list info from: '+inps.timeseries_file h5 = h5py.File(inps.timeseries_file, 'r') if 'timeseries' in h5.keys(): date_list = sorted(h5[k].keys()) elif k in ['interferograms','coherence','wrapped']: ifgram_list = sorted(h5[k].keys()) date12_list = ptime.list_ifgram2date12(ifgram_list) m_dates = [i.split('-')[0] for i in date12_list] s_dates = [i.split('-')[1] for i in date12_list] date_list = ptime.yyyymmdd(sorted(list(set(m_dates + s_dates)))) else: raise ValueError('Un-support input file type:'+k) h5.close() else: date_list = ptime.yyyymmdd(np.loadtxt(inps.date_list_file, dtype=str, usecols=(0,)).tolist()) print 'read date list info from: '+inps.date_list_file # Get Acquisition time - hour if not inps.hour: inps.hour = ptime.closest_weather_product_time(atr['CENTER_LINE_UTC'], inps.grib_source) print 'Time of cloest available product: '+inps.hour ## Download data using PyAPS inps.grib_file_list = dload_grib(date_list, inps.hour, inps.weather_model, inps.weather_dir) if inps.download: print 'Download completed, exit as planned.' return print '*******************************************************************************' print 'Calcualting delay for each epoch.' ## Calculate tropo delay using pyaps length = int(atr['FILE_LENGTH']) width = int(atr['WIDTH']) date_num = len(date_list) trop_ts = np.zeros((date_num, length, width), np.float32) for i in range(date_num): grib_file = inps.grib_file_list[i] date = date_list[i] print 'calculate phase delay on %s from file %s' % (date, os.path.basename(grib_file)) trop_ts[i] = get_delay(grib_file, atr, vars(inps)) ## Convert relative phase delay on reference date try: ref_date = atr['ref_date'] except: ref_date = date_list[0] print 'convert to relative phase delay with reference date: '+ref_date ref_idx = date_list.index(ref_date) trop_ts -= np.tile(trop_ts[ref_idx,:,:], (date_num, 1, 1)) ## Write tropospheric delay to HDF5 tropFile = inps.grib_source+'.h5' print 'writing >>> %s' % (tropFile) h5trop = h5py.File(tropFile, 'w') group_trop = h5trop.create_group('timeseries') print 'number of acquisitions: '+str(date_num) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] group_trop.create_dataset(date, data=trop_ts[i], compression='gzip') prog_bar.update(i+1, suffix=date) prog_bar.close() # Write Attributes for key,value in atr.iteritems(): group_trop.attrs[key] = value h5trop.close() ## Write corrected Time series to HDF5 if k == 'timeseries': if not inps.out_file: inps.out_file = os.path.splitext(inps.timeseries_file)[0]+'_'+inps.grib_source+'.h5' print 'writing >>> %s' % (inps.out_file) h5ts = h5py.File(inps.timeseries_file, 'r') h5tsCor = h5py.File(inps.out_file, 'w') group_tsCor = h5tsCor.create_group('timeseries') print 'number of acquisitions: '+str(date_num) prog_bar = ptime.progress_bar(maxValue=date_num) for i in range(date_num): date = date_list[i] ts = h5ts['timeseries'].get(date)[:] group_tsCor.create_dataset(date, data=ts-trop_ts[i], compression='gzip') prog_bar.update(i+1, suffix=date) prog_bar.close() h5ts.close() # Write Attributes for key,value in atr.iteritems(): group_tsCor.attrs[key] = value h5tsCor.close() # Delete temporary DEM file in ROI_PAC format if '4pyaps' in inps.dem_file: rmCmd = 'rm %s %s.rsc' % (inps.dem_file, inps.dem_file) print rmCmd os.system(rmCmd) print 'Done.' return inps.out_file ############################################################### if __name__ == '__main__': main(sys.argv[1:])
normal
{ "blob_id": "9515dcdfc0ece1a6740d6e7075bbcd1c20977590", "index": 9157, "step-1": "#! /usr/bin/env python2\n############################################################\n# Program is part of PySAR v1.2 #\n# Copyright(c) 2015, Heresh Fattahi, Zhang Yunjun #\n# Author: Heresh Fattahi, Zhang Yunjun #\n############################################################\n\n\nimport os\nimport sys\nimport argparse\nimport re\n\ntry:\n import pyaps as pa\nexcept:\n sys.exit('Cannot import pyaps into Python!')\n\nimport h5py\nimport numpy as np\n\nimport pysar._datetime as ptime\nimport pysar._pysar_utilities as ut\nimport pysar._readfile as readfile\nimport pysar._writefile as writefile\n\n\n###############################################################\ndef get_delay(grib_file, atr, inps_dict):\n '''Get delay matrix using PyAPS for one acquisition\n Inputs:\n grib_file - strng, grib file path\n atr - dict, including the following attributes:\n dem_file - string, DEM file path\n grib_source - string, Weather re-analysis data source\n delay_type - string, comb/dry/wet\n ref_y/x - string, reference pixel row/col number\n inc_angle - np.array, 0/1/2 D\n Output:\n phs - 2D np.array, absolute tropospheric phase delay relative to ref_y/x\n '''\n if 'X_FIRST' in atr.keys():\n aps = pa.PyAPS_geo(grib_file, inps_dict['dem_file'], grib=inps_dict['grib_source'],\\\n verb=True, Del=inps_dict['delay_type'])\n else:\n aps = pa.PyAPS_rdr(grib_file, inps_dict['dem_file'], grib=inps_dict['grib_source'],\\\n verb=True, Del=inps_dict['delay_type'])\n phs = np.zeros((aps.ny, aps.nx), dtype=np.float32)\n aps.getdelay(phs, inc=0.0)\n\n # Get relative phase delay in space\n yref = int(atr['ref_y'])\n xref = int(atr['ref_x'])\n phs -= phs[yref, xref]\n\n # project into LOS direction\n phs /= np.cos(inps_dict['inc_angle'])\n \n # reverse the sign for consistency between different phase correction steps/methods\n phs *= -1\n \n return phs\n\n\ndef date_list2grib_file(date_list, hour, grib_source, grib_dir):\n grib_file_list = []\n for d in date_list:\n grib_file = grib_dir+'/'\n if grib_source == 'ECMWF' : grib_file += 'ERA-Int_%s_%s.grb' % (d, hour)\n elif grib_source == 'ERA' : grib_file += 'ERA_%s_%s.grb' % (d, hour)\n elif grib_source == 'NARR' : grib_file += 'narr-a_221_%s_%s00_000.grb' % (d, hour)\n elif grib_source == 'MERRA' : grib_file += 'merra-%s-%s.nc4' % (d, hour)\n elif grib_source == 'MERRA1': grib_file += 'merra-%s-%s.hdf' % (d, hour)\n grib_file_list.append(grib_file)\n return grib_file_list\n\n\ndef dload_grib(date_list, hour, grib_source='ECMWF', weather_dir='./'):\n '''Download weather re-analysis grib files using PyAPS\n Inputs:\n date_list : list of string in YYYYMMDD format\n hour : string in HH:MM or HH format\n grib_source : string, \n weather_dir : string,\n Output:\n grib_file_list : list of string\n '''\n ## Grib data directory\n weather_dir = os.path.abspath(weather_dir)\n grib_dir = weather_dir+'/'+grib_source\n if not os.path.isdir(grib_dir):\n print 'making directory: '+grib_dir\n os.makedirs(grib_dir)\n\n ## Date list to grib file list\n grib_file_list = date_list2grib_file(date_list, hour, grib_source, grib_dir)\n\n ## Get date list to download (skip already downloaded files)\n grib_file_existed = ut.get_file_list(grib_file_list)\n if grib_file_existed:\n grib_filesize_digit = ut.mode([len(str(os.path.getsize(i))) for i in grib_file_existed])\n grib_filesize_max2 = ut.mode([str(os.path.getsize(i))[0:2] for i in grib_file_existed])\n grib_file_corrupted = [i for i in grib_file_existed if (len(str(os.path.getsize(i))) != grib_filesize_digit or\\\n str(os.path.getsize(i))[0:2] != grib_filesize_max2)]\n print 'file size mode: %se%d bytes' % (grib_filesize_max2, grib_filesize_digit-2)\n print 'number of grib files existed : %d' % len(grib_file_existed)\n if grib_file_corrupted:\n print '------------------------------------------------------------------------------'\n print 'corrupted grib files detected! Delete them and re-download...'\n print 'number of grib files corrupted : %d' % len(grib_file_corrupted)\n for i in grib_file_corrupted:\n rmCmd = 'rm '+i\n print rmCmd\n os.system(rmCmd)\n grib_file_existed.remove(i)\n print '------------------------------------------------------------------------------'\n grib_file2download = sorted(list(set(grib_file_list) - set(grib_file_existed)))\n date_list2download = [str(re.findall('\\d{8}', i)[0]) for i in grib_file2download]\n print 'number of grib files to download: %d' % len(date_list2download)\n print '------------------------------------------------------------------------------\\n'\n\n ## Download grib file using PyAPS\n if grib_source == 'ECMWF' : pa.ECMWFdload( date_list2download, hour, grib_dir)\n elif grib_source == 'ERA' : pa.ERAdload( date_list2download, hour, grib_dir)\n elif grib_source == 'NARR' : pa.NARRdload( date_list2download, hour, grib_dir)\n elif grib_source == 'MERRA' : pa.MERRAdload( date_list2download, hour, grib_dir)\n elif grib_source == 'MERRA1': pa.MERRA1dload(date_list2download, hour, grib_dir)\n\n return grib_file_existed\n\n\n###############################################################\nEXAMPLE='''example:\n tropcor_pyaps.py timeseries.h5 -d geometryRadar.h5 -i geometryRadar.h5\n tropcor_pyaps.py timeseries.h5 -d geometryGeo.h5 -i geometryGeo.h5 --weather-dir /famelung/data/WEATHER\n tropcor_pyaps.py -d srtm1.dem -i 30 --hour 00 --ref-yx 2000 2500 --date-list date_list.txt\n\n tropcor_pyaps.py timeseries.h5 -d demRadar.h5 -s NARR\n tropcor_pyaps.py timeseries.h5 -d demRadar.h5 -s MERRA --delay dry -i 23\n tropcor_pyaps.py timeseries_LODcor.h5 -d demRadar.h5\n\n tropcor_pyaps.py -s ECMWF --hour 18 --date-list date_list.txt --download\n tropcor_pyaps.py -s ECMWF --hour 18 --date-list bl_list.txt --download\n'''\n\nREFERENCE='''reference:\n Jolivet, R., R. Grandin, C. Lasserre, M.-P. Doin and G. Peltzer (2011), Systematic InSAR tropospheric\n phase delay corrections from global meteorological reanalysis data, Geophys. Res. Lett., 38, L17311,\n doi:10.1029/2011GL048757\n'''\n\nTEMPLATE='''\n## 7. Tropospheric Delay Correction (optional and recommended)\n## correct tropospheric delay using the following methods:\n## a. pyaps - use weather re-analysis data (Jolivet et al., 2011, GRL, need to install PyAPS; Dee et al., 2011)\n## b. height_correlation - correct stratified tropospheric delay (Doin et al., 2009, J Applied Geop)\n## c. base_trop_cor - (not recommend) baseline error and stratified tropo simultaneously (Jo et al., 2010, Geo J)\npysar.troposphericDelay.method = auto #[pyaps / height_correlation / base_trop_cor / no], auto for pyaps\npysar.troposphericDelay.weatherModel = auto #[ECMWF / MERRA / NARR], auto for ECMWF, for pyaps method\npysar.troposphericDelay.polyOrder = auto #[1 / 2 / 3], auto for 1, for height_correlation method\npysar.troposphericDelay.looks = auto #[1-inf], auto for 8, Number of looks to be applied to interferogram \n'''\n\nDATA_INFO='''\n re-analysis_dataset coverage temporal_resolution spatial_resolution latency analysis\n------------------------------------------------------------------------------------------------------------\nERA-Interim (by ECMWF) Global 00/06/12/18 UTC 0.75 deg (~83 km) 2-month 4D-var\nMERRA2 (by NASA Goddard) Global 00/06/12/18 UTC 0.5 * 0.625 (~50 km) 2-3 weeks 3D-var\n\nTo download MERRA2, you need an Earthdata account, and pre-authorize the \"NASA GESDISC DATA ARCHIVE\" application, following https://disc.gsfc.nasa.gov/earthdata-login.\n'''\n\n\ndef cmdLineParse():\n parser = argparse.ArgumentParser(description='Tropospheric correction using weather models\\n'+\\\n ' PyAPS is used to download and calculate the delay for each time-series epoch.',\\\n formatter_class=argparse.RawTextHelpFormatter,\\\n epilog=REFERENCE+'\\n'+DATA_INFO+'\\n'+EXAMPLE)\n\n parser.add_argument(dest='timeseries_file', nargs='?', help='timeseries HDF5 file, i.e. timeseries.h5')\n parser.add_argument('-d','--dem', dest='dem_file',\\\n help='DEM file, i.e. radar_4rlks.hgt, srtm1.dem')\n parser.add_argument('-i', dest='inc_angle', default='30',\\\n help='a file containing all incidence angles, or a number representing for the whole image.')\n parser.add_argument('--weather-dir', dest='weather_dir', \\\n help='directory to put downloaded weather data, i.e. ./../WEATHER\\n'+\\\n 'use directory of input timeseries_file if not specified.')\n parser.add_argument('--delay', dest='delay_type', default='comb', choices={'comb','dry','wet'},\\\n help='Delay type to calculate, comb contains both wet and dry delays')\n parser.add_argument('--download', action='store_true', help='Download weather data only.')\n parser.add_argument('--date-list', dest='date_list_file',\\\n help='Read the first column of text file as list of date to download data\\n'+\\\n 'in YYYYMMDD or YYMMDD format')\n parser.add_argument('--ref-yx', dest='ref_yx', type=int, nargs=2, help='reference pixel in y/x')\n\n parser.add_argument('-s', dest='weather_model',\\\n default='ECMWF', choices={'ECMWF','ERA-Interim','ERA','MERRA','MERRA1','NARR'},\\\n help='source of the atmospheric data.\\n'+\\\n 'By the time of 2018-Mar-06, ERA and ECMWF data download link is working.\\n'+\\\n 'NARR is working for 1979-Jan to 2014-Oct.\\n'+\\\n 'MERRA(2) is not working.')\n parser.add_argument('--hour', help='time of data in HH, e.g. 12, 06')\n\n parser.add_argument('--template', dest='template_file',\\\n help='template file with input options below:\\n'+TEMPLATE)\n parser.add_argument('-o', dest='out_file', help='Output file name for trospheric corrected timeseries.')\n\n inps = parser.parse_args()\n\n # Calculate DELAY or DOWNLOAD DATA ONLY, required one of them\n if not inps.download and not inps.dem_file and ( not inps.timeseries_file or not inps.date_list_file ):\n parser.print_help()\n sys.exit(1)\n return inps\n\n\n###############################################################\ndef main(argv):\n inps = cmdLineParse()\n\n k = None\n atr = dict()\n if inps.timeseries_file:\n inps.timeseries_file = ut.get_file_list([inps.timeseries_file])[0]\n atr = readfile.read_attribute(inps.timeseries_file)\n k = atr['FILE_TYPE']\n elif inps.dem_file:\n inps.dem_file = ut.get_file_list([inps.dem_file])[0]\n atr = readfile.read_attribute(inps.dem_file)\n if 'ref_y' not in atr.keys() and inps.ref_yx:\n print 'No reference info found in input file, use input ref_yx: '+str(inps.ref_yx)\n atr['ref_y'] = inps.ref_yx[0]\n atr['ref_x'] = inps.ref_yx[1]\n\n ##Read Incidence angle: to map the zenith delay to the slant delay\n if os.path.isfile(inps.inc_angle):\n inps.inc_angle = readfile.read(inps.inc_angle, epoch='incidenceAngle')[0]\n else:\n inps.inc_angle = float(inps.inc_angle)\n print 'incidence angle: '+str(inps.inc_angle)\n inps.inc_angle = inps.inc_angle*np.pi/180.0\n\n ##Prepare DEM file in ROI_PAC format for PyAPS to read\n if inps.dem_file:\n inps.dem_file = ut.get_file_list([inps.dem_file])[0]\n if os.path.splitext(inps.dem_file)[1] in ['.h5']:\n print 'convert DEM file to ROIPAC format'\n dem, atr_dem = readfile.read(inps.dem_file, epoch='height')\n if 'Y_FIRST' in atr.keys():\n atr_dem['FILE_TYPE'] = '.dem'\n else:\n atr_dem['FILE_TYPE'] = '.hgt'\n outname = os.path.splitext(inps.dem_file)[0]+'4pyaps'+atr_dem['FILE_TYPE']\n inps.dem_file = writefile.write(dem, atr_dem, outname)\n\n print '*******************************************************************************'\n print 'Downloading weather model data ...'\n\n ## Get Grib Source\n if inps.weather_model in ['ECMWF','ERA-Interim']: inps.grib_source = 'ECMWF'\n elif inps.weather_model == 'ERA' : inps.grib_source = 'ERA'\n elif inps.weather_model == 'MERRA': inps.grib_source = 'MERRA'\n elif inps.weather_model == 'NARR' : inps.grib_source = 'NARR'\n else: raise Reception('Unrecognized weather model: '+inps.weather_model)\n print 'grib source: '+inps.grib_source\n\n # Get weather directory\n if not inps.weather_dir:\n if inps.timeseries_file:\n inps.weather_dir = os.path.dirname(os.path.abspath(inps.timeseries_file))+'/../WEATHER'\n elif inps.dem_file:\n inps.weather_dir = os.path.dirname(os.path.abspath(inps.dem_file))+'/../WEATHER'\n else:\n inps.weather_dir = os.path.abspath(os.getcwd())\n print 'Store weather data into directory: '+inps.weather_dir\n\n # Get date list to download\n if not inps.date_list_file:\n print 'read date list info from: '+inps.timeseries_file\n h5 = h5py.File(inps.timeseries_file, 'r')\n if 'timeseries' in h5.keys():\n date_list = sorted(h5[k].keys())\n elif k in ['interferograms','coherence','wrapped']:\n ifgram_list = sorted(h5[k].keys())\n date12_list = ptime.list_ifgram2date12(ifgram_list)\n m_dates = [i.split('-')[0] for i in date12_list]\n s_dates = [i.split('-')[1] for i in date12_list]\n date_list = ptime.yyyymmdd(sorted(list(set(m_dates + s_dates))))\n else:\n raise ValueError('Un-support input file type:'+k)\n h5.close()\n else:\n date_list = ptime.yyyymmdd(np.loadtxt(inps.date_list_file, dtype=str, usecols=(0,)).tolist())\n print 'read date list info from: '+inps.date_list_file\n\n # Get Acquisition time - hour\n if not inps.hour:\n inps.hour = ptime.closest_weather_product_time(atr['CENTER_LINE_UTC'], inps.grib_source)\n print 'Time of cloest available product: '+inps.hour\n\n ## Download data using PyAPS\n inps.grib_file_list = dload_grib(date_list, inps.hour, inps.weather_model, inps.weather_dir)\n\n if inps.download:\n print 'Download completed, exit as planned.'\n return\n\n print '*******************************************************************************'\n print 'Calcualting delay for each epoch.'\n\n ## Calculate tropo delay using pyaps\n length = int(atr['FILE_LENGTH'])\n width = int(atr['WIDTH'])\n date_num = len(date_list)\n trop_ts = np.zeros((date_num, length, width), np.float32)\n for i in range(date_num):\n grib_file = inps.grib_file_list[i] \n date = date_list[i]\n print 'calculate phase delay on %s from file %s' % (date, os.path.basename(grib_file))\n trop_ts[i] = get_delay(grib_file, atr, vars(inps))\n\n ## Convert relative phase delay on reference date\n try: ref_date = atr['ref_date']\n except: ref_date = date_list[0]\n print 'convert to relative phase delay with reference date: '+ref_date\n ref_idx = date_list.index(ref_date)\n trop_ts -= np.tile(trop_ts[ref_idx,:,:], (date_num, 1, 1))\n\n ## Write tropospheric delay to HDF5\n tropFile = inps.grib_source+'.h5'\n print 'writing >>> %s' % (tropFile)\n h5trop = h5py.File(tropFile, 'w')\n group_trop = h5trop.create_group('timeseries')\n print 'number of acquisitions: '+str(date_num)\n prog_bar = ptime.progress_bar(maxValue=date_num)\n for i in range(date_num):\n date = date_list[i]\n group_trop.create_dataset(date, data=trop_ts[i], compression='gzip')\n prog_bar.update(i+1, suffix=date)\n prog_bar.close()\n # Write Attributes\n for key,value in atr.iteritems():\n group_trop.attrs[key] = value\n h5trop.close()\n\n ## Write corrected Time series to HDF5\n if k == 'timeseries':\n if not inps.out_file:\n inps.out_file = os.path.splitext(inps.timeseries_file)[0]+'_'+inps.grib_source+'.h5'\n print 'writing >>> %s' % (inps.out_file)\n h5ts = h5py.File(inps.timeseries_file, 'r')\n h5tsCor = h5py.File(inps.out_file, 'w') \n group_tsCor = h5tsCor.create_group('timeseries')\n print 'number of acquisitions: '+str(date_num)\n prog_bar = ptime.progress_bar(maxValue=date_num)\n for i in range(date_num):\n date = date_list[i]\n ts = h5ts['timeseries'].get(date)[:]\n group_tsCor.create_dataset(date, data=ts-trop_ts[i], compression='gzip')\n prog_bar.update(i+1, suffix=date)\n prog_bar.close()\n h5ts.close()\n # Write Attributes\n for key,value in atr.iteritems():\n group_tsCor.attrs[key] = value\n h5tsCor.close()\n\n # Delete temporary DEM file in ROI_PAC format\n if '4pyaps' in inps.dem_file:\n rmCmd = 'rm %s %s.rsc' % (inps.dem_file, inps.dem_file)\n print rmCmd\n os.system(rmCmd)\n print 'Done.'\n return inps.out_file\n\n\n###############################################################\nif __name__ == '__main__':\n main(sys.argv[1:])\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render from django.http import JsonResponse from knowdb.models import Knowledge import random # Create your views here. def answer(request): ret = {} data = Knowledge.objects.all() num = random.choice(range(1,int(data.count())+1)) ret['name'] = data[num-1].name ret['answer'] = data[num-1].answer print ret return JsonResponse({'exec':'true','ret':ret}) def edit(request): name = request.POST.get('name') answer = request.POST.get('answer') print name,answer try: adddata = Knowledge(name=name,answer=answer) adddata.save() return JsonResponse({'exec':'true','ret':'提交成功'}) except Exception as e: return JsonResponse({'exec':'false','ret':'提交失败'})
normal
{ "blob_id": "eb558644283d992af2c324d457dbe674b714235f", "index": 735, "step-1": "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals\n\nfrom django.shortcuts import render\nfrom django.http import JsonResponse\nfrom knowdb.models import Knowledge\n\nimport random\n# Create your views here.\n\ndef answer(request):\n ret = {}\n data = Knowledge.objects.all()\n num = random.choice(range(1,int(data.count())+1))\n ret['name'] = data[num-1].name\n ret['answer'] = data[num-1].answer\n print ret\n return JsonResponse({'exec':'true','ret':ret})\n\n\n\ndef edit(request):\n name = request.POST.get('name')\n answer = request.POST.get('answer')\n print name,answer\n try:\n adddata = Knowledge(name=name,answer=answer)\n adddata.save()\n return JsonResponse({'exec':'true','ret':'提交成功'})\n except Exception as e:\n return JsonResponse({'exec':'false','ret':'提交失败'})\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # Copyright © YXC # CreateTime: 2016-03-09 10:06:02 """ Example of functions with arbitrary number arguments """ def optional_argument_func(arg1='', arg2=''): """ Function with two optional arguments """ print("arg1:{0}".format(arg1)) print("arg2:{0}".format(arg2)) def arbitrary_argument_func(*args): """ just use "*" to collect all remaining arguments into a tuple """ numargs = len(args) print("Number of arguments:{0}".format(numargs)) for i, arg in enumerate(args): print("Argument {0} is : {1}".format(i, arg)) if __name__ == "__main__": optional_argument_func("Hello", "World") arbitrary_argument_func() arbitrary_argument_func("hello") arbitrary_argument_func("hello", "world", "again")
normal
{ "blob_id": "061a78650e2abf6a9d1e4796dd349174a8df5cb8", "index": 8747, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef optional_argument_func(arg1='', arg2=''):\n \"\"\"\n Function with two optional arguments\n \"\"\"\n print('arg1:{0}'.format(arg1))\n print('arg2:{0}'.format(arg2))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef optional_argument_func(arg1='', arg2=''):\n \"\"\"\n Function with two optional arguments\n \"\"\"\n print('arg1:{0}'.format(arg1))\n print('arg2:{0}'.format(arg2))\n\n\ndef arbitrary_argument_func(*args):\n \"\"\"\n just use \"*\" to collect all remaining arguments into a tuple\n \"\"\"\n numargs = len(args)\n print('Number of arguments:{0}'.format(numargs))\n for i, arg in enumerate(args):\n print('Argument {0} is : {1}'.format(i, arg))\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef optional_argument_func(arg1='', arg2=''):\n \"\"\"\n Function with two optional arguments\n \"\"\"\n print('arg1:{0}'.format(arg1))\n print('arg2:{0}'.format(arg2))\n\n\ndef arbitrary_argument_func(*args):\n \"\"\"\n just use \"*\" to collect all remaining arguments into a tuple\n \"\"\"\n numargs = len(args)\n print('Number of arguments:{0}'.format(numargs))\n for i, arg in enumerate(args):\n print('Argument {0} is : {1}'.format(i, arg))\n\n\nif __name__ == '__main__':\n optional_argument_func('Hello', 'World')\n arbitrary_argument_func()\n arbitrary_argument_func('hello')\n arbitrary_argument_func('hello', 'world', 'again')\n", "step-5": "#! /usr/bin/env python\n# -*- coding: utf-8 -*-\n# vim:fenc=utf-8\n# Copyright © YXC\n# CreateTime: 2016-03-09 10:06:02\n\n\"\"\"\nExample of functions with arbitrary number arguments\n\"\"\"\n\n\ndef optional_argument_func(arg1='', arg2=''):\n \"\"\"\n Function with two optional arguments\n \"\"\"\n print(\"arg1:{0}\".format(arg1))\n print(\"arg2:{0}\".format(arg2))\n\n\ndef arbitrary_argument_func(*args):\n \"\"\"\n just use \"*\" to collect all remaining arguments into a tuple\n \"\"\"\n numargs = len(args)\n print(\"Number of arguments:{0}\".format(numargs))\n for i, arg in enumerate(args):\n print(\"Argument {0} is : {1}\".format(i, arg))\n\n\nif __name__ == \"__main__\":\n optional_argument_func(\"Hello\", \"World\")\n arbitrary_argument_func()\n arbitrary_argument_func(\"hello\")\n arbitrary_argument_func(\"hello\", \"world\", \"again\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import unittest import sys import os #Add project root to path sys.path.append('../..') from speckle.SpeckleClient import SpeckleApiClient class TestSpeckleStream(unittest.TestCase): def setUp(self): self.s = SpeckleApiClient() self.user = {'email':'[email protected]','password':'testpassword', 'username':'testuser'} self.test_stream = 'RKWgU-oWF' self.test_object = '5bcf2c7e3ff66c15abac431d' login = self.s.UserLoginAsync(self.user) assert login, 'Test User Login was not successful' self.user['id'] = login['resource']['_id'] self.stream = self.s.StreamGetAsync(self.test_stream) obj = self.s.StreamGetObjectsAsync(self.test_stream) #for o in obj['resources']: # r = self.s.ObjectDeleteAsync(o['_id']) self.s.StreamUpdateAsync(self.test_stream, self.stream) def tearDown(self): self.s.StreamUpdateAsync(self.test_stream, self.stream) def none_msg(self, header): return header + ' responded with None' def test_get_object(self): r = self.s.ObjectGetAsync(self.test_object) self.assertIsNotNone(r, self.none_msg('ObjectGetAsync')) self.assertTrue(r['success']) def test_create_object(self): r = self.s.ObjectCreateAsync([{"owner": self.user['username']}]) self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync')) self.assertTrue(r['success']) self.assertTrue(r['resources']) #Check created object ID is in response resource = r['resources'][0] self.assertTrue(resource['_id']) print(resource['_id']) self.s.StreamAddObjectAsync(self.test_stream, resource['_id']) def test_create_point_object(self): obj = { "owner": self.user['username'], "type": "Point", "hash": "hash", "value": [0,0,0] } r = self.s.ObjectCreateAsync([obj]) self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync')) self.assertTrue(r['success']) self.assertTrue(r['resources']) #Check created object ID is in response resource = r['resources'][0] self.assertTrue(resource['_id']) print(resource['_id']) self.s.StreamAddObjectAsync(self.test_stream, resource['_id']) def test_create_mesh_object(self): obj = { "owner": self.user['username'], "type": "Mesh", "geometryHash": "Mesh.66ec936fc8eb1844581db685e5672f79", "hash": "2e4d67853709316f17e3745cd700a9ed", "properties": { "center": { "type": "Point", "value": [ -2.326136578802356, 7.41377889150433, 0.01525474415516414 ], "hash": "318e1a3b9bf16bf5711170b61b4cd144", "geometryHash": "Point.8012f72d1fd49795101ab099b7dff3cb" }, "area": 1.6718884716988291, "revitFamTYpe": "undefined" }, "vertices": [ -2.6709675788879395, 7.420193672180176, 0.007017634343355894, -2.6617817878723145, 7.910780906677246, 0.016628438606858253, -2.6525962352752686, 8.401368141174316, 0.026239242404699326, -2.6434104442596436, 8.891955375671387, 0.03585004433989525, -2.6342246532440186, 9.382542610168457, 0.04546085000038147, -2.507732629776001, 6.9263834953308105, 0.005644594319164753, -2.498547077178955, 7.416970729827881, 0.01319583784788847, -2.48936128616333, 7.907557964324951, 0.02074708230793476, -2.480175495147705, 8.39814567565918, 0.028298325836658478, -2.47098970413208, 8.88873291015625, 0.035849571228027344, -2.3444979190826416, 6.432573318481445, 0.004271554294973612, -2.3353121280670166, 6.923160552978516, 0.00976323802024126, -2.3261263370513916, 7.413747787475586, 0.015254922211170197, -2.3169405460357666, 7.9043354988098145, 0.020746605470776558, -2.3077549934387207, 8.394922256469727, 0.02623829059302807, -2.181262969970703, 5.93876314163208, 0.0028985145036131144, -2.172077178955078, 6.42935037612915, 0.006330638192594051, -2.162891387939453, 6.919937610626221, 0.009762762114405632, -2.1537058353424072, 7.410524845123291, 0.013194886036217213, -2.1445200443267822, 7.9011125564575195, 0.016627009958028793, -2.0180280208587646, 5.444952964782715, 0.0015254743630066514, -2.0088422298431396, 5.935540199279785, 0.002898038364946842, -1.9996565580368042, 6.4261274337768555, 0.0042706020176410675, -1.9904708862304688, 6.916714668273926, 0.00564316613599658, -1.9812850952148438, 7.407302379608154, 0.0070157297886908054 ], "faces": [ 1, 6, 1, 0, 5, 1, 7, 2, 1, 6, 1, 8, 3, 2, 7, 1, 9, 4, 3, 8, 1, 11, 6, 5, 10, 1, 12, 7, 6, 11, 1, 13, 8, 7, 12, 1, 14, 9, 8, 13, 1, 16, 11, 10, 15, 1, 17, 12, 11, 16, 1, 18, 13, 12, 17, 1, 19, 14, 13, 18, 1, 21, 16, 15, 20, 1, 22, 17, 16, 21, 1, 23, 18, 17, 22, 1, 24, 19, 18, 23 ] } r = self.s.ObjectCreateAsync([obj]) self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync')) self.assertTrue(r['success']) self.assertTrue(r['resources']) # Check created object ID is in response resource = r['resources'][0] self.assertTrue(resource['_id']) print(resource['_id']) self.s.StreamAddObjectAsync(self.test_stream, resource['_id']) def test_line_object(self): obj = { "type": "Line", "value": [ -5689.317811503128, -13716.87365524665, 3448.9999880790538, -5688.317811503128, -13717.87365524665, 3539.9999880790538 ], } r = self.s.ObjectCreateAsync([obj]) self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync')) self.assertTrue(r['success']) self.assertTrue(r['resources']) # Check created object ID is in response resource = r['resources'][0] self.assertTrue(resource['_id']) print(resource['_id']) self.s.StreamAddObjectAsync(self.test_stream, resource['_id']) def test_line_objects(self): objects = [ { "type": "Line", "value": [ 0, 0, 0, 1, 1, 1 ], }, { "type": "Line", "value": [ -1, -1, -1, 2, 2, 2 ], }, ] r = self.s.ObjectCreateAsync(objects) self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync')) self.assertTrue(r['success']) self.assertTrue(r['resources']) # Check created object ID is in response resource = r['resources'][0] self.assertTrue(resource['_id']) print(resource['_id']) self.s.StreamAddObjectAsync(self.test_stream, resource['_id']) def test_update_object(self): geometry = { "vertices": [0.0, 1.0, 2.0, 3.0], "faces": [1,2,3] } props = { 'type': 'RCSlab', 'material': 'Concrete' } data = {'properties': props} data.update(geometry) r = self.s.ObjectUpdateAsync(self.test_object, data) self.assertIsNotNone(r) #Todo: Look into why user is not authorized to update self.assertTrue(r['success']) if __name__ == "__main__": unittest.main()
normal
{ "blob_id": "b39403171ed264c8fae5ea4ae9d17f77cfcab497", "index": 9122, "step-1": "<mask token>\n\n\nclass TestSpeckleStream(unittest.TestCase):\n\n def setUp(self):\n self.s = SpeckleApiClient()\n self.user = {'email': '[email protected]', 'password':\n 'testpassword', 'username': 'testuser'}\n self.test_stream = 'RKWgU-oWF'\n self.test_object = '5bcf2c7e3ff66c15abac431d'\n login = self.s.UserLoginAsync(self.user)\n assert login, 'Test User Login was not successful'\n self.user['id'] = login['resource']['_id']\n self.stream = self.s.StreamGetAsync(self.test_stream)\n obj = self.s.StreamGetObjectsAsync(self.test_stream)\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def tearDown(self):\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def none_msg(self, header):\n return header + ' responded with None'\n\n def test_get_object(self):\n r = self.s.ObjectGetAsync(self.test_object)\n self.assertIsNotNone(r, self.none_msg('ObjectGetAsync'))\n self.assertTrue(r['success'])\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_line_objects(self):\n objects = [{'type': 'Line', 'value': [0, 0, 0, 1, 1, 1]}, {'type':\n 'Line', 'value': [-1, -1, -1, 2, 2, 2]}]\n r = self.s.ObjectCreateAsync(objects)\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_update_object(self):\n geometry = {'vertices': [0.0, 1.0, 2.0, 3.0], 'faces': [1, 2, 3]}\n props = {'type': 'RCSlab', 'material': 'Concrete'}\n data = {'properties': props}\n data.update(geometry)\n r = self.s.ObjectUpdateAsync(self.test_object, data)\n self.assertIsNotNone(r)\n self.assertTrue(r['success'])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestSpeckleStream(unittest.TestCase):\n\n def setUp(self):\n self.s = SpeckleApiClient()\n self.user = {'email': '[email protected]', 'password':\n 'testpassword', 'username': 'testuser'}\n self.test_stream = 'RKWgU-oWF'\n self.test_object = '5bcf2c7e3ff66c15abac431d'\n login = self.s.UserLoginAsync(self.user)\n assert login, 'Test User Login was not successful'\n self.user['id'] = login['resource']['_id']\n self.stream = self.s.StreamGetAsync(self.test_stream)\n obj = self.s.StreamGetObjectsAsync(self.test_stream)\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def tearDown(self):\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def none_msg(self, header):\n return header + ' responded with None'\n\n def test_get_object(self):\n r = self.s.ObjectGetAsync(self.test_object)\n self.assertIsNotNone(r, self.none_msg('ObjectGetAsync'))\n self.assertTrue(r['success'])\n\n def test_create_object(self):\n r = self.s.ObjectCreateAsync([{'owner': self.user['username']}])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_point_object(self):\n obj = {'owner': self.user['username'], 'type': 'Point', 'hash':\n 'hash', 'value': [0, 0, 0]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_mesh_object(self):\n obj = {'owner': self.user['username'], 'type': 'Mesh',\n 'geometryHash': 'Mesh.66ec936fc8eb1844581db685e5672f79', 'hash':\n '2e4d67853709316f17e3745cd700a9ed', 'properties': {'center': {\n 'type': 'Point', 'value': [-2.326136578802356, 7.41377889150433,\n 0.01525474415516414], 'hash':\n '318e1a3b9bf16bf5711170b61b4cd144', 'geometryHash':\n 'Point.8012f72d1fd49795101ab099b7dff3cb'}, 'area': \n 1.6718884716988291, 'revitFamTYpe': 'undefined'}, 'vertices': [\n -2.6709675788879395, 7.420193672180176, 0.007017634343355894, -\n 2.6617817878723145, 7.910780906677246, 0.016628438606858253, -\n 2.6525962352752686, 8.401368141174316, 0.026239242404699326, -\n 2.6434104442596436, 8.891955375671387, 0.03585004433989525, -\n 2.6342246532440186, 9.382542610168457, 0.04546085000038147, -\n 2.507732629776001, 6.9263834953308105, 0.005644594319164753, -\n 2.498547077178955, 7.416970729827881, 0.01319583784788847, -\n 2.48936128616333, 7.907557964324951, 0.02074708230793476, -\n 2.480175495147705, 8.39814567565918, 0.028298325836658478, -\n 2.47098970413208, 8.88873291015625, 0.035849571228027344, -\n 2.3444979190826416, 6.432573318481445, 0.004271554294973612, -\n 2.3353121280670166, 6.923160552978516, 0.00976323802024126, -\n 2.3261263370513916, 7.413747787475586, 0.015254922211170197, -\n 2.3169405460357666, 7.9043354988098145, 0.020746605470776558, -\n 2.3077549934387207, 8.394922256469727, 0.02623829059302807, -\n 2.181262969970703, 5.93876314163208, 0.0028985145036131144, -\n 2.172077178955078, 6.42935037612915, 0.006330638192594051, -\n 2.162891387939453, 6.919937610626221, 0.009762762114405632, -\n 2.1537058353424072, 7.410524845123291, 0.013194886036217213, -\n 2.1445200443267822, 7.9011125564575195, 0.016627009958028793, -\n 2.0180280208587646, 5.444952964782715, 0.0015254743630066514, -\n 2.0088422298431396, 5.935540199279785, 0.002898038364946842, -\n 1.9996565580368042, 6.4261274337768555, 0.0042706020176410675, \n -1.9904708862304688, 6.916714668273926, 0.00564316613599658, -\n 1.9812850952148438, 7.407302379608154, 0.0070157297886908054],\n 'faces': [1, 6, 1, 0, 5, 1, 7, 2, 1, 6, 1, 8, 3, 2, 7, 1, 9, 4,\n 3, 8, 1, 11, 6, 5, 10, 1, 12, 7, 6, 11, 1, 13, 8, 7, 12, 1, 14,\n 9, 8, 13, 1, 16, 11, 10, 15, 1, 17, 12, 11, 16, 1, 18, 13, 12, \n 17, 1, 19, 14, 13, 18, 1, 21, 16, 15, 20, 1, 22, 17, 16, 21, 1,\n 23, 18, 17, 22, 1, 24, 19, 18, 23]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_object(self):\n obj = {'type': 'Line', 'value': [-5689.317811503128, -\n 13716.87365524665, 3448.9999880790538, -5688.317811503128, -\n 13717.87365524665, 3539.9999880790538]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_objects(self):\n objects = [{'type': 'Line', 'value': [0, 0, 0, 1, 1, 1]}, {'type':\n 'Line', 'value': [-1, -1, -1, 2, 2, 2]}]\n r = self.s.ObjectCreateAsync(objects)\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_update_object(self):\n geometry = {'vertices': [0.0, 1.0, 2.0, 3.0], 'faces': [1, 2, 3]}\n props = {'type': 'RCSlab', 'material': 'Concrete'}\n data = {'properties': props}\n data.update(geometry)\n r = self.s.ObjectUpdateAsync(self.test_object, data)\n self.assertIsNotNone(r)\n self.assertTrue(r['success'])\n\n\n<mask token>\n", "step-3": "<mask token>\nsys.path.append('../..')\n<mask token>\n\n\nclass TestSpeckleStream(unittest.TestCase):\n\n def setUp(self):\n self.s = SpeckleApiClient()\n self.user = {'email': '[email protected]', 'password':\n 'testpassword', 'username': 'testuser'}\n self.test_stream = 'RKWgU-oWF'\n self.test_object = '5bcf2c7e3ff66c15abac431d'\n login = self.s.UserLoginAsync(self.user)\n assert login, 'Test User Login was not successful'\n self.user['id'] = login['resource']['_id']\n self.stream = self.s.StreamGetAsync(self.test_stream)\n obj = self.s.StreamGetObjectsAsync(self.test_stream)\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def tearDown(self):\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def none_msg(self, header):\n return header + ' responded with None'\n\n def test_get_object(self):\n r = self.s.ObjectGetAsync(self.test_object)\n self.assertIsNotNone(r, self.none_msg('ObjectGetAsync'))\n self.assertTrue(r['success'])\n\n def test_create_object(self):\n r = self.s.ObjectCreateAsync([{'owner': self.user['username']}])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_point_object(self):\n obj = {'owner': self.user['username'], 'type': 'Point', 'hash':\n 'hash', 'value': [0, 0, 0]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_mesh_object(self):\n obj = {'owner': self.user['username'], 'type': 'Mesh',\n 'geometryHash': 'Mesh.66ec936fc8eb1844581db685e5672f79', 'hash':\n '2e4d67853709316f17e3745cd700a9ed', 'properties': {'center': {\n 'type': 'Point', 'value': [-2.326136578802356, 7.41377889150433,\n 0.01525474415516414], 'hash':\n '318e1a3b9bf16bf5711170b61b4cd144', 'geometryHash':\n 'Point.8012f72d1fd49795101ab099b7dff3cb'}, 'area': \n 1.6718884716988291, 'revitFamTYpe': 'undefined'}, 'vertices': [\n -2.6709675788879395, 7.420193672180176, 0.007017634343355894, -\n 2.6617817878723145, 7.910780906677246, 0.016628438606858253, -\n 2.6525962352752686, 8.401368141174316, 0.026239242404699326, -\n 2.6434104442596436, 8.891955375671387, 0.03585004433989525, -\n 2.6342246532440186, 9.382542610168457, 0.04546085000038147, -\n 2.507732629776001, 6.9263834953308105, 0.005644594319164753, -\n 2.498547077178955, 7.416970729827881, 0.01319583784788847, -\n 2.48936128616333, 7.907557964324951, 0.02074708230793476, -\n 2.480175495147705, 8.39814567565918, 0.028298325836658478, -\n 2.47098970413208, 8.88873291015625, 0.035849571228027344, -\n 2.3444979190826416, 6.432573318481445, 0.004271554294973612, -\n 2.3353121280670166, 6.923160552978516, 0.00976323802024126, -\n 2.3261263370513916, 7.413747787475586, 0.015254922211170197, -\n 2.3169405460357666, 7.9043354988098145, 0.020746605470776558, -\n 2.3077549934387207, 8.394922256469727, 0.02623829059302807, -\n 2.181262969970703, 5.93876314163208, 0.0028985145036131144, -\n 2.172077178955078, 6.42935037612915, 0.006330638192594051, -\n 2.162891387939453, 6.919937610626221, 0.009762762114405632, -\n 2.1537058353424072, 7.410524845123291, 0.013194886036217213, -\n 2.1445200443267822, 7.9011125564575195, 0.016627009958028793, -\n 2.0180280208587646, 5.444952964782715, 0.0015254743630066514, -\n 2.0088422298431396, 5.935540199279785, 0.002898038364946842, -\n 1.9996565580368042, 6.4261274337768555, 0.0042706020176410675, \n -1.9904708862304688, 6.916714668273926, 0.00564316613599658, -\n 1.9812850952148438, 7.407302379608154, 0.0070157297886908054],\n 'faces': [1, 6, 1, 0, 5, 1, 7, 2, 1, 6, 1, 8, 3, 2, 7, 1, 9, 4,\n 3, 8, 1, 11, 6, 5, 10, 1, 12, 7, 6, 11, 1, 13, 8, 7, 12, 1, 14,\n 9, 8, 13, 1, 16, 11, 10, 15, 1, 17, 12, 11, 16, 1, 18, 13, 12, \n 17, 1, 19, 14, 13, 18, 1, 21, 16, 15, 20, 1, 22, 17, 16, 21, 1,\n 23, 18, 17, 22, 1, 24, 19, 18, 23]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_object(self):\n obj = {'type': 'Line', 'value': [-5689.317811503128, -\n 13716.87365524665, 3448.9999880790538, -5688.317811503128, -\n 13717.87365524665, 3539.9999880790538]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_objects(self):\n objects = [{'type': 'Line', 'value': [0, 0, 0, 1, 1, 1]}, {'type':\n 'Line', 'value': [-1, -1, -1, 2, 2, 2]}]\n r = self.s.ObjectCreateAsync(objects)\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_update_object(self):\n geometry = {'vertices': [0.0, 1.0, 2.0, 3.0], 'faces': [1, 2, 3]}\n props = {'type': 'RCSlab', 'material': 'Concrete'}\n data = {'properties': props}\n data.update(geometry)\n r = self.s.ObjectUpdateAsync(self.test_object, data)\n self.assertIsNotNone(r)\n self.assertTrue(r['success'])\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "import unittest\nimport sys\nimport os\nsys.path.append('../..')\nfrom speckle.SpeckleClient import SpeckleApiClient\n\n\nclass TestSpeckleStream(unittest.TestCase):\n\n def setUp(self):\n self.s = SpeckleApiClient()\n self.user = {'email': '[email protected]', 'password':\n 'testpassword', 'username': 'testuser'}\n self.test_stream = 'RKWgU-oWF'\n self.test_object = '5bcf2c7e3ff66c15abac431d'\n login = self.s.UserLoginAsync(self.user)\n assert login, 'Test User Login was not successful'\n self.user['id'] = login['resource']['_id']\n self.stream = self.s.StreamGetAsync(self.test_stream)\n obj = self.s.StreamGetObjectsAsync(self.test_stream)\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def tearDown(self):\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def none_msg(self, header):\n return header + ' responded with None'\n\n def test_get_object(self):\n r = self.s.ObjectGetAsync(self.test_object)\n self.assertIsNotNone(r, self.none_msg('ObjectGetAsync'))\n self.assertTrue(r['success'])\n\n def test_create_object(self):\n r = self.s.ObjectCreateAsync([{'owner': self.user['username']}])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_point_object(self):\n obj = {'owner': self.user['username'], 'type': 'Point', 'hash':\n 'hash', 'value': [0, 0, 0]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_mesh_object(self):\n obj = {'owner': self.user['username'], 'type': 'Mesh',\n 'geometryHash': 'Mesh.66ec936fc8eb1844581db685e5672f79', 'hash':\n '2e4d67853709316f17e3745cd700a9ed', 'properties': {'center': {\n 'type': 'Point', 'value': [-2.326136578802356, 7.41377889150433,\n 0.01525474415516414], 'hash':\n '318e1a3b9bf16bf5711170b61b4cd144', 'geometryHash':\n 'Point.8012f72d1fd49795101ab099b7dff3cb'}, 'area': \n 1.6718884716988291, 'revitFamTYpe': 'undefined'}, 'vertices': [\n -2.6709675788879395, 7.420193672180176, 0.007017634343355894, -\n 2.6617817878723145, 7.910780906677246, 0.016628438606858253, -\n 2.6525962352752686, 8.401368141174316, 0.026239242404699326, -\n 2.6434104442596436, 8.891955375671387, 0.03585004433989525, -\n 2.6342246532440186, 9.382542610168457, 0.04546085000038147, -\n 2.507732629776001, 6.9263834953308105, 0.005644594319164753, -\n 2.498547077178955, 7.416970729827881, 0.01319583784788847, -\n 2.48936128616333, 7.907557964324951, 0.02074708230793476, -\n 2.480175495147705, 8.39814567565918, 0.028298325836658478, -\n 2.47098970413208, 8.88873291015625, 0.035849571228027344, -\n 2.3444979190826416, 6.432573318481445, 0.004271554294973612, -\n 2.3353121280670166, 6.923160552978516, 0.00976323802024126, -\n 2.3261263370513916, 7.413747787475586, 0.015254922211170197, -\n 2.3169405460357666, 7.9043354988098145, 0.020746605470776558, -\n 2.3077549934387207, 8.394922256469727, 0.02623829059302807, -\n 2.181262969970703, 5.93876314163208, 0.0028985145036131144, -\n 2.172077178955078, 6.42935037612915, 0.006330638192594051, -\n 2.162891387939453, 6.919937610626221, 0.009762762114405632, -\n 2.1537058353424072, 7.410524845123291, 0.013194886036217213, -\n 2.1445200443267822, 7.9011125564575195, 0.016627009958028793, -\n 2.0180280208587646, 5.444952964782715, 0.0015254743630066514, -\n 2.0088422298431396, 5.935540199279785, 0.002898038364946842, -\n 1.9996565580368042, 6.4261274337768555, 0.0042706020176410675, \n -1.9904708862304688, 6.916714668273926, 0.00564316613599658, -\n 1.9812850952148438, 7.407302379608154, 0.0070157297886908054],\n 'faces': [1, 6, 1, 0, 5, 1, 7, 2, 1, 6, 1, 8, 3, 2, 7, 1, 9, 4,\n 3, 8, 1, 11, 6, 5, 10, 1, 12, 7, 6, 11, 1, 13, 8, 7, 12, 1, 14,\n 9, 8, 13, 1, 16, 11, 10, 15, 1, 17, 12, 11, 16, 1, 18, 13, 12, \n 17, 1, 19, 14, 13, 18, 1, 21, 16, 15, 20, 1, 22, 17, 16, 21, 1,\n 23, 18, 17, 22, 1, 24, 19, 18, 23]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_object(self):\n obj = {'type': 'Line', 'value': [-5689.317811503128, -\n 13716.87365524665, 3448.9999880790538, -5688.317811503128, -\n 13717.87365524665, 3539.9999880790538]}\n r = self.s.ObjectCreateAsync([obj])\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_objects(self):\n objects = [{'type': 'Line', 'value': [0, 0, 0, 1, 1, 1]}, {'type':\n 'Line', 'value': [-1, -1, -1, 2, 2, 2]}]\n r = self.s.ObjectCreateAsync(objects)\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n print(resource['_id'])\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_update_object(self):\n geometry = {'vertices': [0.0, 1.0, 2.0, 3.0], 'faces': [1, 2, 3]}\n props = {'type': 'RCSlab', 'material': 'Concrete'}\n data = {'properties': props}\n data.update(geometry)\n r = self.s.ObjectUpdateAsync(self.test_object, data)\n self.assertIsNotNone(r)\n self.assertTrue(r['success'])\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "import unittest\nimport sys\nimport os\n#Add project root to path\nsys.path.append('../..')\n\nfrom speckle.SpeckleClient import SpeckleApiClient\n\n\nclass TestSpeckleStream(unittest.TestCase):\n\n def setUp(self):\n\n self.s = SpeckleApiClient()\n self.user = {'email':'[email protected]','password':'testpassword', 'username':'testuser'}\n\n self.test_stream = 'RKWgU-oWF'\n self.test_object = '5bcf2c7e3ff66c15abac431d'\n\n login = self.s.UserLoginAsync(self.user)\n assert login, 'Test User Login was not successful'\n\n self.user['id'] = login['resource']['_id']\n\n self.stream = self.s.StreamGetAsync(self.test_stream)\n obj = self.s.StreamGetObjectsAsync(self.test_stream)\n\n #for o in obj['resources']:\n # r = self.s.ObjectDeleteAsync(o['_id'])\n\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def tearDown(self):\n self.s.StreamUpdateAsync(self.test_stream, self.stream)\n\n def none_msg(self, header):\n return header + ' responded with None'\n \n\n def test_get_object(self):\n r = self.s.ObjectGetAsync(self.test_object)\n\n self.assertIsNotNone(r, self.none_msg('ObjectGetAsync'))\n self.assertTrue(r['success'])\n \n \n def test_create_object(self):\n\n r = self.s.ObjectCreateAsync([{\"owner\": self.user['username']}])\n\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n\n #Check created object ID is in response\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n\n print(resource['_id'])\n\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_point_object(self):\n obj = {\n \"owner\": self.user['username'],\n \"type\": \"Point\",\n \"hash\": \"hash\",\n \"value\": [0,0,0]\n }\n\n r = self.s.ObjectCreateAsync([obj])\n\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n\n #Check created object ID is in response\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n\n print(resource['_id'])\n\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_create_mesh_object(self):\n obj = {\n \"owner\": self.user['username'],\n \"type\": \"Mesh\",\n \"geometryHash\": \"Mesh.66ec936fc8eb1844581db685e5672f79\",\n \"hash\": \"2e4d67853709316f17e3745cd700a9ed\",\n \"properties\": {\n \"center\": {\n \"type\": \"Point\",\n \"value\": [\n -2.326136578802356,\n 7.41377889150433,\n 0.01525474415516414\n ],\n \"hash\": \"318e1a3b9bf16bf5711170b61b4cd144\",\n \"geometryHash\": \"Point.8012f72d1fd49795101ab099b7dff3cb\"\n },\n \"area\": 1.6718884716988291,\n \"revitFamTYpe\": \"undefined\"\n },\n \"vertices\": [\n -2.6709675788879395,\n 7.420193672180176,\n 0.007017634343355894,\n -2.6617817878723145,\n 7.910780906677246,\n 0.016628438606858253,\n -2.6525962352752686,\n 8.401368141174316,\n 0.026239242404699326,\n -2.6434104442596436,\n 8.891955375671387,\n 0.03585004433989525,\n -2.6342246532440186,\n 9.382542610168457,\n 0.04546085000038147,\n -2.507732629776001,\n 6.9263834953308105,\n 0.005644594319164753,\n -2.498547077178955,\n 7.416970729827881,\n 0.01319583784788847,\n -2.48936128616333,\n 7.907557964324951,\n 0.02074708230793476,\n -2.480175495147705,\n 8.39814567565918,\n 0.028298325836658478,\n -2.47098970413208,\n 8.88873291015625,\n 0.035849571228027344,\n -2.3444979190826416,\n 6.432573318481445,\n 0.004271554294973612,\n -2.3353121280670166,\n 6.923160552978516,\n 0.00976323802024126,\n -2.3261263370513916,\n 7.413747787475586,\n 0.015254922211170197,\n -2.3169405460357666,\n 7.9043354988098145,\n 0.020746605470776558,\n -2.3077549934387207,\n 8.394922256469727,\n 0.02623829059302807,\n -2.181262969970703,\n 5.93876314163208,\n 0.0028985145036131144,\n -2.172077178955078,\n 6.42935037612915,\n 0.006330638192594051,\n -2.162891387939453,\n 6.919937610626221,\n 0.009762762114405632,\n -2.1537058353424072,\n 7.410524845123291,\n 0.013194886036217213,\n -2.1445200443267822,\n 7.9011125564575195,\n 0.016627009958028793,\n -2.0180280208587646,\n 5.444952964782715,\n 0.0015254743630066514,\n -2.0088422298431396,\n 5.935540199279785,\n 0.002898038364946842,\n -1.9996565580368042,\n 6.4261274337768555,\n 0.0042706020176410675,\n -1.9904708862304688,\n 6.916714668273926,\n 0.00564316613599658,\n -1.9812850952148438,\n 7.407302379608154,\n 0.0070157297886908054\n ],\n \"faces\": [\n 1,\n 6,\n 1,\n 0,\n 5,\n 1,\n 7,\n 2,\n 1,\n 6,\n 1,\n 8,\n 3,\n 2,\n 7,\n 1,\n 9,\n 4,\n 3,\n 8,\n 1,\n 11,\n 6,\n 5,\n 10,\n 1,\n 12,\n 7,\n 6,\n 11,\n 1,\n 13,\n 8,\n 7,\n 12,\n 1,\n 14,\n 9,\n 8,\n 13,\n 1,\n 16,\n 11,\n 10,\n 15,\n 1,\n 17,\n 12,\n 11,\n 16,\n 1,\n 18,\n 13,\n 12,\n 17,\n 1,\n 19,\n 14,\n 13,\n 18,\n 1,\n 21,\n 16,\n 15,\n 20,\n 1,\n 22,\n 17,\n 16,\n 21,\n 1,\n 23,\n 18,\n 17,\n 22,\n 1,\n 24,\n 19,\n 18,\n 23\n ]\n }\n\n r = self.s.ObjectCreateAsync([obj])\n\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n\n # Check created object ID is in response\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n\n print(resource['_id'])\n\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_object(self):\n obj = {\n \"type\": \"Line\",\n \"value\": [\n -5689.317811503128,\n -13716.87365524665,\n 3448.9999880790538,\n -5688.317811503128,\n -13717.87365524665,\n 3539.9999880790538\n ],\n }\n\n r = self.s.ObjectCreateAsync([obj])\n\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n\n # Check created object ID is in response\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n\n print(resource['_id'])\n\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n def test_line_objects(self):\n objects = [\n {\n \"type\": \"Line\",\n \"value\": [\n 0,\n 0,\n 0,\n 1,\n 1,\n 1\n ],\n },\n {\n \"type\": \"Line\",\n \"value\": [\n -1,\n -1,\n -1,\n 2,\n 2,\n 2\n ],\n },\n ]\n r = self.s.ObjectCreateAsync(objects)\n\n self.assertIsNotNone(r, self.none_msg('ObjectCreateAsync'))\n self.assertTrue(r['success'])\n self.assertTrue(r['resources'])\n\n # Check created object ID is in response\n resource = r['resources'][0]\n self.assertTrue(resource['_id'])\n\n print(resource['_id'])\n\n self.s.StreamAddObjectAsync(self.test_stream, resource['_id'])\n\n\n\n\n def test_update_object(self):\n \n geometry = {\n \"vertices\": [0.0, 1.0, 2.0, 3.0],\n \"faces\": [1,2,3]\n }\n\n props = {\n 'type': 'RCSlab', \n 'material': 'Concrete'\n }\n data = {'properties': props}\n data.update(geometry)\n r = self.s.ObjectUpdateAsync(self.test_object, data)\n self.assertIsNotNone(r)\n\n #Todo: Look into why user is not authorized to update\n self.assertTrue(r['success'])\n\nif __name__ == \"__main__\":\n unittest.main()\n", "step-ids": [ 7, 11, 12, 13, 14 ] }
[ 7, 11, 12, 13, 14 ]
def lucas(): yield 2 a = 2 b = 1 while True: yield b a, b = b, a + b l = lucas() for i in range(10): print('{}: {}'.format(i, next(l)))
normal
{ "blob_id": "4745c00ca0f3ca4316117228a9d44bdb5df02877", "index": 7799, "step-1": "<mask token>\n", "step-2": "def lucas():\n yield 2\n a = 2\n b = 1\n while True:\n yield b\n a, b = b, a + b\n\n\n<mask token>\n", "step-3": "def lucas():\n yield 2\n a = 2\n b = 1\n while True:\n yield b\n a, b = b, a + b\n\n\n<mask token>\nfor i in range(10):\n print('{}: {}'.format(i, next(l)))\n", "step-4": "def lucas():\n yield 2\n a = 2\n b = 1\n while True:\n yield b\n a, b = b, a + b\n\n\nl = lucas()\nfor i in range(10):\n print('{}: {}'.format(i, next(l)))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def solution(S): # write your code in Python 3.6 # Definitions log_sep = ',' num_sep = '-' time_sep = ':' # Initialization from collections import defaultdict # defaultdict initialize missing key to default value -> 0 bill = defaultdict(int) total = defaultdict(int) calls = S.splitlines() maximal = 0 free_number = 0 for call in calls: # Parsing values hhmmss, number = call.split(log_sep) hh, mm, ss = hhmmss.split(time_sep) hh, mm, ss = int(hh), int(mm), int(ss) number = int(number.replace(num_sep,'')) # Call duration calculations minutes = mm + hh * 60 seconds = ss + minutes * 60 # Free number Rule total[number] += seconds if total[number] > maximal: # new maximal maximal = total[number] free_number = number elif total[number] == maximal: # in case of a tie... free_number = min(number,free_number) # Billing Rule if minutes < 5: bill[number] += seconds * 3 else: if ss > 0: started = 1 else: started = 0 bill[number] += (minutes + started) * 150 # Free number Rule enforcement bill[free_number] = 0 return sum(bill.values())
normal
{ "blob_id": "bf8bbeb408cb75af314ef9f3907456036e731c0b", "index": 294, "step-1": "<mask token>\n", "step-2": "def solution(S):\n log_sep = ','\n num_sep = '-'\n time_sep = ':'\n from collections import defaultdict\n bill = defaultdict(int)\n total = defaultdict(int)\n calls = S.splitlines()\n maximal = 0\n free_number = 0\n for call in calls:\n hhmmss, number = call.split(log_sep)\n hh, mm, ss = hhmmss.split(time_sep)\n hh, mm, ss = int(hh), int(mm), int(ss)\n number = int(number.replace(num_sep, ''))\n minutes = mm + hh * 60\n seconds = ss + minutes * 60\n total[number] += seconds\n if total[number] > maximal:\n maximal = total[number]\n free_number = number\n elif total[number] == maximal:\n free_number = min(number, free_number)\n if minutes < 5:\n bill[number] += seconds * 3\n else:\n if ss > 0:\n started = 1\n else:\n started = 0\n bill[number] += (minutes + started) * 150\n bill[free_number] = 0\n return sum(bill.values())\n", "step-3": "def solution(S):\n # write your code in Python 3.6\n # Definitions\n log_sep = ','\n num_sep = '-'\n time_sep = ':'\n # Initialization\n from collections import defaultdict\n # defaultdict initialize missing key to default value -> 0\n bill = defaultdict(int)\n total = defaultdict(int)\n calls = S.splitlines()\n maximal = 0\n free_number = 0\n \n for call in calls:\n # Parsing values\n hhmmss, number = call.split(log_sep)\n hh, mm, ss = hhmmss.split(time_sep)\n hh, mm, ss = int(hh), int(mm), int(ss)\n number = int(number.replace(num_sep,''))\n # Call duration calculations\n minutes = mm + hh * 60\n seconds = ss + minutes * 60\n # Free number Rule\n total[number] += seconds\n if total[number] > maximal:\n # new maximal\n maximal = total[number]\n free_number = number\n elif total[number] == maximal:\n # in case of a tie...\n free_number = min(number,free_number)\n # Billing Rule\n if minutes < 5:\n bill[number] += seconds * 3\n else:\n if ss > 0:\n started = 1\n else:\n started = 0\n bill[number] += (minutes + started) * 150\n # Free number Rule enforcement\n bill[free_number] = 0\n return sum(bill.values())\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from data_structures.datacenter import Datacenter, urllib, json, URL = "http://www.mocky.io/v2/5e539b332e00007c002dacbe" def get_data(url, max_retries=5, delay_between_retries=1): """ Fetch the data from http://www.mocky.io/v2/5e539b332e00007c002dacbe and return it as a JSON object. ​ Args: url (str): The url to be fetched. max_retries (int): Number of retries. delay_between_retries (int): Delay between retries in seconds. Returns: data (dict) """ pass # the rest of your logic here for i in max_retries: while True: try time.sleep(delay_between_tries) response = urllib.request.urlopen(url) data = json.loads(response.read()) print (data) break except Exception: continue def main(): """ Main entry to our program. """ data = get_data(URL) if not data: raise ValueError('No data to process') datacenters = [ Datacenter(key, value) for key, value in data.items() ] pass # the rest of your logic here if __name__ == '__main__': main()
normal
{ "blob_id": "e56a7912b9940b1cab6c19d0047f1f60f0083f66", "index": 4911, "step-1": "from data_structures.datacenter import Datacenter, urllib, json,\n\n\nURL = \"http://www.mocky.io/v2/5e539b332e00007c002dacbe\"\n\n\ndef get_data(url, max_retries=5, delay_between_retries=1):\n \"\"\"\n Fetch the data from http://www.mocky.io/v2/5e539b332e00007c002dacbe\n and return it as a JSON object.\n​\n Args:\n url (str): The url to be fetched.\n max_retries (int): Number of retries.\n delay_between_retries (int): Delay between retries in seconds.\n Returns:\n data (dict)\n \"\"\"\n pass # the rest of your logic here\n for i in max_retries:\n while True:\n try\n time.sleep(delay_between_tries)\n response = urllib.request.urlopen(url)\n data = json.loads(response.read())\n print (data)\n break\n except Exception:\n continue\n \n \n \n\n\n\n\n\n\ndef main():\n \"\"\"\n Main entry to our program.\n \"\"\"\n\n data = get_data(URL)\n\n if not data:\n raise ValueError('No data to process')\n\n datacenters = [\n Datacenter(key, value)\n for key, value in data.items()\n ]\n\n pass # the rest of your logic here\n\n\nif __name__ == '__main__':\n main()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!usr/bin/env python # -*- coding:utf-8 -*- """ @author: Jack @datetime: 2018/8/31 13:32 @E-mail: [email protected] """ def isValid(s): stack = [] for ss in s: if ss in '([{': stack.append(ss) if ss in ')]}': if len(stack) <= 0: return False else: compare = stack.pop() if (compare == '(' and ss != ')') or (compare == '[' and ss != ']') or (compare == '{' and ss != '}'): return False if len(stack) == 0: return True else: return False if __name__ == '__main__': print isValid("{[]}")
normal
{ "blob_id": "607f0aac0d6d2c05737f59803befcff37d559398", "index": 5117, "step-1": "#!usr/bin/env python\n# -*- coding:utf-8 -*-\n\"\"\"\n@author: Jack\n@datetime: 2018/8/31 13:32\n@E-mail: [email protected]\n\"\"\"\n\n\ndef isValid(s):\n stack = []\n for ss in s:\n if ss in '([{':\n stack.append(ss)\n if ss in ')]}':\n if len(stack) <= 0:\n return False\n else:\n compare = stack.pop()\n if (compare == '(' and ss != ')') or (compare == '[' and ss != ']') or (compare == '{' and ss != '}'):\n return False\n if len(stack) == 0:\n return True\n else:\n return False\n\n\nif __name__ == '__main__':\n print isValid(\"{[]}\")\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
version https://git-lfs.github.com/spec/v1 oid sha256:7f0b7267333e6a4a73d3df0ee7f384f7b3cb6ffb14ed2dc8a5894b853bac8957 size 1323
normal
{ "blob_id": "f1972baee8b399c9a52561c8f015f71cb9922bb0", "index": 4875, "step-1": "version https://git-lfs.github.com/spec/v1\noid sha256:7f0b7267333e6a4a73d3df0ee7f384f7b3cb6ffb14ed2dc8a5894b853bac8957\nsize 1323\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from flask import Flask from flask import render_template import datetime from person import Person import requests from post import Post app = Flask(__name__) all_posts = all_posts = requests.get( "https://api.npoint.io/5abcca6f4e39b4955965").json() post_objects = [] for post in all_posts: post_obj = Post(post["id"], post["title"], post["subtitle"], post["body"]) post_objects.append(post_obj) @app.route('/') def home_page(): year = datetime.datetime.today().year return render_template("index.html", current_year=year) @app.route('/guess/<name>') def guesser(name): person = Person(name=name) return render_template("guess.html", name=person.name, gender=person.gender, age=person.age, country=person.country, ) @app.route('/blog') def blog(): return render_template("blog.html", posts=post_objects) @app.route('/post/<int:id>') def blog_post(id): requested_post = None for post in post_objects: if post.id == id: requested_post = post return render_template("post.html", post=requested_post) if __name__ == "__main__": app.run(debug=True)
normal
{ "blob_id": "895ece0b8d45cd64e43f8ddc54824f7647254185", "index": 2547, "step-1": "<mask token>\n\n\[email protected]('/guess/<name>')\ndef guesser(name):\n person = Person(name=name)\n return render_template('guess.html', name=person.name, gender=person.\n gender, age=person.age, country=person.country)\n\n\n<mask token>\n\n\[email protected]('/post/<int:id>')\ndef blog_post(id):\n requested_post = None\n for post in post_objects:\n if post.id == id:\n requested_post = post\n return render_template('post.html', post=requested_post)\n\n\n<mask token>\n", "step-2": "<mask token>\nfor post in all_posts:\n post_obj = Post(post['id'], post['title'], post['subtitle'], post['body'])\n post_objects.append(post_obj)\n\n\[email protected]('/')\ndef home_page():\n year = datetime.datetime.today().year\n return render_template('index.html', current_year=year)\n\n\[email protected]('/guess/<name>')\ndef guesser(name):\n person = Person(name=name)\n return render_template('guess.html', name=person.name, gender=person.\n gender, age=person.age, country=person.country)\n\n\[email protected]('/blog')\ndef blog():\n return render_template('blog.html', posts=post_objects)\n\n\[email protected]('/post/<int:id>')\ndef blog_post(id):\n requested_post = None\n for post in post_objects:\n if post.id == id:\n requested_post = post\n return render_template('post.html', post=requested_post)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-3": "<mask token>\napp = Flask(__name__)\nall_posts = all_posts = requests.get(\n 'https://api.npoint.io/5abcca6f4e39b4955965').json()\npost_objects = []\nfor post in all_posts:\n post_obj = Post(post['id'], post['title'], post['subtitle'], post['body'])\n post_objects.append(post_obj)\n\n\[email protected]('/')\ndef home_page():\n year = datetime.datetime.today().year\n return render_template('index.html', current_year=year)\n\n\[email protected]('/guess/<name>')\ndef guesser(name):\n person = Person(name=name)\n return render_template('guess.html', name=person.name, gender=person.\n gender, age=person.age, country=person.country)\n\n\[email protected]('/blog')\ndef blog():\n return render_template('blog.html', posts=post_objects)\n\n\[email protected]('/post/<int:id>')\ndef blog_post(id):\n requested_post = None\n for post in post_objects:\n if post.id == id:\n requested_post = post\n return render_template('post.html', post=requested_post)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "from flask import Flask\nfrom flask import render_template\nimport datetime\nfrom person import Person\nimport requests\nfrom post import Post\napp = Flask(__name__)\nall_posts = all_posts = requests.get(\n 'https://api.npoint.io/5abcca6f4e39b4955965').json()\npost_objects = []\nfor post in all_posts:\n post_obj = Post(post['id'], post['title'], post['subtitle'], post['body'])\n post_objects.append(post_obj)\n\n\[email protected]('/')\ndef home_page():\n year = datetime.datetime.today().year\n return render_template('index.html', current_year=year)\n\n\[email protected]('/guess/<name>')\ndef guesser(name):\n person = Person(name=name)\n return render_template('guess.html', name=person.name, gender=person.\n gender, age=person.age, country=person.country)\n\n\[email protected]('/blog')\ndef blog():\n return render_template('blog.html', posts=post_objects)\n\n\[email protected]('/post/<int:id>')\ndef blog_post(id):\n requested_post = None\n for post in post_objects:\n if post.id == id:\n requested_post = post\n return render_template('post.html', post=requested_post)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "from flask import Flask\nfrom flask import render_template\nimport datetime\nfrom person import Person\nimport requests\nfrom post import Post\n\napp = Flask(__name__)\nall_posts = all_posts = requests.get(\n \"https://api.npoint.io/5abcca6f4e39b4955965\").json()\npost_objects = []\n\nfor post in all_posts:\n post_obj = Post(post[\"id\"], post[\"title\"], post[\"subtitle\"], post[\"body\"])\n post_objects.append(post_obj)\n\n\[email protected]('/')\ndef home_page():\n year = datetime.datetime.today().year\n return render_template(\"index.html\",\n current_year=year)\n\n\[email protected]('/guess/<name>')\ndef guesser(name):\n person = Person(name=name)\n return render_template(\"guess.html\",\n name=person.name,\n gender=person.gender,\n age=person.age,\n country=person.country,\n )\n\n\[email protected]('/blog')\ndef blog():\n return render_template(\"blog.html\", posts=post_objects)\n\n\[email protected]('/post/<int:id>')\ndef blog_post(id):\n requested_post = None\n for post in post_objects:\n if post.id == id:\n requested_post = post\n return render_template(\"post.html\", post=requested_post)\n\n\nif __name__ == \"__main__\":\n app.run(debug=True)\n", "step-ids": [ 2, 5, 6, 7, 8 ] }
[ 2, 5, 6, 7, 8 ]
<|reserved_special_token_0|> def main(): reader = csv.reader(row for row in fileinput.input() if not row. startswith('#')) circles = lps.parse_lps(reader) for circle in circles: circle.r = R print(circle) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> parser.add_argument('inputfile', help= 'if specified reads a *.lp formatted file otherwise standard in') <|reserved_special_token_0|> def main(): reader = csv.reader(row for row in fileinput.input() if not row. startswith('#')) circles = lps.parse_lps(reader) for circle in circles: circle.r = R print(circle) if __name__ == '__main__': main() <|reserved_special_token_1|> <|reserved_special_token_0|> parser = argparse.ArgumentParser(description= 'Takes an input of *.lp format and sets all radii to the same value') parser.add_argument('inputfile', help= 'if specified reads a *.lp formatted file otherwise standard in') R = 1 def main(): reader = csv.reader(row for row in fileinput.input() if not row. startswith('#')) circles = lps.parse_lps(reader) for circle in circles: circle.r = R print(circle) if __name__ == '__main__': main() <|reserved_special_token_1|> import sys import csv import math import collections import argparse import fileinput import lp parser = argparse.ArgumentParser(description= 'Takes an input of *.lp format and sets all radii to the same value') parser.add_argument('inputfile', help= 'if specified reads a *.lp formatted file otherwise standard in') R = 1 def main(): reader = csv.reader(row for row in fileinput.input() if not row. startswith('#')) circles = lps.parse_lps(reader) for circle in circles: circle.r = R print(circle) if __name__ == '__main__': main() <|reserved_special_token_1|> #!/usr/bin/env python3 import sys import csv import math import collections import argparse import fileinput import lp parser = argparse.ArgumentParser(description="Takes an input of *.lp format and sets all radii to the same value") parser.add_argument("inputfile", help="if specified reads a *.lp formatted file otherwise standard in") R = 1 def main(): reader = csv.reader(row for row in fileinput.input() if not row.startswith('#')) circles = lps.parse_lps(reader) for circle in circles: circle.r = R print(circle) if __name__ == "__main__": main()
flexible
{ "blob_id": "00f62fec7f5372c5798b0ebf3f3783233360581e", "index": 2987, "step-1": "<mask token>\n\n\ndef main():\n reader = csv.reader(row for row in fileinput.input() if not row.\n startswith('#'))\n circles = lps.parse_lps(reader)\n for circle in circles:\n circle.r = R\n print(circle)\n\n\n<mask token>\n", "step-2": "<mask token>\nparser.add_argument('inputfile', help=\n 'if specified reads a *.lp formatted file otherwise standard in')\n<mask token>\n\n\ndef main():\n reader = csv.reader(row for row in fileinput.input() if not row.\n startswith('#'))\n circles = lps.parse_lps(reader)\n for circle in circles:\n circle.r = R\n print(circle)\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nparser = argparse.ArgumentParser(description=\n 'Takes an input of *.lp format and sets all radii to the same value')\nparser.add_argument('inputfile', help=\n 'if specified reads a *.lp formatted file otherwise standard in')\nR = 1\n\n\ndef main():\n reader = csv.reader(row for row in fileinput.input() if not row.\n startswith('#'))\n circles = lps.parse_lps(reader)\n for circle in circles:\n circle.r = R\n print(circle)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import sys\nimport csv\nimport math\nimport collections\nimport argparse\nimport fileinput\nimport lp\nparser = argparse.ArgumentParser(description=\n 'Takes an input of *.lp format and sets all radii to the same value')\nparser.add_argument('inputfile', help=\n 'if specified reads a *.lp formatted file otherwise standard in')\nR = 1\n\n\ndef main():\n reader = csv.reader(row for row in fileinput.input() if not row.\n startswith('#'))\n circles = lps.parse_lps(reader)\n for circle in circles:\n circle.r = R\n print(circle)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python3\nimport sys\nimport csv\nimport math\n\nimport collections\nimport argparse\nimport fileinput\n\nimport lp\n\nparser = argparse.ArgumentParser(description=\"Takes an input of *.lp format and sets all radii to the same value\")\nparser.add_argument(\"inputfile\", help=\"if specified reads a *.lp formatted file otherwise standard in\")\n\nR = 1\n\ndef main():\n reader = csv.reader(row for row in fileinput.input() if not row.startswith('#'))\n\n circles = lps.parse_lps(reader)\n\n for circle in circles:\n circle.r = R\n print(circle)\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if d == m: print(a[0]) elif 0 < d < m: for i in range(hmin, hmax + 1): fin1 = a[0] - i + m if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]: print(a[0] - i) found = 1 break if found == 0: i = 0 while i < n - 1: found = 0 invalid = 0 d = a[i + 1] - a[i] print(a[i], a[i + 1], d) if d < hmin or d > hmax: i = i + 1 continue for j in range(i + 1, n): d = a[j] - a[j - 1] print(a[i], a[j], d) if d < hmin or d > hmax: i = j - 1 invalid = 1 break if a[j] - a[i] > m: invalid = 1 break if a[j] - a[i] == m: found = 1 invalid = 0 break if invalid == 1: i = i + 1 continue if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m: print(a[i]) break i = i + 1 if n == 1: print(a[0] + hmax - m) <|reserved_special_token_1|> <|reserved_special_token_0|> n = int(input().strip()) a = list(input().strip().split(' ')) H = list(input().strip().split(' ')) a = [int(i) for i in a] m = int(H[0]) hmin = int(H[1]) hmax = int(H[2]) pos = 0 found = 0 d = a[-1] - a[0] if d == m: print(a[0]) elif 0 < d < m: for i in range(hmin, hmax + 1): fin1 = a[0] - i + m if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]: print(a[0] - i) found = 1 break if found == 0: i = 0 while i < n - 1: found = 0 invalid = 0 d = a[i + 1] - a[i] print(a[i], a[i + 1], d) if d < hmin or d > hmax: i = i + 1 continue for j in range(i + 1, n): d = a[j] - a[j - 1] print(a[i], a[j], d) if d < hmin or d > hmax: i = j - 1 invalid = 1 break if a[j] - a[i] > m: invalid = 1 break if a[j] - a[i] == m: found = 1 invalid = 0 break if invalid == 1: i = i + 1 continue if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m: print(a[i]) break i = i + 1 if n == 1: print(a[0] + hmax - m) <|reserved_special_token_1|> import sys n = int(input().strip()) a = list(input().strip().split(' ')) H = list(input().strip().split(' ')) a = [int(i) for i in a] m = int(H[0]) hmin = int(H[1]) hmax = int(H[2]) pos = 0 found = 0 d = a[-1] - a[0] if d == m: print(a[0]) elif 0 < d < m: for i in range(hmin, hmax + 1): fin1 = a[0] - i + m if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]: print(a[0] - i) found = 1 break if found == 0: i = 0 while i < n - 1: found = 0 invalid = 0 d = a[i + 1] - a[i] print(a[i], a[i + 1], d) if d < hmin or d > hmax: i = i + 1 continue for j in range(i + 1, n): d = a[j] - a[j - 1] print(a[i], a[j], d) if d < hmin or d > hmax: i = j - 1 invalid = 1 break if a[j] - a[i] > m: invalid = 1 break if a[j] - a[i] == m: found = 1 invalid = 0 break if invalid == 1: i = i + 1 continue if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m: print(a[i]) break i = i + 1 if n == 1: print(a[0] + hmax - m) <|reserved_special_token_1|> import sys n=int(input().strip()) a=list(input().strip().split(' ')) H=list(input().strip().split(' ')) a = [int(i) for i in a] m=int(H[0]) hmin=int(H[1]) hmax=int(H[2]) pos=0 found = 0 d=a[-1]-a[0] if(d==m): print(a[0]) elif(0<d<m): for i in range(hmin, hmax+1): fin1 = a[0]-i+m if(hmin<=fin1-a[-1]<=hmax or fin1==a[-1]): print(a[0]-i) found = 1 break if(found == 0): i = 0 while(i<(n-1)): found = 0 invalid = 0 d = a[i+1]-a[i] print(a[i], a[i+1], d) if(d<hmin or d>hmax): i=i+1 continue for j in range(i+1, n): d = a[j]-a[j-1] print(a[i], a[j], d) if(d<hmin or d>hmax): i = j-1 invalid = 1 break if(a[j]-a[i]>m): invalid = 1 break if(a[j]-a[i]==m): found = 1 invalid = 0 break if(invalid == 1): i = i+1 continue if(found == 1 or (a[-1]-a[i]+hmin<=m and a[-1]-a[i]+hmax>=m)): print(a[i]) break i = i+1 if(n == 1): print(a[0]+hmax-m)
flexible
{ "blob_id": "3da82bcff0a4f91c1245892bc01e9f743ea354a8", "index": 4484, "step-1": "<mask token>\n", "step-2": "<mask token>\nif d == m:\n print(a[0])\nelif 0 < d < m:\n for i in range(hmin, hmax + 1):\n fin1 = a[0] - i + m\n if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]:\n print(a[0] - i)\n found = 1\n break\nif found == 0:\n i = 0\n while i < n - 1:\n found = 0\n invalid = 0\n d = a[i + 1] - a[i]\n print(a[i], a[i + 1], d)\n if d < hmin or d > hmax:\n i = i + 1\n continue\n for j in range(i + 1, n):\n d = a[j] - a[j - 1]\n print(a[i], a[j], d)\n if d < hmin or d > hmax:\n i = j - 1\n invalid = 1\n break\n if a[j] - a[i] > m:\n invalid = 1\n break\n if a[j] - a[i] == m:\n found = 1\n invalid = 0\n break\n if invalid == 1:\n i = i + 1\n continue\n if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m:\n print(a[i])\n break\n i = i + 1\nif n == 1:\n print(a[0] + hmax - m)\n", "step-3": "<mask token>\nn = int(input().strip())\na = list(input().strip().split(' '))\nH = list(input().strip().split(' '))\na = [int(i) for i in a]\nm = int(H[0])\nhmin = int(H[1])\nhmax = int(H[2])\npos = 0\nfound = 0\nd = a[-1] - a[0]\nif d == m:\n print(a[0])\nelif 0 < d < m:\n for i in range(hmin, hmax + 1):\n fin1 = a[0] - i + m\n if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]:\n print(a[0] - i)\n found = 1\n break\nif found == 0:\n i = 0\n while i < n - 1:\n found = 0\n invalid = 0\n d = a[i + 1] - a[i]\n print(a[i], a[i + 1], d)\n if d < hmin or d > hmax:\n i = i + 1\n continue\n for j in range(i + 1, n):\n d = a[j] - a[j - 1]\n print(a[i], a[j], d)\n if d < hmin or d > hmax:\n i = j - 1\n invalid = 1\n break\n if a[j] - a[i] > m:\n invalid = 1\n break\n if a[j] - a[i] == m:\n found = 1\n invalid = 0\n break\n if invalid == 1:\n i = i + 1\n continue\n if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m:\n print(a[i])\n break\n i = i + 1\nif n == 1:\n print(a[0] + hmax - m)\n", "step-4": "import sys\nn = int(input().strip())\na = list(input().strip().split(' '))\nH = list(input().strip().split(' '))\na = [int(i) for i in a]\nm = int(H[0])\nhmin = int(H[1])\nhmax = int(H[2])\npos = 0\nfound = 0\nd = a[-1] - a[0]\nif d == m:\n print(a[0])\nelif 0 < d < m:\n for i in range(hmin, hmax + 1):\n fin1 = a[0] - i + m\n if hmin <= fin1 - a[-1] <= hmax or fin1 == a[-1]:\n print(a[0] - i)\n found = 1\n break\nif found == 0:\n i = 0\n while i < n - 1:\n found = 0\n invalid = 0\n d = a[i + 1] - a[i]\n print(a[i], a[i + 1], d)\n if d < hmin or d > hmax:\n i = i + 1\n continue\n for j in range(i + 1, n):\n d = a[j] - a[j - 1]\n print(a[i], a[j], d)\n if d < hmin or d > hmax:\n i = j - 1\n invalid = 1\n break\n if a[j] - a[i] > m:\n invalid = 1\n break\n if a[j] - a[i] == m:\n found = 1\n invalid = 0\n break\n if invalid == 1:\n i = i + 1\n continue\n if found == 1 or a[-1] - a[i] + hmin <= m and a[-1] - a[i] + hmax >= m:\n print(a[i])\n break\n i = i + 1\nif n == 1:\n print(a[0] + hmax - m)\n", "step-5": "import sys\n\nn=int(input().strip())\na=list(input().strip().split(' '))\nH=list(input().strip().split(' '))\na = [int(i) for i in a]\nm=int(H[0])\nhmin=int(H[1])\nhmax=int(H[2])\npos=0\nfound = 0\nd=a[-1]-a[0]\nif(d==m):\n print(a[0])\nelif(0<d<m):\n for i in range(hmin, hmax+1):\n fin1 = a[0]-i+m\n if(hmin<=fin1-a[-1]<=hmax or fin1==a[-1]):\n print(a[0]-i)\n found = 1\n break\nif(found == 0):\n i = 0 \n while(i<(n-1)):\n found = 0\n invalid = 0\n d = a[i+1]-a[i]\n print(a[i], a[i+1], d)\n if(d<hmin or d>hmax):\n i=i+1\n continue\n for j in range(i+1, n):\n d = a[j]-a[j-1]\n print(a[i], a[j], d)\n if(d<hmin or d>hmax):\n i = j-1\n invalid = 1\n break\n if(a[j]-a[i]>m):\n invalid = 1\n break\n if(a[j]-a[i]==m):\n found = 1\n invalid = 0\n break\n if(invalid == 1):\n i = i+1\n continue\n if(found == 1 or (a[-1]-a[i]+hmin<=m and a[-1]-a[i]+hmax>=m)): \n print(a[i])\n break\n i = i+1\nif(n == 1):\n print(a[0]+hmax-m)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> @transaction.atomic def computers(request): ctx = {} computer = Computer.objects.all() ctx['brand'] = Brand.objects.all() if request.method == 'POST': if request.POST['computer_id'] != '': computer = computer.filter(computer_id__icontains=request.POST[ 'computer_id']) if request.POST['cpu'] != '': computer = computer.filter(cpu__icontains=request.POST['cpu']) if request.POST['graphics_card'] != '': computer = computer.filter(graphics_card__icontains=request. POST['graphics_card']) try: if request.POST['minMemory'] != '': computer = computer.filter(memory__gte=int(request.POST[ 'minMemory'])) if request.POST['maxMemory'] != '': computer = computer.exclude(memory__gte=int(request.POST[ 'maxMemory'])) if request.POST['minssd'] != '': computer = computer.filter(ssd_capacity__gte=int(request. POST['minssd'])) if request.POST['maxssd'] != '': computer = computer.exclude(ssd_capacity__gte=int(request. POST['maxssd'])) if request.POST['minDisk'] != '': computer = computer.filter(disk_capacity__gte=int(request. POST['minDisk'])) if request.POST['maxDisk'] != '': computer = computer.exclude(disk_capacity__gte=int(request. POST['maxDisk'])) except ValueError: return render(request, 'Dashio/error.html', {'error': '请输入整数'}) if request.POST.get('brand', '') != '': print(request.POST['brand']) computer = computer.filter(brand__name__icontains=request.POST[ 'brand']) if request.POST['sort'] != '': sortKey = request.POST['sortType'] + request.POST['sort'] computer = computer.order_by(sortKey) ctx['computer'] = computer return render(request, 'Dashio/computers.html', ctx) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @transaction.atomic def computers(request): ctx = {} computer = Computer.objects.all() ctx['brand'] = Brand.objects.all() if request.method == 'POST': if request.POST['computer_id'] != '': computer = computer.filter(computer_id__icontains=request.POST[ 'computer_id']) if request.POST['cpu'] != '': computer = computer.filter(cpu__icontains=request.POST['cpu']) if request.POST['graphics_card'] != '': computer = computer.filter(graphics_card__icontains=request. POST['graphics_card']) try: if request.POST['minMemory'] != '': computer = computer.filter(memory__gte=int(request.POST[ 'minMemory'])) if request.POST['maxMemory'] != '': computer = computer.exclude(memory__gte=int(request.POST[ 'maxMemory'])) if request.POST['minssd'] != '': computer = computer.filter(ssd_capacity__gte=int(request. POST['minssd'])) if request.POST['maxssd'] != '': computer = computer.exclude(ssd_capacity__gte=int(request. POST['maxssd'])) if request.POST['minDisk'] != '': computer = computer.filter(disk_capacity__gte=int(request. POST['minDisk'])) if request.POST['maxDisk'] != '': computer = computer.exclude(disk_capacity__gte=int(request. POST['maxDisk'])) except ValueError: return render(request, 'Dashio/error.html', {'error': '请输入整数'}) if request.POST.get('brand', '') != '': print(request.POST['brand']) computer = computer.filter(brand__name__icontains=request.POST[ 'brand']) if request.POST['sort'] != '': sortKey = request.POST['sortType'] + request.POST['sort'] computer = computer.order_by(sortKey) ctx['computer'] = computer return render(request, 'Dashio/computers.html', ctx) <|reserved_special_token_0|> @transaction.atomic def post(request, user_id, computer_id): if request.method == 'POST': computer = Computer.objects.get(pk=computer_id) user = User.objects.get(pk=user_id) computer_comment(computer_id=computer, user_id=user, content= request.POST['comment']).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=( computer_id,))) def makeMark(request, computer_id, user_id): try: m = mark.objects.get(computer_id__computer_id=computer_id, user_id__user_id=user_id) m.delete() except ObjectDoesNotExist: computer = get_object_or_404(Computer, pk=computer_id) user = get_object_or_404(User, pk=user_id) mark(computer_id=computer, user_id=user).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=( computer_id,))) <|reserved_special_token_1|> <|reserved_special_token_0|> @transaction.atomic def computers(request): ctx = {} computer = Computer.objects.all() ctx['brand'] = Brand.objects.all() if request.method == 'POST': if request.POST['computer_id'] != '': computer = computer.filter(computer_id__icontains=request.POST[ 'computer_id']) if request.POST['cpu'] != '': computer = computer.filter(cpu__icontains=request.POST['cpu']) if request.POST['graphics_card'] != '': computer = computer.filter(graphics_card__icontains=request. POST['graphics_card']) try: if request.POST['minMemory'] != '': computer = computer.filter(memory__gte=int(request.POST[ 'minMemory'])) if request.POST['maxMemory'] != '': computer = computer.exclude(memory__gte=int(request.POST[ 'maxMemory'])) if request.POST['minssd'] != '': computer = computer.filter(ssd_capacity__gte=int(request. POST['minssd'])) if request.POST['maxssd'] != '': computer = computer.exclude(ssd_capacity__gte=int(request. POST['maxssd'])) if request.POST['minDisk'] != '': computer = computer.filter(disk_capacity__gte=int(request. POST['minDisk'])) if request.POST['maxDisk'] != '': computer = computer.exclude(disk_capacity__gte=int(request. POST['maxDisk'])) except ValueError: return render(request, 'Dashio/error.html', {'error': '请输入整数'}) if request.POST.get('brand', '') != '': print(request.POST['brand']) computer = computer.filter(brand__name__icontains=request.POST[ 'brand']) if request.POST['sort'] != '': sortKey = request.POST['sortType'] + request.POST['sort'] computer = computer.order_by(sortKey) ctx['computer'] = computer return render(request, 'Dashio/computers.html', ctx) @transaction.atomic def details(request, computer_id): rtx = {} rtx['isUser'] = request.session['type'] == 'user' rtx['computer'] = get_object_or_404(Computer, pk=computer_id) rtx['markAmount'] = mark.objects.filter(computer_id__computer_id= computer_id).count() rtx['sell'] = Sell.objects.filter(computer_id__computer_id=computer_id) rtx['user_id'] = request.session['id'] rtx['sellAmount'] = Buy.objects.filter(computer_id__computer_id=computer_id ).count() rtx['comments'] = computer_comment.objects.filter(computer_id__computer_id =computer_id).order_by('-comment_date') rtx['buys'] = Buy.objects.filter(computer_id__computer_id=computer_id ).order_by('-buy_time')[:5] if rtx['isUser']: rtx['mark'] = '收藏' if mark.objects.filter(user_id__user_id=rtx[ 'user_id'], computer_id=rtx['computer']).count() == 0 else '取消收藏' return render(request, 'Dashio/computer_detail.html', rtx) @transaction.atomic def post(request, user_id, computer_id): if request.method == 'POST': computer = Computer.objects.get(pk=computer_id) user = User.objects.get(pk=user_id) computer_comment(computer_id=computer, user_id=user, content= request.POST['comment']).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=( computer_id,))) def makeMark(request, computer_id, user_id): try: m = mark.objects.get(computer_id__computer_id=computer_id, user_id__user_id=user_id) m.delete() except ObjectDoesNotExist: computer = get_object_or_404(Computer, pk=computer_id) user = get_object_or_404(User, pk=user_id) mark(computer_id=computer, user_id=user).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=( computer_id,))) <|reserved_special_token_1|> from django.shortcuts import * from shop.models import * from django.db import transaction from django.core.exceptions import * @transaction.atomic def computers(request): ctx = {} computer = Computer.objects.all() ctx['brand'] = Brand.objects.all() if request.method == 'POST': if request.POST['computer_id'] != '': computer = computer.filter(computer_id__icontains=request.POST[ 'computer_id']) if request.POST['cpu'] != '': computer = computer.filter(cpu__icontains=request.POST['cpu']) if request.POST['graphics_card'] != '': computer = computer.filter(graphics_card__icontains=request. POST['graphics_card']) try: if request.POST['minMemory'] != '': computer = computer.filter(memory__gte=int(request.POST[ 'minMemory'])) if request.POST['maxMemory'] != '': computer = computer.exclude(memory__gte=int(request.POST[ 'maxMemory'])) if request.POST['minssd'] != '': computer = computer.filter(ssd_capacity__gte=int(request. POST['minssd'])) if request.POST['maxssd'] != '': computer = computer.exclude(ssd_capacity__gte=int(request. POST['maxssd'])) if request.POST['minDisk'] != '': computer = computer.filter(disk_capacity__gte=int(request. POST['minDisk'])) if request.POST['maxDisk'] != '': computer = computer.exclude(disk_capacity__gte=int(request. POST['maxDisk'])) except ValueError: return render(request, 'Dashio/error.html', {'error': '请输入整数'}) if request.POST.get('brand', '') != '': print(request.POST['brand']) computer = computer.filter(brand__name__icontains=request.POST[ 'brand']) if request.POST['sort'] != '': sortKey = request.POST['sortType'] + request.POST['sort'] computer = computer.order_by(sortKey) ctx['computer'] = computer return render(request, 'Dashio/computers.html', ctx) @transaction.atomic def details(request, computer_id): rtx = {} rtx['isUser'] = request.session['type'] == 'user' rtx['computer'] = get_object_or_404(Computer, pk=computer_id) rtx['markAmount'] = mark.objects.filter(computer_id__computer_id= computer_id).count() rtx['sell'] = Sell.objects.filter(computer_id__computer_id=computer_id) rtx['user_id'] = request.session['id'] rtx['sellAmount'] = Buy.objects.filter(computer_id__computer_id=computer_id ).count() rtx['comments'] = computer_comment.objects.filter(computer_id__computer_id =computer_id).order_by('-comment_date') rtx['buys'] = Buy.objects.filter(computer_id__computer_id=computer_id ).order_by('-buy_time')[:5] if rtx['isUser']: rtx['mark'] = '收藏' if mark.objects.filter(user_id__user_id=rtx[ 'user_id'], computer_id=rtx['computer']).count() == 0 else '取消收藏' return render(request, 'Dashio/computer_detail.html', rtx) @transaction.atomic def post(request, user_id, computer_id): if request.method == 'POST': computer = Computer.objects.get(pk=computer_id) user = User.objects.get(pk=user_id) computer_comment(computer_id=computer, user_id=user, content= request.POST['comment']).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=( computer_id,))) def makeMark(request, computer_id, user_id): try: m = mark.objects.get(computer_id__computer_id=computer_id, user_id__user_id=user_id) m.delete() except ObjectDoesNotExist: computer = get_object_or_404(Computer, pk=computer_id) user = get_object_or_404(User, pk=user_id) mark(computer_id=computer, user_id=user).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=( computer_id,))) <|reserved_special_token_1|> from django.shortcuts import * from shop.models import * from django.db import transaction from django.core.exceptions import * @transaction.atomic def computers(request): ctx = {} computer = Computer.objects.all() ctx['brand'] = Brand.objects.all() if request.method == 'POST': if request.POST['computer_id'] != '': computer = computer.filter(computer_id__icontains=request.POST['computer_id']) if request.POST['cpu'] != '': computer = computer.filter(cpu__icontains=request.POST['cpu']) if request.POST['graphics_card'] != '': computer = computer.filter(graphics_card__icontains=request.POST['graphics_card']) try: if request.POST['minMemory'] != '': computer = computer.filter(memory__gte=int(request.POST['minMemory'])) if request.POST['maxMemory'] != '': computer = computer.exclude(memory__gte=int(request.POST['maxMemory'])) if request.POST['minssd'] != '': computer = computer.filter(ssd_capacity__gte=int(request.POST['minssd'])) if request.POST['maxssd'] != '': computer = computer.exclude(ssd_capacity__gte=int(request.POST['maxssd'])) if request.POST['minDisk'] != '': computer = computer.filter(disk_capacity__gte=int(request.POST['minDisk'])) if request.POST['maxDisk'] != '': computer = computer.exclude(disk_capacity__gte=int(request.POST['maxDisk'])) except ValueError: return render(request, 'Dashio/error.html', {'error': "请输入整数"}) if request.POST.get('brand', '') != '': print(request.POST['brand']) computer = computer.filter(brand__name__icontains=request.POST['brand']) if request.POST['sort'] != '': sortKey = request.POST['sortType'] + request.POST['sort'] computer = computer.order_by(sortKey) ctx['computer'] = computer return render(request, "Dashio/computers.html", ctx) @transaction.atomic def details(request, computer_id): rtx = {} rtx['isUser'] = request.session['type'] == 'user' rtx['computer'] = get_object_or_404(Computer, pk=computer_id) rtx['markAmount'] = mark.objects.filter(computer_id__computer_id=computer_id).count() rtx['sell'] = Sell.objects.filter(computer_id__computer_id=computer_id) rtx['user_id'] = request.session['id'] rtx['sellAmount'] = Buy.objects.filter(computer_id__computer_id=computer_id).count() rtx['comments'] = computer_comment.objects.filter(computer_id__computer_id=computer_id).order_by('-comment_date') rtx['buys'] = Buy.objects.filter(computer_id__computer_id=computer_id).order_by('-buy_time')[:5] if rtx['isUser']: rtx['mark'] = ('收藏' if mark.objects.filter(user_id__user_id=rtx['user_id'], computer_id=rtx['computer']).count() == 0 else '取消收藏') return render(request, 'Dashio/computer_detail.html', rtx) @transaction.atomic def post(request, user_id, computer_id): if request.method == 'POST': computer = Computer.objects.get(pk=computer_id) user = User.objects.get(pk=user_id) computer_comment(computer_id=computer, user_id=user, content=request.POST['comment']).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=(computer_id, ))) def makeMark(request, computer_id, user_id): try: m = mark.objects.get(computer_id__computer_id=computer_id, user_id__user_id=user_id) m.delete() except ObjectDoesNotExist: computer = get_object_or_404(Computer, pk=computer_id) user = get_object_or_404(User, pk=user_id) mark(computer_id=computer, user_id=user).save() return HttpResponseRedirect(reverse('shop:computerDetail', args=(computer_id, )))
flexible
{ "blob_id": "18689741a33e6d17e694ee0619a1f36d8d178cbb", "index": 3223, "step-1": "<mask token>\n\n\[email protected]\ndef computers(request):\n ctx = {}\n computer = Computer.objects.all()\n ctx['brand'] = Brand.objects.all()\n if request.method == 'POST':\n if request.POST['computer_id'] != '':\n computer = computer.filter(computer_id__icontains=request.POST[\n 'computer_id'])\n if request.POST['cpu'] != '':\n computer = computer.filter(cpu__icontains=request.POST['cpu'])\n if request.POST['graphics_card'] != '':\n computer = computer.filter(graphics_card__icontains=request.\n POST['graphics_card'])\n try:\n if request.POST['minMemory'] != '':\n computer = computer.filter(memory__gte=int(request.POST[\n 'minMemory']))\n if request.POST['maxMemory'] != '':\n computer = computer.exclude(memory__gte=int(request.POST[\n 'maxMemory']))\n if request.POST['minssd'] != '':\n computer = computer.filter(ssd_capacity__gte=int(request.\n POST['minssd']))\n if request.POST['maxssd'] != '':\n computer = computer.exclude(ssd_capacity__gte=int(request.\n POST['maxssd']))\n if request.POST['minDisk'] != '':\n computer = computer.filter(disk_capacity__gte=int(request.\n POST['minDisk']))\n if request.POST['maxDisk'] != '':\n computer = computer.exclude(disk_capacity__gte=int(request.\n POST['maxDisk']))\n except ValueError:\n return render(request, 'Dashio/error.html', {'error': '请输入整数'})\n if request.POST.get('brand', '') != '':\n print(request.POST['brand'])\n computer = computer.filter(brand__name__icontains=request.POST[\n 'brand'])\n if request.POST['sort'] != '':\n sortKey = request.POST['sortType'] + request.POST['sort']\n computer = computer.order_by(sortKey)\n ctx['computer'] = computer\n return render(request, 'Dashio/computers.html', ctx)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]\ndef computers(request):\n ctx = {}\n computer = Computer.objects.all()\n ctx['brand'] = Brand.objects.all()\n if request.method == 'POST':\n if request.POST['computer_id'] != '':\n computer = computer.filter(computer_id__icontains=request.POST[\n 'computer_id'])\n if request.POST['cpu'] != '':\n computer = computer.filter(cpu__icontains=request.POST['cpu'])\n if request.POST['graphics_card'] != '':\n computer = computer.filter(graphics_card__icontains=request.\n POST['graphics_card'])\n try:\n if request.POST['minMemory'] != '':\n computer = computer.filter(memory__gte=int(request.POST[\n 'minMemory']))\n if request.POST['maxMemory'] != '':\n computer = computer.exclude(memory__gte=int(request.POST[\n 'maxMemory']))\n if request.POST['minssd'] != '':\n computer = computer.filter(ssd_capacity__gte=int(request.\n POST['minssd']))\n if request.POST['maxssd'] != '':\n computer = computer.exclude(ssd_capacity__gte=int(request.\n POST['maxssd']))\n if request.POST['minDisk'] != '':\n computer = computer.filter(disk_capacity__gte=int(request.\n POST['minDisk']))\n if request.POST['maxDisk'] != '':\n computer = computer.exclude(disk_capacity__gte=int(request.\n POST['maxDisk']))\n except ValueError:\n return render(request, 'Dashio/error.html', {'error': '请输入整数'})\n if request.POST.get('brand', '') != '':\n print(request.POST['brand'])\n computer = computer.filter(brand__name__icontains=request.POST[\n 'brand'])\n if request.POST['sort'] != '':\n sortKey = request.POST['sortType'] + request.POST['sort']\n computer = computer.order_by(sortKey)\n ctx['computer'] = computer\n return render(request, 'Dashio/computers.html', ctx)\n\n\n<mask token>\n\n\[email protected]\ndef post(request, user_id, computer_id):\n if request.method == 'POST':\n computer = Computer.objects.get(pk=computer_id)\n user = User.objects.get(pk=user_id)\n computer_comment(computer_id=computer, user_id=user, content=\n request.POST['comment']).save()\n return HttpResponseRedirect(reverse('shop:computerDetail', args=(\n computer_id,)))\n\n\ndef makeMark(request, computer_id, user_id):\n try:\n m = mark.objects.get(computer_id__computer_id=computer_id,\n user_id__user_id=user_id)\n m.delete()\n except ObjectDoesNotExist:\n computer = get_object_or_404(Computer, pk=computer_id)\n user = get_object_or_404(User, pk=user_id)\n mark(computer_id=computer, user_id=user).save()\n return HttpResponseRedirect(reverse('shop:computerDetail', args=(\n computer_id,)))\n", "step-3": "<mask token>\n\n\[email protected]\ndef computers(request):\n ctx = {}\n computer = Computer.objects.all()\n ctx['brand'] = Brand.objects.all()\n if request.method == 'POST':\n if request.POST['computer_id'] != '':\n computer = computer.filter(computer_id__icontains=request.POST[\n 'computer_id'])\n if request.POST['cpu'] != '':\n computer = computer.filter(cpu__icontains=request.POST['cpu'])\n if request.POST['graphics_card'] != '':\n computer = computer.filter(graphics_card__icontains=request.\n POST['graphics_card'])\n try:\n if request.POST['minMemory'] != '':\n computer = computer.filter(memory__gte=int(request.POST[\n 'minMemory']))\n if request.POST['maxMemory'] != '':\n computer = computer.exclude(memory__gte=int(request.POST[\n 'maxMemory']))\n if request.POST['minssd'] != '':\n computer = computer.filter(ssd_capacity__gte=int(request.\n POST['minssd']))\n if request.POST['maxssd'] != '':\n computer = computer.exclude(ssd_capacity__gte=int(request.\n POST['maxssd']))\n if request.POST['minDisk'] != '':\n computer = computer.filter(disk_capacity__gte=int(request.\n POST['minDisk']))\n if request.POST['maxDisk'] != '':\n computer = computer.exclude(disk_capacity__gte=int(request.\n POST['maxDisk']))\n except ValueError:\n return render(request, 'Dashio/error.html', {'error': '请输入整数'})\n if request.POST.get('brand', '') != '':\n print(request.POST['brand'])\n computer = computer.filter(brand__name__icontains=request.POST[\n 'brand'])\n if request.POST['sort'] != '':\n sortKey = request.POST['sortType'] + request.POST['sort']\n computer = computer.order_by(sortKey)\n ctx['computer'] = computer\n return render(request, 'Dashio/computers.html', ctx)\n\n\[email protected]\ndef details(request, computer_id):\n rtx = {}\n rtx['isUser'] = request.session['type'] == 'user'\n rtx['computer'] = get_object_or_404(Computer, pk=computer_id)\n rtx['markAmount'] = mark.objects.filter(computer_id__computer_id=\n computer_id).count()\n rtx['sell'] = Sell.objects.filter(computer_id__computer_id=computer_id)\n rtx['user_id'] = request.session['id']\n rtx['sellAmount'] = Buy.objects.filter(computer_id__computer_id=computer_id\n ).count()\n rtx['comments'] = computer_comment.objects.filter(computer_id__computer_id\n =computer_id).order_by('-comment_date')\n rtx['buys'] = Buy.objects.filter(computer_id__computer_id=computer_id\n ).order_by('-buy_time')[:5]\n if rtx['isUser']:\n rtx['mark'] = '收藏' if mark.objects.filter(user_id__user_id=rtx[\n 'user_id'], computer_id=rtx['computer']).count() == 0 else '取消收藏'\n return render(request, 'Dashio/computer_detail.html', rtx)\n\n\[email protected]\ndef post(request, user_id, computer_id):\n if request.method == 'POST':\n computer = Computer.objects.get(pk=computer_id)\n user = User.objects.get(pk=user_id)\n computer_comment(computer_id=computer, user_id=user, content=\n request.POST['comment']).save()\n return HttpResponseRedirect(reverse('shop:computerDetail', args=(\n computer_id,)))\n\n\ndef makeMark(request, computer_id, user_id):\n try:\n m = mark.objects.get(computer_id__computer_id=computer_id,\n user_id__user_id=user_id)\n m.delete()\n except ObjectDoesNotExist:\n computer = get_object_or_404(Computer, pk=computer_id)\n user = get_object_or_404(User, pk=user_id)\n mark(computer_id=computer, user_id=user).save()\n return HttpResponseRedirect(reverse('shop:computerDetail', args=(\n computer_id,)))\n", "step-4": "from django.shortcuts import *\nfrom shop.models import *\nfrom django.db import transaction\nfrom django.core.exceptions import *\n\n\[email protected]\ndef computers(request):\n ctx = {}\n computer = Computer.objects.all()\n ctx['brand'] = Brand.objects.all()\n if request.method == 'POST':\n if request.POST['computer_id'] != '':\n computer = computer.filter(computer_id__icontains=request.POST[\n 'computer_id'])\n if request.POST['cpu'] != '':\n computer = computer.filter(cpu__icontains=request.POST['cpu'])\n if request.POST['graphics_card'] != '':\n computer = computer.filter(graphics_card__icontains=request.\n POST['graphics_card'])\n try:\n if request.POST['minMemory'] != '':\n computer = computer.filter(memory__gte=int(request.POST[\n 'minMemory']))\n if request.POST['maxMemory'] != '':\n computer = computer.exclude(memory__gte=int(request.POST[\n 'maxMemory']))\n if request.POST['minssd'] != '':\n computer = computer.filter(ssd_capacity__gte=int(request.\n POST['minssd']))\n if request.POST['maxssd'] != '':\n computer = computer.exclude(ssd_capacity__gte=int(request.\n POST['maxssd']))\n if request.POST['minDisk'] != '':\n computer = computer.filter(disk_capacity__gte=int(request.\n POST['minDisk']))\n if request.POST['maxDisk'] != '':\n computer = computer.exclude(disk_capacity__gte=int(request.\n POST['maxDisk']))\n except ValueError:\n return render(request, 'Dashio/error.html', {'error': '请输入整数'})\n if request.POST.get('brand', '') != '':\n print(request.POST['brand'])\n computer = computer.filter(brand__name__icontains=request.POST[\n 'brand'])\n if request.POST['sort'] != '':\n sortKey = request.POST['sortType'] + request.POST['sort']\n computer = computer.order_by(sortKey)\n ctx['computer'] = computer\n return render(request, 'Dashio/computers.html', ctx)\n\n\[email protected]\ndef details(request, computer_id):\n rtx = {}\n rtx['isUser'] = request.session['type'] == 'user'\n rtx['computer'] = get_object_or_404(Computer, pk=computer_id)\n rtx['markAmount'] = mark.objects.filter(computer_id__computer_id=\n computer_id).count()\n rtx['sell'] = Sell.objects.filter(computer_id__computer_id=computer_id)\n rtx['user_id'] = request.session['id']\n rtx['sellAmount'] = Buy.objects.filter(computer_id__computer_id=computer_id\n ).count()\n rtx['comments'] = computer_comment.objects.filter(computer_id__computer_id\n =computer_id).order_by('-comment_date')\n rtx['buys'] = Buy.objects.filter(computer_id__computer_id=computer_id\n ).order_by('-buy_time')[:5]\n if rtx['isUser']:\n rtx['mark'] = '收藏' if mark.objects.filter(user_id__user_id=rtx[\n 'user_id'], computer_id=rtx['computer']).count() == 0 else '取消收藏'\n return render(request, 'Dashio/computer_detail.html', rtx)\n\n\[email protected]\ndef post(request, user_id, computer_id):\n if request.method == 'POST':\n computer = Computer.objects.get(pk=computer_id)\n user = User.objects.get(pk=user_id)\n computer_comment(computer_id=computer, user_id=user, content=\n request.POST['comment']).save()\n return HttpResponseRedirect(reverse('shop:computerDetail', args=(\n computer_id,)))\n\n\ndef makeMark(request, computer_id, user_id):\n try:\n m = mark.objects.get(computer_id__computer_id=computer_id,\n user_id__user_id=user_id)\n m.delete()\n except ObjectDoesNotExist:\n computer = get_object_or_404(Computer, pk=computer_id)\n user = get_object_or_404(User, pk=user_id)\n mark(computer_id=computer, user_id=user).save()\n return HttpResponseRedirect(reverse('shop:computerDetail', args=(\n computer_id,)))\n", "step-5": "from django.shortcuts import *\nfrom shop.models import *\nfrom django.db import transaction\nfrom django.core.exceptions import *\n\[email protected]\ndef computers(request):\n ctx = {}\n computer = Computer.objects.all()\n ctx['brand'] = Brand.objects.all()\n\n if request.method == 'POST':\n if request.POST['computer_id'] != '':\n computer = computer.filter(computer_id__icontains=request.POST['computer_id'])\n if request.POST['cpu'] != '':\n computer = computer.filter(cpu__icontains=request.POST['cpu'])\n if request.POST['graphics_card'] != '':\n computer = computer.filter(graphics_card__icontains=request.POST['graphics_card'])\n \n try:\n if request.POST['minMemory'] != '':\n computer = computer.filter(memory__gte=int(request.POST['minMemory']))\n if request.POST['maxMemory'] != '':\n computer = computer.exclude(memory__gte=int(request.POST['maxMemory']))\n\n if request.POST['minssd'] != '':\n computer = computer.filter(ssd_capacity__gte=int(request.POST['minssd']))\n if request.POST['maxssd'] != '':\n computer = computer.exclude(ssd_capacity__gte=int(request.POST['maxssd']))\n\n if request.POST['minDisk'] != '':\n computer = computer.filter(disk_capacity__gte=int(request.POST['minDisk']))\n if request.POST['maxDisk'] != '':\n computer = computer.exclude(disk_capacity__gte=int(request.POST['maxDisk']))\n\n except ValueError:\n return render(request, 'Dashio/error.html', {'error': \"请输入整数\"})\n \n if request.POST.get('brand', '') != '':\n print(request.POST['brand'])\n computer = computer.filter(brand__name__icontains=request.POST['brand'])\n\n if request.POST['sort'] != '':\n sortKey = request.POST['sortType'] + request.POST['sort']\n computer = computer.order_by(sortKey)\n\n ctx['computer'] = computer\n return render(request, \"Dashio/computers.html\", ctx)\n\[email protected]\ndef details(request, computer_id):\n rtx = {}\n rtx['isUser'] = request.session['type'] == 'user'\n rtx['computer'] = get_object_or_404(Computer, pk=computer_id)\n rtx['markAmount'] = mark.objects.filter(computer_id__computer_id=computer_id).count()\n rtx['sell'] = Sell.objects.filter(computer_id__computer_id=computer_id)\n rtx['user_id'] = request.session['id']\n rtx['sellAmount'] = Buy.objects.filter(computer_id__computer_id=computer_id).count()\n rtx['comments'] = computer_comment.objects.filter(computer_id__computer_id=computer_id).order_by('-comment_date')\n rtx['buys'] = Buy.objects.filter(computer_id__computer_id=computer_id).order_by('-buy_time')[:5]\n \n if rtx['isUser']:\n rtx['mark'] = ('收藏' if mark.objects.filter(user_id__user_id=rtx['user_id'], computer_id=rtx['computer']).count() == 0 else '取消收藏')\n\n return render(request, 'Dashio/computer_detail.html', rtx)\n\[email protected]\ndef post(request, user_id, computer_id):\n if request.method == 'POST':\n computer = Computer.objects.get(pk=computer_id)\n user = User.objects.get(pk=user_id)\n computer_comment(computer_id=computer, user_id=user, content=request.POST['comment']).save()\n \n return HttpResponseRedirect(reverse('shop:computerDetail', args=(computer_id, )))\n\ndef makeMark(request, computer_id, user_id):\n try:\n m = mark.objects.get(computer_id__computer_id=computer_id, user_id__user_id=user_id)\n m.delete()\n except ObjectDoesNotExist:\n computer = get_object_or_404(Computer, pk=computer_id)\n user = get_object_or_404(User, pk=user_id)\n mark(computer_id=computer, user_id=user).save()\n \n return HttpResponseRedirect(reverse('shop:computerDetail', args=(computer_id, )))", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> while t: t -= 1 y = [] z = [] x = str(input()) for i in range(len(x)): if not int(i) % 2: y.append(x[i]) else: z.append(x[i]) print(''.join(y) + ' ' + ''.join(z)) <|reserved_special_token_1|> t = eval(input()) while t: t -= 1 y = [] z = [] x = str(input()) for i in range(len(x)): if not int(i) % 2: y.append(x[i]) else: z.append(x[i]) print(''.join(y) + ' ' + ''.join(z)) <|reserved_special_token_1|> t = eval(input()) while t: t -= 1 y = [] z = [] x = str(input()) for i in range(len(x)): if (not int(i)%2): y.append(x[i]) else: z.append(x[i]) print("".join(y) + " " + "".join(z))
flexible
{ "blob_id": "ac32fb5fcd71790f9dbf0794992a9dc92a202c9b", "index": 7972, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile t:\n t -= 1\n y = []\n z = []\n x = str(input())\n for i in range(len(x)):\n if not int(i) % 2:\n y.append(x[i])\n else:\n z.append(x[i])\n print(''.join(y) + ' ' + ''.join(z))\n", "step-3": "t = eval(input())\nwhile t:\n t -= 1\n y = []\n z = []\n x = str(input())\n for i in range(len(x)):\n if not int(i) % 2:\n y.append(x[i])\n else:\n z.append(x[i])\n print(''.join(y) + ' ' + ''.join(z))\n", "step-4": "t = eval(input())\nwhile t:\n t -= 1\n y = []\n z = []\n x = str(input())\n for i in range(len(x)):\n if (not int(i)%2):\n y.append(x[i])\n else:\n z.append(x[i])\n print(\"\".join(y) + \" \" + \"\".join(z))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!usr/bin/env python #-*- coding:utf-8 -*- # this model is for decision tree # objective: To cluster different service # JialongLi 2017/03/18 import re import os import sys import pickle import copy import random import pydotplus USER_NUM = 1000 reload(sys) sys.setdefaultencoding( "utf-8" ) from sklearn import tree from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.cluster import KMeans # 0 represent Sunday, 1: Monday, 6: Saturday, 0: Sunday day_index = {'0507': 1, '0508': 2, '0509': 3, '0510': 4, '0511': 5, '0512': 6, '0513': 0, '0604': 1, '0605': 2, '0606': 3, '0607': 4, '0608': 5, '0609': 6, '0610': 0, '0702': 1, '0703': 2, '0704': 3, '0705': 4, '0706': 5, '0707': 6, '0708': 0, '0806': 1, '0807': 2, '0808': 3, '0809': 4, '0810': 5, '0811': 6, '0812': 0} service_type = ['I', 'F', 'W', 'G', 'S', 'V'] # get activity_dict # user's activity: default value is 'F' # format: {id_1:{'0507': [24/PERIOD], '0508': ['I', 'W', 'G']}, id_2} def get_activity_dict(activity_dict_path): pkl_file = open(activity_dict_path, 'rb') activity_dict = pickle.load(pkl_file) pkl_file.close() return activity_dict # data are divided into train data and test data # first three weeks: train data; last week: test data # train_dict and test_dict are subset of activity_dict, id format is different # activity_dict format: {real id_1:{'0507': [24/PERIOD], '0508': ['I', 'W', 'G']}, id_2} # user_id_index: key = number, value = real id def data_segement(activity_dict, train_dict_path, test_dict_path, user_id_index_path): train_dict = {} test_dict = {} user_count = 0 user_id_index = {} for key_0, value_0 in activity_dict.items(): # key_0: real user_id train_dict[user_count] = {} test_dict[user_count] = {} user_id_index[user_count] = key_0 for key, value in value_0.items(): if key[1] == '8': # data of August, test set test_dict[user_count][key] = value else: train_dict[user_count][key] = value # train set user_count += 1 output_1 = open(train_dict_path, 'wb') pickle.dump(train_dict, output_1) output_2 = open(test_dict_path, 'wb') pickle.dump(test_dict, output_2) output_3 = open(user_id_index_path, 'wb') pickle.dump(user_id_index, output_3) output_1.close() output_2.close() output_3.close() # get train data and test data # train_dict, test_dict format: {number id_1:{'0507': [24/PERIOD], '0508': ['I', 'W', 'G']}, id_2} def get_data(train_dict_path, test_dict_path, user_id_index_path): pkl_file_1 = open(train_dict_path, 'rb') pkl_file_2 = open(test_dict_path, 'rb') pkl_file_3 = open(user_id_index_path, 'rb') train_dict = pickle.load(pkl_file_1) test_dict = pickle.load(pkl_file_2) user_id_index = pickle.load(pkl_file_3) pkl_file_1.close() pkl_file_2.close() pkl_file_3.close() return train_dict, test_dict, user_id_index # get profile def get_profile(profile_path): pkl_file = open(profile_path, 'rb') profile = pickle.load(pkl_file) return profile # select different features # feature format: [user_id, gender, age, edu, job, hour, date], 7 features # profile: dict, {real user_id: [gender, age, edu, job]} # feature format: double list, outer list element is a sample: [number user_id, gender, age, edu, job, hour, date] # category format: list, element is service type, length = feature def feature_select(data_dict, profile, user_id_index, is_over_sampling): feature = [] category = [] over_sampling_num = 0 for user_id, all_dates in data_dict.items(): real_user_id = user_id_index[user_id] one_user_profile = copy.deepcopy(profile[real_user_id]) # gender, age, edu, job one_user_profile.insert(0, user_id) # insert user_id for date, activity in all_dates.items(): for i in range(len(activity)): if 1: #activity[i] != 'F': # do not add 'F' sample = copy.deepcopy(one_user_profile) #del(sample[1:4]) sample.append(i) #(int(i/6)) # i represents hour sample.append(day_index[date]) # day_index: 7 days in one week feature.append(sample) #category.append(activity[i]) if activity[i] == 'F': category.append('F') else: category.append('O') if is_over_sampling and len(sample) > 5: # make sure that features are completed if activity[i] != 'F': sample_over = [[] for k in range(over_sampling_num)] for j in range(over_sampling_num): sample_over[j] = copy.deepcopy(sample) sample_over[j][-3] = random.randint(0, 8) # random disturbance in job feature feature.append(sample_over[j]) category.append('O') return feature, category # build features, all features # False means test data do not need over sampling def feature_build(train_dict, test_dict, profile, user_id_index): feature_train, category_train = feature_select(train_dict, profile, user_id_index, True) feature_test, category_test = feature_select(test_dict, profile, user_id_index, False) return feature_train, feature_test, category_train, category_test # calculating the hit rate def cal_hit_rate(category_predict, category_test): hit_count = 0 sample_test_count = len(category_predict) for i in range(sample_test_count): if category_predict[i] == category_test[i]: hit_count += 1 hit_rate = float(hit_count) / float(sample_test_count) print 'hit rate: ' + str(round(hit_rate, 4) * 100) + '%' # calculating F value def calculating_F_value(category_predict, category_test): n_predict = 0 n_origin = 0 hit_count = 0 for item in category_predict: if item != 'F': n_predict += 1 for item in category_test: if item != 'F': n_origin += 1 for i in range(len(category_predict)): if category_predict[i] != 'F' and category_predict[i] == category_test[i]: hit_count += 1 precision = float(hit_count) / float(n_predict) recall = float(hit_count) / float(n_origin) F_value = 2 * precision * recall / (precision + recall) print 'n_predict: ' + str(n_predict) print 'n_origin: ' + str(n_origin) print 'precision: ' + str(round(precision, 3)) print 'recall: ' + str(round(recall, 3)) print 'F_value: ' + str(round(F_value, 3)) # 1. select the service type using most in that period in past days # 2. if user did not use service in that period before, select the service type using most in past days # 3. if user did not use service before, select service randomly # service_count_hour: key = (user_id, hour, service_type) value = count # service_count_past: key = (user_id, service_type) value = count # service_hour: key = (user_id, hour), value = [service_type, count] # service_past: key = user_id, value = [service_type, count] def conventional_method_Mused(feature_train, feature_test, category_train): if len(feature_train[0]) != 7: print 'feature wrong' service_count_hour = {} service_count_past = {} for i in range(len(feature_train)): key_hour = (feature_train[i][0], feature_train[i][5], category_train[i]) if key_hour not in service_count_hour: service_count_hour[key_hour] = 1 else: service_count_hour[key_hour] += 1 key_past = (feature_train[i][0], category_train[i]) if key_past not in service_count_past: service_count_past[key_past] = 1 else: service_count_past[key_past] += 1 service_hour = {} service_past = {} for key, value in service_count_hour.items(): key_hour = (key[0], key[1]) if key_hour not in service_hour: service_hour[key_hour] = [key[2], value] else: if value > service_hour[key_hour][1]: service_hour[key_hour] = [key[2], value] else: pass for key, value in service_count_past.items(): key_past = key[0] if key_past not in service_past: service_past[key_past] = [key[1], value] else: if value > service_past[key_past][1]: service_past[key_past] = [key[1], value] else: pass category_predict = [] for i in range(len(feature_test)): key_0 = (feature_test[i][0], feature_test[i][5]) key_1 = feature_test[i][0] if key_0 in service_hour: value_0 = service_hour[key_0] category_predict.append(value_0[0]) elif key_1 in service_past: value_1 = service_past[key_1] category_predict.append(value_1[0]) else: random_num = random.randint(0, len(service_type)-1) category_predict.append(service_type[random_num]) return category_predict # method 2: service in last week def conventional_method_Lweek(feature_train, feature_test, category_train): if len(feature_train[0]) != 7: print 'feature wrong' category_predict = ['FFF' for i in range(len(feature_test))] for i in range(len(feature_train)): sample = feature_train[i] user_id = sample[0] hour = sample[-2] date = sample[-1] if date == 0: # 0 means it is Sunday and should be the last date = 7 else: pass service_position = user_id * 168 + (date - 1) * 24 + hour category_predict[service_position] = category_train[i] return category_predict # decision tree def decision_tree(feature_train, feature_test, category_train): clf = tree.DecisionTreeClassifier() clf = clf.fit(feature_train, category_train) category_predict = clf.predict(feature_test) # the format of category_predict is weird category_Dtree = [] for item in category_predict: if item == 'F': category_Dtree.append('F') else: category_Dtree.append('O') return category_Dtree # random forests def random_forests(feature_train, feature_test, category_train): clf = RandomForestClassifier(n_estimators = 80) clf = clf.fit(feature_train, category_train) category_predict = clf.predict(feature_test) category_RF = [] for item in category_predict: if item == 'F': category_RF.append('F') else: category_RF.append('O') return category_RF # save user_activity as pkl file for migration.py def user_activity_save(user_activity, user_activity_path): output = open(user_activity_path, 'wb') pickle.dump(user_activity, output) output.close() # user_activity is for migration.py # key = user_id, range(1000), value = ['F', 'G'...], length is 7 * 24 = 168 def activity_restore(feature, category): if len(feature[0]) != 7: print 'feature wrong' user_activity = {} for i in range(USER_NUM): user_activity[i] = ['FFF' for j in range(168)] for i in range(len(feature)): sample = feature[i] user_id = sample[0] hour = sample[5] date = sample[-1] if date == 0: # 0 means it is Sunday and should be the last date = 7 else: pass position = (date - 1) * 24 + hour user_activity[user_id][position] = category[i] return user_activity def counting_accuate_rate(category_Dtree, category_test): on_on = 0 on_off = 0 off_on = 0 off_off = 0 print len(category_test) print len(category_Dtree) for i in range(21504): #(len(category_Dtree)): if category_Dtree[i] == 'O' and category_test[i] == 'O': on_on += 1 elif category_Dtree[i] == 'O' and category_test[i] == 'F': on_off += 1 elif category_Dtree[i] == 'F' and category_test[i] == 'O': off_on += 1 else: off_off += 1 print 'on_on' + '\t' + str(on_on) print 'on_off' + '\t' + str(on_off) print 'off_on' + '\t' + str(off_on) print 'off_off' + '\t' + str(off_off) # save file for sleep.py def save_file_for_sleep(category_predict, category_test): category_predict_path = '../data/category_predict_Dtree.pkl' category_test_path = '../data/category_test.pkl' output_1 = open(category_predict_path, 'wb') pickle.dump(category_predict, output_1) output_2 = open(category_test_path, 'wb') pickle.dump(category_test, output_2) output_1.close() output_2.close() if __name__ == '__main__': ''' activity_dict_path = '../data/activity_dict.pkl' activity_dict = get_activity_dict(activity_dict_path) train_dict_path = '../data/train_dict.pkl' test_dict_path = '../data/test_dict.pkl' user_id_index_path = '../data/user_id_index.pkl' data_segement(activity_dict, train_dict_path, test_dict_path, user_id_index_path) ''' train_dict_path = '../data/train_dict.pkl' test_dict_path = '../data/test_dict.pkl' user_id_index_path = '../data/user_id_index.pkl' train_dict, test_dict, user_id_index = get_data(train_dict_path, test_dict_path, user_id_index_path) profile_path = '../data/profile.pkl' profile = get_profile(profile_path) feature_train, feature_test, category_train, category_test = feature_build(train_dict, test_dict, profile, user_id_index) print 'feature_train sample: ' + str(feature_train[1000]) print 'feature_test sample: ' + str(feature_test[1000]) # decision tree category_Dtree = decision_tree(feature_train, feature_test, category_train) # random_forests #category_RF = random_forests(feature_train, feature_test, category_train) # conventional method: most-used service #category_Mused = conventional_method_Mused(feature_train, feature_test, category_train) # conventional method: last-week service #category_Lweek = conventional_method_Lweek(feature_train, feature_test, category_train) #cal_hit_rate(category_Dtree, category_test) #calculating_F_value(category_Dtree, category_test) #counting_accuate_rate(category_Dtree, category_test) #save_file_for_sleep(category_Dtree, category_test) # this part is for migration.py ''' # origin data, user_activity_origin is users' real behavior user_activity_origin_path = '../data/user_activity_test/user_activity_origin.pkl' user_activity_origin = activity_restore(feature_test, category_test) user_activity_save(user_activity_origin, user_activity_origin_path) ''' ''' # predition data using decision_tree user_activity_Dtree_path = '../data/user_activity_test/user_activity_Dtree.pkl' user_activity_Dtree = activity_restore(feature_test, category_Dtree) user_activity_save(user_activity_Dtree, user_activity_Dtree_path) ''' ''' # predition data according to users' most-used service user_activity_Mused_path = '../data/user_activity_test/user_activity_Mused.pkl' user_activity_Mused = activity_restore(feature_test, category_Mused) user_activity_save(user_activity_Mused, user_activity_Mused_path) ''' ''' # predition data according to users' last-week service user_activity_Lweek_path = '../data/user_activity_test/user_activity_Lweek.pkl' user_activity_Lweek = activity_restore(feature_test, category_Lweek) user_activity_save(user_activity_Lweek, user_activity_Lweek_path) '''
normal
{ "blob_id": "65c0d940bacc2d016121812c435cc60f3fc1ba90", "index": 7233, "step-1": "#!usr/bin/env python\r\n#-*- coding:utf-8 -*-\r\n\r\n# this model is for decision tree\r\n# objective: To cluster different service\r\n# JialongLi 2017/03/18\r\n\r\nimport re\r\nimport os\r\nimport sys\r\nimport pickle\r\nimport copy\r\nimport random\r\nimport pydotplus\r\n\r\n\r\nUSER_NUM = 1000\r\nreload(sys)\r\nsys.setdefaultencoding( \"utf-8\" )\r\nfrom sklearn import tree\r\nfrom sklearn.neural_network import MLPClassifier\r\nfrom sklearn.preprocessing import StandardScaler\r\nfrom sklearn.ensemble import RandomForestClassifier\r\nfrom sklearn.cluster import KMeans\r\n\r\n# 0 represent Sunday, 1: Monday, 6: Saturday, 0: Sunday\r\nday_index = {'0507': 1, '0508': 2, '0509': 3, '0510': 4, '0511': 5, '0512': 6, '0513': 0, \r\n\t\t\t '0604': 1, '0605': 2, '0606': 3, '0607': 4, '0608': 5, '0609': 6, '0610': 0, \r\n\t\t\t '0702': 1, '0703': 2, '0704': 3, '0705': 4, '0706': 5, '0707': 6, '0708': 0, \r\n\t\t\t '0806': 1, '0807': 2, '0808': 3, '0809': 4, '0810': 5, '0811': 6, '0812': 0}\r\n\r\nservice_type = ['I', 'F', 'W', 'G', 'S', 'V']\r\n\r\n# get activity_dict\r\n# user's activity: default value is 'F'\r\n# format: {id_1:{'0507': [24/PERIOD], '0508': ['I', 'W', 'G']}, id_2}\r\ndef get_activity_dict(activity_dict_path):\r\n\tpkl_file = open(activity_dict_path, 'rb')\r\n\tactivity_dict = pickle.load(pkl_file)\r\n\tpkl_file.close()\r\n\treturn activity_dict\r\n\r\n# data are divided into train data and test data\r\n# first three weeks: train data; last week: test data\r\n# train_dict and test_dict are subset of activity_dict, id format is different\r\n# activity_dict format: {real id_1:{'0507': [24/PERIOD], '0508': ['I', 'W', 'G']}, id_2}\r\n# user_id_index: key = number, value = real id\r\ndef data_segement(activity_dict, train_dict_path, test_dict_path, user_id_index_path):\r\n\ttrain_dict = {}\r\n\ttest_dict = {}\r\n\tuser_count = 0\r\n\tuser_id_index = {}\r\n\tfor key_0, value_0 in activity_dict.items(): # key_0: real user_id\r\n\t\ttrain_dict[user_count] = {}\r\n\t\ttest_dict[user_count] = {}\r\n\t\tuser_id_index[user_count] = key_0\r\n\t\tfor key, value in value_0.items():\r\n\t\t\tif key[1] == '8': # data of August, test set\r\n\t\t\t\ttest_dict[user_count][key] = value\r\n\t\t\telse:\r\n\t\t\t\ttrain_dict[user_count][key] = value # train set\r\n\t\tuser_count += 1\r\n\r\n\toutput_1 = open(train_dict_path, 'wb')\r\n\tpickle.dump(train_dict, output_1)\r\n\toutput_2 = open(test_dict_path, 'wb')\r\n\tpickle.dump(test_dict, output_2)\r\n\toutput_3 = open(user_id_index_path, 'wb')\r\n\tpickle.dump(user_id_index, output_3)\r\n\toutput_1.close()\r\n\toutput_2.close()\r\n\toutput_3.close()\r\n\r\n# get train data and test data\r\n# train_dict, test_dict format: {number id_1:{'0507': [24/PERIOD], '0508': ['I', 'W', 'G']}, id_2}\r\ndef get_data(train_dict_path, test_dict_path, user_id_index_path):\r\n\tpkl_file_1 = open(train_dict_path, 'rb')\r\n\tpkl_file_2 = open(test_dict_path, 'rb')\r\n\tpkl_file_3 = open(user_id_index_path, 'rb')\r\n\ttrain_dict = pickle.load(pkl_file_1)\r\n\ttest_dict = pickle.load(pkl_file_2)\r\n\tuser_id_index = pickle.load(pkl_file_3)\r\n\tpkl_file_1.close()\r\n\tpkl_file_2.close()\r\n\tpkl_file_3.close()\r\n\treturn train_dict, test_dict, user_id_index\r\n\r\n# get profile\r\ndef get_profile(profile_path):\r\n\tpkl_file = open(profile_path, 'rb')\r\n\tprofile = pickle.load(pkl_file)\r\n\treturn profile\r\n\r\n# select different features\r\n# feature format: [user_id, gender, age, edu, job, hour, date], 7 features\r\n# profile: dict, {real user_id: [gender, age, edu, job]}\r\n# feature format: double list, outer list element is a sample: [number user_id, gender, age, edu, job, hour, date]\r\n# category format: list, element is service type, length = feature\r\ndef feature_select(data_dict, profile, user_id_index, is_over_sampling):\r\n\tfeature = []\r\n\tcategory = []\r\n\tover_sampling_num = 0\r\n\tfor user_id, all_dates in data_dict.items():\r\n\t\treal_user_id = user_id_index[user_id]\r\n\t\tone_user_profile = copy.deepcopy(profile[real_user_id]) # gender, age, edu, job\r\n\t\tone_user_profile.insert(0, user_id) # insert user_id\r\n\t\tfor date, activity in all_dates.items():\r\n\t\t\tfor i in range(len(activity)):\r\n\t\t\t\tif 1: #activity[i] != 'F': # do not add 'F'\r\n\t\t\t\t\tsample = copy.deepcopy(one_user_profile)\r\n\t\t\t\t\t#del(sample[1:4])\r\n\t\t\t\t\tsample.append(i) #(int(i/6)) # i represents hour\r\n\t\t\t\t\tsample.append(day_index[date]) # day_index: 7 days in one week\r\n\t\t\t\t\tfeature.append(sample)\r\n\t\t\t\t\t#category.append(activity[i])\r\n\t\t\t\t\tif activity[i] == 'F':\r\n\t\t\t\t\t\tcategory.append('F')\r\n\t\t\t\t\telse:\r\n\t\t\t\t\t\tcategory.append('O')\r\n\t\t\t\t\tif is_over_sampling and len(sample) > 5: # make sure that features are completed\r\n\t\t\t\t\t\tif activity[i] != 'F':\r\n\t\t\t\t\t\t\tsample_over = [[] for k in range(over_sampling_num)]\r\n\t\t\t\t\t\t\tfor j in range(over_sampling_num):\r\n\t\t\t\t\t\t\t\tsample_over[j] = copy.deepcopy(sample)\r\n\t\t\t\t\t\t\t\tsample_over[j][-3] = random.randint(0, 8) # random disturbance in job feature\r\n\t\t\t\t\t\t\t\tfeature.append(sample_over[j])\r\n\t\t\t\t\t\t\t\tcategory.append('O')\r\n\treturn feature, category\r\n\r\n# build features, all features\r\n# False means test data do not need over sampling\r\ndef feature_build(train_dict, test_dict, profile, user_id_index):\r\n\tfeature_train, category_train = feature_select(train_dict, profile, user_id_index, True)\r\n\tfeature_test, category_test = feature_select(test_dict, profile, user_id_index, False)\r\n\treturn feature_train, feature_test, category_train, category_test\r\n\r\n# calculating the hit rate\r\ndef cal_hit_rate(category_predict, category_test):\r\n\thit_count = 0\r\n\tsample_test_count = len(category_predict)\r\n\tfor i in range(sample_test_count):\r\n\t\tif category_predict[i] == category_test[i]:\r\n\t\t\thit_count += 1\r\n\thit_rate = float(hit_count) / float(sample_test_count)\r\n\tprint 'hit rate: ' + str(round(hit_rate, 4) * 100) + '%'\r\n\r\n# calculating F value\r\ndef calculating_F_value(category_predict, category_test):\r\n\tn_predict = 0\r\n\tn_origin = 0\r\n\thit_count = 0\r\n\tfor item in category_predict:\r\n\t\tif item != 'F':\r\n\t\t\tn_predict += 1\r\n\tfor item in category_test:\r\n\t\tif item != 'F':\r\n\t\t\tn_origin += 1\r\n\tfor i in range(len(category_predict)):\r\n\t\tif category_predict[i] != 'F' and category_predict[i] == category_test[i]:\r\n\t\t\thit_count += 1\r\n\tprecision = float(hit_count) / float(n_predict)\r\n\trecall = float(hit_count) / float(n_origin)\r\n\tF_value = 2 * precision * recall / (precision + recall)\r\n\tprint 'n_predict: ' + str(n_predict)\r\n\tprint 'n_origin: ' + str(n_origin)\r\n\tprint 'precision: ' + str(round(precision, 3))\r\n\tprint 'recall: ' + str(round(recall, 3))\r\n\tprint 'F_value: ' + str(round(F_value, 3))\r\n\r\n# 1. select the service type using most in that period in past days\r\n# 2. if user did not use service in that period before, select the service type using most in past days\r\n# 3. if user did not use service before, select service randomly \r\n# service_count_hour: key = (user_id, hour, service_type) value = count\r\n# service_count_past: key = (user_id, service_type) value = count\r\n# service_hour: key = (user_id, hour), value = [service_type, count]\r\n# service_past: key = user_id, value = [service_type, count]\r\ndef conventional_method_Mused(feature_train, feature_test, category_train):\r\n\tif len(feature_train[0]) != 7:\r\n\t\tprint 'feature wrong'\r\n\tservice_count_hour = {}\r\n\tservice_count_past = {}\r\n\tfor i in range(len(feature_train)):\r\n\t\tkey_hour = (feature_train[i][0], feature_train[i][5], category_train[i])\r\n\t\tif key_hour not in service_count_hour:\r\n\t\t\tservice_count_hour[key_hour] = 1\r\n\t\telse:\r\n\t\t\tservice_count_hour[key_hour] += 1\r\n\r\n\t\tkey_past = (feature_train[i][0], category_train[i])\r\n\t\tif key_past not in service_count_past:\r\n\t\t\tservice_count_past[key_past] = 1\r\n\t\telse:\r\n\t\t\tservice_count_past[key_past] += 1\r\n\r\n\tservice_hour = {}\r\n\tservice_past = {}\r\n\tfor key, value in service_count_hour.items():\r\n\t\tkey_hour = (key[0], key[1])\r\n\t\tif key_hour not in service_hour:\r\n\t\t\tservice_hour[key_hour] = [key[2], value]\r\n\t\telse:\r\n\t\t\tif value > service_hour[key_hour][1]:\r\n\t\t\t\tservice_hour[key_hour] = [key[2], value]\r\n\t\t\telse:\r\n\t\t\t\tpass\r\n\r\n\tfor key, value in service_count_past.items():\r\n\t\tkey_past = key[0]\r\n\t\tif key_past not in service_past:\r\n\t\t\tservice_past[key_past] = [key[1], value]\r\n\t\telse:\r\n\t\t\tif value > service_past[key_past][1]:\r\n\t\t\t\tservice_past[key_past] = [key[1], value]\r\n\t\t\telse:\r\n\t\t\t\tpass\r\n\r\n\tcategory_predict = []\r\n\tfor i in range(len(feature_test)):\r\n\t\tkey_0 = (feature_test[i][0], feature_test[i][5])\r\n\t\tkey_1 = feature_test[i][0]\r\n\t\tif key_0 in service_hour:\r\n\t\t\tvalue_0 = service_hour[key_0]\r\n\t\t\tcategory_predict.append(value_0[0])\r\n\t\telif key_1 in service_past:\r\n\t\t\tvalue_1 = service_past[key_1]\r\n\t\t\tcategory_predict.append(value_1[0])\r\n\t\telse:\r\n\t\t\trandom_num = random.randint(0, len(service_type)-1)\r\n\t\t\tcategory_predict.append(service_type[random_num])\r\n\r\n\treturn category_predict\r\n# method 2: service in last week\r\ndef conventional_method_Lweek(feature_train, feature_test, category_train):\r\n\tif len(feature_train[0]) != 7:\r\n\t\tprint 'feature wrong'\r\n\tcategory_predict = ['FFF' for i in range(len(feature_test))]\r\n\tfor i in range(len(feature_train)):\r\n\t\tsample = feature_train[i]\r\n\t\tuser_id = sample[0]\r\n\t\thour = sample[-2]\r\n\t\tdate = sample[-1]\r\n\t\tif date == 0: # 0 means it is Sunday and should be the last\r\n\t\t\tdate = 7\r\n\t\telse:\r\n\t\t\tpass\r\n\t\tservice_position = user_id * 168 + (date - 1) * 24 + hour\r\n\t\tcategory_predict[service_position] = category_train[i]\r\n\treturn category_predict\r\n\r\n# decision tree\r\ndef decision_tree(feature_train, feature_test, category_train):\r\n\tclf = tree.DecisionTreeClassifier()\r\n\tclf = clf.fit(feature_train, category_train)\r\n\tcategory_predict = clf.predict(feature_test) # the format of category_predict is weird\r\n\tcategory_Dtree = []\r\n\tfor item in category_predict:\r\n\t\tif item == 'F':\r\n\t\t\tcategory_Dtree.append('F')\r\n\t\telse:\r\n\t\t\tcategory_Dtree.append('O')\r\n\treturn category_Dtree \r\n\r\n# random forests\r\ndef random_forests(feature_train, feature_test, category_train):\r\n\tclf = RandomForestClassifier(n_estimators = 80)\r\n\tclf = clf.fit(feature_train, category_train)\r\n\tcategory_predict = clf.predict(feature_test)\r\n\tcategory_RF = []\r\n\tfor item in category_predict:\r\n\t\tif item == 'F':\r\n\t\t\tcategory_RF.append('F')\r\n\t\telse:\r\n\t\t\tcategory_RF.append('O')\r\n\treturn category_RF\r\n\r\n# save user_activity as pkl file for migration.py\r\ndef user_activity_save(user_activity, user_activity_path):\r\n\toutput = open(user_activity_path, 'wb')\r\n\tpickle.dump(user_activity, output)\r\n\toutput.close()\r\n\r\n# user_activity is for migration.py\r\n# key = user_id, range(1000), value = ['F', 'G'...], length is 7 * 24 = 168\r\ndef activity_restore(feature, category):\r\n\tif len(feature[0]) != 7:\r\n\t\tprint 'feature wrong'\r\n\tuser_activity = {}\r\n\tfor i in range(USER_NUM):\r\n\t\tuser_activity[i] = ['FFF' for j in range(168)]\r\n\tfor i in range(len(feature)):\r\n\t\tsample = feature[i]\r\n\t\tuser_id = sample[0]\r\n\t\thour = sample[5]\r\n\t\tdate = sample[-1]\r\n\t\tif date == 0: # 0 means it is Sunday and should be the last\r\n\t\t\tdate = 7\r\n\t\telse:\r\n\t\t\tpass\r\n\t\tposition = (date - 1) * 24 + hour\r\n\t\tuser_activity[user_id][position] = category[i]\r\n\treturn user_activity\r\n\r\ndef counting_accuate_rate(category_Dtree, category_test):\r\n\ton_on = 0\r\n\ton_off = 0\r\n\toff_on = 0\r\n\toff_off = 0\r\n\tprint len(category_test)\r\n\tprint len(category_Dtree)\r\n\tfor i in range(21504): #(len(category_Dtree)):\r\n\t\tif category_Dtree[i] == 'O' and category_test[i] == 'O':\r\n\t\t\ton_on += 1\r\n\t\telif category_Dtree[i] == 'O' and category_test[i] == 'F':\r\n\t\t\ton_off += 1\r\n\t\telif category_Dtree[i] == 'F' and category_test[i] == 'O':\r\n\t\t\toff_on += 1\r\n\t\telse:\r\n\t\t\toff_off += 1\r\n\tprint 'on_on' + '\\t' + str(on_on)\r\n\tprint 'on_off' + '\\t' + str(on_off)\r\n\tprint 'off_on' + '\\t' + str(off_on)\r\n\tprint 'off_off' + '\\t' + str(off_off)\r\n\r\n# save file for sleep.py\r\ndef save_file_for_sleep(category_predict, category_test):\r\n\tcategory_predict_path = '../data/category_predict_Dtree.pkl'\r\n\tcategory_test_path = '../data/category_test.pkl'\r\n\toutput_1 = open(category_predict_path, 'wb')\r\n\tpickle.dump(category_predict, output_1)\r\n\toutput_2 = open(category_test_path, 'wb')\r\n\tpickle.dump(category_test, output_2)\r\n\toutput_1.close()\r\n\toutput_2.close()\r\n\r\nif __name__ == '__main__':\r\n\t'''\r\n\tactivity_dict_path = '../data/activity_dict.pkl'\r\n\tactivity_dict = get_activity_dict(activity_dict_path)\r\n\ttrain_dict_path = '../data/train_dict.pkl'\r\n\ttest_dict_path = '../data/test_dict.pkl'\r\n\tuser_id_index_path = '../data/user_id_index.pkl'\r\n\tdata_segement(activity_dict, train_dict_path, test_dict_path, user_id_index_path)\r\n\t'''\r\n\r\n\ttrain_dict_path = '../data/train_dict.pkl'\r\n\ttest_dict_path = '../data/test_dict.pkl'\r\n\tuser_id_index_path = '../data/user_id_index.pkl'\r\n\ttrain_dict, test_dict, user_id_index = get_data(train_dict_path, test_dict_path, user_id_index_path)\r\n\tprofile_path = '../data/profile.pkl'\r\n\tprofile = get_profile(profile_path)\r\n\r\n\tfeature_train, feature_test, category_train, category_test = feature_build(train_dict, test_dict, profile, user_id_index)\r\n\tprint 'feature_train sample: ' + str(feature_train[1000])\r\n\tprint 'feature_test sample: ' + str(feature_test[1000])\r\n\r\n\t# decision tree\r\n\tcategory_Dtree = decision_tree(feature_train, feature_test, category_train)\r\n\r\n\t# random_forests\r\n\t#category_RF = random_forests(feature_train, feature_test, category_train)\r\n\r\n\t# conventional method: most-used service\r\n\t#category_Mused = conventional_method_Mused(feature_train, feature_test, category_train)\r\n\r\n\t# conventional method: last-week service\r\n\t#category_Lweek = conventional_method_Lweek(feature_train, feature_test, category_train)\r\n\r\n\r\n\t#cal_hit_rate(category_Dtree, category_test)\r\n\t#calculating_F_value(category_Dtree, category_test)\r\n\t\r\n\t#counting_accuate_rate(category_Dtree, category_test)\r\n\r\n\t#save_file_for_sleep(category_Dtree, category_test)\r\n\r\n\t# this part is for migration.py\r\n\t'''\r\n\t# origin data, user_activity_origin is users' real behavior\r\n\tuser_activity_origin_path = '../data/user_activity_test/user_activity_origin.pkl'\r\n\tuser_activity_origin = activity_restore(feature_test, category_test)\r\n\tuser_activity_save(user_activity_origin, user_activity_origin_path)\r\n\t'''\r\n\t'''\r\n\t# predition data using decision_tree\r\n\tuser_activity_Dtree_path = '../data/user_activity_test/user_activity_Dtree.pkl'\r\n\tuser_activity_Dtree = activity_restore(feature_test, category_Dtree)\r\n\tuser_activity_save(user_activity_Dtree, user_activity_Dtree_path)\r\n\t'''\r\n\t'''\r\n\t# predition data according to users' most-used service\r\n\tuser_activity_Mused_path = '../data/user_activity_test/user_activity_Mused.pkl'\r\n\tuser_activity_Mused = activity_restore(feature_test, category_Mused)\r\n\tuser_activity_save(user_activity_Mused, user_activity_Mused_path)\r\n\t'''\r\n\t'''\r\n\t# predition data according to users' last-week service\r\n\tuser_activity_Lweek_path = '../data/user_activity_test/user_activity_Lweek.pkl'\r\n\tuser_activity_Lweek = activity_restore(feature_test, category_Lweek)\r\n\tuser_activity_save(user_activity_Lweek, user_activity_Lweek_path)\r\n\t'''", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def face_detector(img, face_cascade, eye_cascade, face_f): xf = face_f[0] yf = face_f[1] wf = face_f[2] hf = face_f[3] xi = 0 yi = 0 wi = img.shape[1] hi = img.shape[0] c = float(0.1) print('face_f: ', xf, xf + wf, yf, yf + hf) if xf != xi or yf != yi or wf != wi or hf != hi: y1 = yf - round(c * hf) y2 = yf + hf + round(c * hf) x1 = xf - round(c * wf) x2 = xf + wf + round(c * wf) roi_f = img[y1:y2, x1:x2] print('Face apertura: ', x1, x2, y1, y2) cv2.imshow('Face apertura', roi_f) else: roi_f = img[face_f[1]:face_f[1] + face_f[3], face_f[0]:face_f[0] + face_f[2]] gray_img = cv2.cvtColor(roi_f, cv2.COLOR_BGR2GRAY) cv2.imshow('gray_img', gray_img) faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.04, minNeighbors=5) print('Faces: ', faces) if type(faces) == np.ndarray: flag = -1 for x, y, w, h in faces: flag = flag + 1 if w >= 100 and w <= 125 and h >= 100 and h <= 125: print('Entro en el if de tamaño') print('Face: ', x, y, w, h) roi_gray = gray_img[y:y + h, x:x + w] cv2.imshow('roi_gray', roi_gray) eyes = eye_cascade.detectMultiScale(roi_gray) c_eyes = 0 for ex, ey, ew, eh in eyes: c_eyes = c_eyes + 1 if c_eyes >= 2: print('faces[flag]', faces[flag]) return faces[flag] <|reserved_special_token_1|> import cv2 import numpy as np def face_detector(img, face_cascade, eye_cascade, face_f): xf = face_f[0] yf = face_f[1] wf = face_f[2] hf = face_f[3] xi = 0 yi = 0 wi = img.shape[1] hi = img.shape[0] c = float(0.1) print('face_f: ', xf, xf + wf, yf, yf + hf) if xf != xi or yf != yi or wf != wi or hf != hi: y1 = yf - round(c * hf) y2 = yf + hf + round(c * hf) x1 = xf - round(c * wf) x2 = xf + wf + round(c * wf) roi_f = img[y1:y2, x1:x2] print('Face apertura: ', x1, x2, y1, y2) cv2.imshow('Face apertura', roi_f) else: roi_f = img[face_f[1]:face_f[1] + face_f[3], face_f[0]:face_f[0] + face_f[2]] gray_img = cv2.cvtColor(roi_f, cv2.COLOR_BGR2GRAY) cv2.imshow('gray_img', gray_img) faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.04, minNeighbors=5) print('Faces: ', faces) if type(faces) == np.ndarray: flag = -1 for x, y, w, h in faces: flag = flag + 1 if w >= 100 and w <= 125 and h >= 100 and h <= 125: print('Entro en el if de tamaño') print('Face: ', x, y, w, h) roi_gray = gray_img[y:y + h, x:x + w] cv2.imshow('roi_gray', roi_gray) eyes = eye_cascade.detectMultiScale(roi_gray) c_eyes = 0 for ex, ey, ew, eh in eyes: c_eyes = c_eyes + 1 if c_eyes >= 2: print('faces[flag]', faces[flag]) return faces[flag] <|reserved_special_token_1|> #LIBRERIAS import cv2 import numpy as np #FUNCION: recibe una imagen y te devuelve las coordenadas de las caras def face_detector(img, face_cascade, eye_cascade, face_f): #variables face_f xf = face_f[0] yf = face_f[1] wf = face_f[2] hf = face_f[3] #variables img xi = 0 yi = 0 wi = img.shape[1] hi = img.shape[0] #apertura de face_f con relacion a la img c = float(0.1) #esto es un 10 % print("face_f: ", xf, xf + wf, yf, yf + hf) #roi_i = img[yf: yf + hf, xf: xf + wf] #cv2.imshow("roi_i", roi_i) if xf != xi or yf != yi or wf != wi or hf != hi: #(tendre que ver si AND o OR) #face_f no es igual a img, hace falta la apertura y1 = yf - round(c * hf) y2 = yf + hf + round(c * hf) x1 = xf - round(c * wf) x2 = xf + wf + round(c * wf) roi_f = img[y1: y2, x1: x2] print("Face apertura: ", x1, x2, y1, y2) cv2.imshow('Face apertura',roi_f) else: #face_f es igual a img, no hace falta la apertura roi_f = img[face_f[1] : face_f[1] + face_f[3], face_f[0] : face_f[0] + face_f[2]] #cv2.imshow('roi_f',roi_f) #paso el roi_f a gris para un mejor tratamiento gray_img = cv2.cvtColor(roi_f,cv2.COLOR_BGR2GRAY) cv2.imshow("gray_img",gray_img) #aplicar el clasificador de caras sobre la imagen y guardo el resultado en faces: seran la x, y, height y width faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.04, minNeighbors=5) print("Faces: ", faces) if type(faces) == np.ndarray: flag = -1 for x,y,w,h in faces: flag = flag + 1 #print("Face: ", x,y,w,h) if w >= 100 and w <= 125 and h >= 100 and h <= 125: print("Entro en el if de tamaño") #Region Of Interest print("Face: ", x,y,w,h) roi_gray = gray_img[y:y+h, x:x+w] cv2.imshow("roi_gray", roi_gray) #aplico el clasificador de ojos sobre la imagen de interes que se supone que es una cara y guardo el resultado en eyes eyes = eye_cascade.detectMultiScale(roi_gray) c_eyes = 0 for ex,ey,ew,eh in eyes: c_eyes = c_eyes + 1 if c_eyes >= 2: #si hay mínimo dos ojos (a veces la boca abierta la detecta como un tercer ojo), es una cara print("faces[flag]", faces[flag]) return faces[flag]
flexible
{ "blob_id": "1df3a5dc8ed767e20d34c2836eed79872a21a016", "index": 9948, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef face_detector(img, face_cascade, eye_cascade, face_f):\n xf = face_f[0]\n yf = face_f[1]\n wf = face_f[2]\n hf = face_f[3]\n xi = 0\n yi = 0\n wi = img.shape[1]\n hi = img.shape[0]\n c = float(0.1)\n print('face_f: ', xf, xf + wf, yf, yf + hf)\n if xf != xi or yf != yi or wf != wi or hf != hi:\n y1 = yf - round(c * hf)\n y2 = yf + hf + round(c * hf)\n x1 = xf - round(c * wf)\n x2 = xf + wf + round(c * wf)\n roi_f = img[y1:y2, x1:x2]\n print('Face apertura: ', x1, x2, y1, y2)\n cv2.imshow('Face apertura', roi_f)\n else:\n roi_f = img[face_f[1]:face_f[1] + face_f[3], face_f[0]:face_f[0] +\n face_f[2]]\n gray_img = cv2.cvtColor(roi_f, cv2.COLOR_BGR2GRAY)\n cv2.imshow('gray_img', gray_img)\n faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.04,\n minNeighbors=5)\n print('Faces: ', faces)\n if type(faces) == np.ndarray:\n flag = -1\n for x, y, w, h in faces:\n flag = flag + 1\n if w >= 100 and w <= 125 and h >= 100 and h <= 125:\n print('Entro en el if de tamaño')\n print('Face: ', x, y, w, h)\n roi_gray = gray_img[y:y + h, x:x + w]\n cv2.imshow('roi_gray', roi_gray)\n eyes = eye_cascade.detectMultiScale(roi_gray)\n c_eyes = 0\n for ex, ey, ew, eh in eyes:\n c_eyes = c_eyes + 1\n if c_eyes >= 2:\n print('faces[flag]', faces[flag])\n return faces[flag]\n", "step-3": "import cv2\nimport numpy as np\n\n\ndef face_detector(img, face_cascade, eye_cascade, face_f):\n xf = face_f[0]\n yf = face_f[1]\n wf = face_f[2]\n hf = face_f[3]\n xi = 0\n yi = 0\n wi = img.shape[1]\n hi = img.shape[0]\n c = float(0.1)\n print('face_f: ', xf, xf + wf, yf, yf + hf)\n if xf != xi or yf != yi or wf != wi or hf != hi:\n y1 = yf - round(c * hf)\n y2 = yf + hf + round(c * hf)\n x1 = xf - round(c * wf)\n x2 = xf + wf + round(c * wf)\n roi_f = img[y1:y2, x1:x2]\n print('Face apertura: ', x1, x2, y1, y2)\n cv2.imshow('Face apertura', roi_f)\n else:\n roi_f = img[face_f[1]:face_f[1] + face_f[3], face_f[0]:face_f[0] +\n face_f[2]]\n gray_img = cv2.cvtColor(roi_f, cv2.COLOR_BGR2GRAY)\n cv2.imshow('gray_img', gray_img)\n faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.04,\n minNeighbors=5)\n print('Faces: ', faces)\n if type(faces) == np.ndarray:\n flag = -1\n for x, y, w, h in faces:\n flag = flag + 1\n if w >= 100 and w <= 125 and h >= 100 and h <= 125:\n print('Entro en el if de tamaño')\n print('Face: ', x, y, w, h)\n roi_gray = gray_img[y:y + h, x:x + w]\n cv2.imshow('roi_gray', roi_gray)\n eyes = eye_cascade.detectMultiScale(roi_gray)\n c_eyes = 0\n for ex, ey, ew, eh in eyes:\n c_eyes = c_eyes + 1\n if c_eyes >= 2:\n print('faces[flag]', faces[flag])\n return faces[flag]\n", "step-4": "#LIBRERIAS\nimport cv2\nimport numpy as np\n\n#FUNCION: recibe una imagen y te devuelve las coordenadas de las caras\ndef face_detector(img, face_cascade, eye_cascade, face_f): \n\n #variables face_f\n xf = face_f[0]\n yf = face_f[1]\n wf = face_f[2]\n hf = face_f[3]\n \n #variables img\n xi = 0\n yi = 0\n wi = img.shape[1]\n hi = img.shape[0]\n\n #apertura de face_f con relacion a la img\n c = float(0.1) #esto es un 10 %\n \n print(\"face_f: \", xf, xf + wf, yf, yf + hf)\n #roi_i = img[yf: yf + hf, xf: xf + wf]\n #cv2.imshow(\"roi_i\", roi_i)\n\n if xf != xi or yf != yi or wf != wi or hf != hi: #(tendre que ver si AND o OR)\n #face_f no es igual a img, hace falta la apertura\n \n y1 = yf - round(c * hf)\n y2 = yf + hf + round(c * hf)\n x1 = xf - round(c * wf)\n x2 = xf + wf + round(c * wf)\n\n roi_f = img[y1: y2, x1: x2]\n \n print(\"Face apertura: \", x1, x2, y1, y2)\n cv2.imshow('Face apertura',roi_f)\n\n else:\n\n #face_f es igual a img, no hace falta la apertura\n \n roi_f = img[face_f[1] : face_f[1] + face_f[3], face_f[0] : face_f[0] + face_f[2]]\n\n #cv2.imshow('roi_f',roi_f)\n\n\n\n #paso el roi_f a gris para un mejor tratamiento\n gray_img = cv2.cvtColor(roi_f,cv2.COLOR_BGR2GRAY)\n cv2.imshow(\"gray_img\",gray_img)\n \n #aplicar el clasificador de caras sobre la imagen y guardo el resultado en faces: seran la x, y, height y width\n faces = face_cascade.detectMultiScale(gray_img, scaleFactor=1.04, minNeighbors=5)\n print(\"Faces: \", faces)\n\n if type(faces) == np.ndarray:\n\n flag = -1\n\n for x,y,w,h in faces:\n\n flag = flag + 1\n\n #print(\"Face: \", x,y,w,h)\n \n if w >= 100 and w <= 125 and h >= 100 and h <= 125:\n print(\"Entro en el if de tamaño\")\n #Region Of Interest\n print(\"Face: \", x,y,w,h)\n roi_gray = gray_img[y:y+h, x:x+w]\n \n cv2.imshow(\"roi_gray\", roi_gray)\n\n #aplico el clasificador de ojos sobre la imagen de interes que se supone que es una cara y guardo el resultado en eyes\n eyes = eye_cascade.detectMultiScale(roi_gray)\n \n c_eyes = 0\n\n for ex,ey,ew,eh in eyes:\n \n c_eyes = c_eyes + 1\n\n if c_eyes >= 2: #si hay mínimo dos ojos (a veces la boca abierta la detecta como un tercer ojo), es una cara\n print(\"faces[flag]\", faces[flag])\n return faces[flag]\n \n \n \n \n ", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def test_Kmeans(*data): x, labels_true = data clst = cluster.KMeans() clst.fit(x) predicted_labels = clst.predict(x) print('ARI: %s' % adjusted_rand_score(labels_true, predicted_labels)) print('Sum center distance %s' % (clst.inertia_,)) def test_Kmeans_nclusters(*data): """ 测试KMeans的聚类结果随参数n_clusters的参数的影响 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数 的变化情况 """ x, labels_true = data nums = range(1, 50) ARIs = [] Distances = [] for num in nums: clst = cluster.KMeans(n_clusters=num) clst.fit(x) predicted_labels = clst.predict(x) ARIs.append(adjusted_rand_score(labels_true, predicted_labels)) Distances.append(clst.inertia_) fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs, marker='+') ax.set_xlabel('n_clusters') ax.set_ylabel('ARI') ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances, marker='o') ax.set_xlabel('n_cluster') ax.set_ylabel('intertia_') fig.suptitle('KMeans') plt.show() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def test_Kmeans(*data): x, labels_true = data clst = cluster.KMeans() clst.fit(x) predicted_labels = clst.predict(x) print('ARI: %s' % adjusted_rand_score(labels_true, predicted_labels)) print('Sum center distance %s' % (clst.inertia_,)) def test_Kmeans_nclusters(*data): """ 测试KMeans的聚类结果随参数n_clusters的参数的影响 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数 的变化情况 """ x, labels_true = data nums = range(1, 50) ARIs = [] Distances = [] for num in nums: clst = cluster.KMeans(n_clusters=num) clst.fit(x) predicted_labels = clst.predict(x) ARIs.append(adjusted_rand_score(labels_true, predicted_labels)) Distances.append(clst.inertia_) fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs, marker='+') ax.set_xlabel('n_clusters') ax.set_ylabel('ARI') ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances, marker='o') ax.set_xlabel('n_cluster') ax.set_ylabel('intertia_') fig.suptitle('KMeans') plt.show() def test_KMeans_n_init(*data): """ 该函数考察KMeans算法运行的次数和选择的初始中心向量策略的影响 """ x, labels_true = data nums = range(1, 50) fig = plt.figure() ARIs_k = [] Distances_k = [] ARIs_r = [] Distances_r = [] for num in nums: clst = cluster.KMeans(n_init=num, init='k-means++') clst.fit(x) predicted_labels = clst.predict(x) ARIs_k.append(adjusted_rand_score(labels_true, predicted_labels)) Distances_k.append(clst.inertia_) clst = cluster.KMeans(n_init=num, init='random') clst.fit(x) predicted_labels = clst.predict(x) ARIs_r.append(adjusted_rand_score(labels_true, predicted_labels)) Distances_r.append(clst.inertia_) ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs_k, marker='+', label='k-means++') ax.plot(nums, ARIs_r, marker='+', label='random') ax.set_xlabel('n_init') ax.set_ylabel('ARI') ax.set_ylim(0, 1) ax.legend(loc='best') ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances_k, marker='o', label='k-means++') ax.plot(nums, Distances_r, marker='o', label='random') ax.set_xlabel('n_init') ax.set_ylabel('inertia_') ax.legend(loc='best') fig.suptitle('KMeans') plt.show() <|reserved_special_token_1|> from sklearn import cluster from sklearn.metrics import adjusted_rand_score import matplotlib.pyplot as plt def test_Kmeans(*data): x, labels_true = data clst = cluster.KMeans() clst.fit(x) predicted_labels = clst.predict(x) print('ARI: %s' % adjusted_rand_score(labels_true, predicted_labels)) print('Sum center distance %s' % (clst.inertia_,)) def test_Kmeans_nclusters(*data): """ 测试KMeans的聚类结果随参数n_clusters的参数的影响 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数 的变化情况 """ x, labels_true = data nums = range(1, 50) ARIs = [] Distances = [] for num in nums: clst = cluster.KMeans(n_clusters=num) clst.fit(x) predicted_labels = clst.predict(x) ARIs.append(adjusted_rand_score(labels_true, predicted_labels)) Distances.append(clst.inertia_) fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs, marker='+') ax.set_xlabel('n_clusters') ax.set_ylabel('ARI') ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances, marker='o') ax.set_xlabel('n_cluster') ax.set_ylabel('intertia_') fig.suptitle('KMeans') plt.show() def test_KMeans_n_init(*data): """ 该函数考察KMeans算法运行的次数和选择的初始中心向量策略的影响 """ x, labels_true = data nums = range(1, 50) fig = plt.figure() ARIs_k = [] Distances_k = [] ARIs_r = [] Distances_r = [] for num in nums: clst = cluster.KMeans(n_init=num, init='k-means++') clst.fit(x) predicted_labels = clst.predict(x) ARIs_k.append(adjusted_rand_score(labels_true, predicted_labels)) Distances_k.append(clst.inertia_) clst = cluster.KMeans(n_init=num, init='random') clst.fit(x) predicted_labels = clst.predict(x) ARIs_r.append(adjusted_rand_score(labels_true, predicted_labels)) Distances_r.append(clst.inertia_) ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs_k, marker='+', label='k-means++') ax.plot(nums, ARIs_r, marker='+', label='random') ax.set_xlabel('n_init') ax.set_ylabel('ARI') ax.set_ylim(0, 1) ax.legend(loc='best') ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances_k, marker='o', label='k-means++') ax.plot(nums, Distances_r, marker='o', label='random') ax.set_xlabel('n_init') ax.set_ylabel('inertia_') ax.legend(loc='best') fig.suptitle('KMeans') plt.show() <|reserved_special_token_1|> from sklearn import cluster from sklearn.metrics import adjusted_rand_score import matplotlib.pyplot as plt def test_Kmeans(*data): x,labels_true = data clst = cluster.KMeans() clst.fit(x) predicted_labels = clst.predict(x) print("ARI: %s" % adjusted_rand_score(labels_true, predicted_labels)) print("Sum center distance %s" % (clst.inertia_,)) def test_Kmeans_nclusters(*data): """ 测试KMeans的聚类结果随参数n_clusters的参数的影响 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数 的变化情况 """ x, labels_true = data nums = range(1, 50) ARIs = [] Distances = [] for num in nums: clst = cluster.KMeans(n_clusters = num) clst.fit(x) predicted_labels = clst.predict(x) ARIs.append(adjusted_rand_score(labels_true, predicted_labels)) Distances.append(clst.inertia_) # 绘图 fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs, marker = "+") ax.set_xlabel("n_clusters") ax.set_ylabel("ARI") ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances, marker = "o") ax.set_xlabel("n_cluster") ax.set_ylabel("intertia_") fig.suptitle("KMeans") plt.show() def test_KMeans_n_init(*data): """ 该函数考察KMeans算法运行的次数和选择的初始中心向量策略的影响 """ x, labels_true = data nums = range(1, 50) # 绘图 fig = plt.figure() ARIs_k = [] Distances_k = [] ARIs_r = [] Distances_r = [] for num in nums: clst = cluster.KMeans(n_init = num, init = "k-means++") clst.fit(x) predicted_labels = clst.predict(x) ARIs_k.append(adjusted_rand_score(labels_true, predicted_labels)) Distances_k.append(clst.inertia_) clst = cluster.KMeans(n_init = num, init = "random") clst.fit(x) predicted_labels = clst.predict(x) ARIs_r.append(adjusted_rand_score(labels_true, predicted_labels)) Distances_r.append(clst.inertia_) ax = fig.add_subplot(1, 2, 1) ax.plot(nums, ARIs_k, marker = "+", label = "k-means++") ax.plot(nums, ARIs_r, marker = "+", label = "random") ax.set_xlabel("n_init") ax.set_ylabel("ARI") ax.set_ylim(0, 1) ax.legend(loc = "best") ax = fig.add_subplot(1, 2, 2) ax.plot(nums, Distances_k, marker = "o", label = "k-means++") ax.plot(nums, Distances_r, marker = "o", label = "random") ax.set_xlabel("n_init") ax.set_ylabel("inertia_") ax.legend(loc = "best") fig.suptitle("KMeans") plt.show()
flexible
{ "blob_id": "bd419d0a197a5e5a99a370e45cdb53a276ac5507", "index": 5633, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_Kmeans(*data):\n x, labels_true = data\n clst = cluster.KMeans()\n clst.fit(x)\n predicted_labels = clst.predict(x)\n print('ARI: %s' % adjusted_rand_score(labels_true, predicted_labels))\n print('Sum center distance %s' % (clst.inertia_,))\n\n\ndef test_Kmeans_nclusters(*data):\n \"\"\"\n 测试KMeans的聚类结果随参数n_clusters的参数的影响\n 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数\n 的变化情况\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n ARIs = []\n Distances = []\n for num in nums:\n clst = cluster.KMeans(n_clusters=num)\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances.append(clst.inertia_)\n fig = plt.figure()\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs, marker='+')\n ax.set_xlabel('n_clusters')\n ax.set_ylabel('ARI')\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances, marker='o')\n ax.set_xlabel('n_cluster')\n ax.set_ylabel('intertia_')\n fig.suptitle('KMeans')\n plt.show()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef test_Kmeans(*data):\n x, labels_true = data\n clst = cluster.KMeans()\n clst.fit(x)\n predicted_labels = clst.predict(x)\n print('ARI: %s' % adjusted_rand_score(labels_true, predicted_labels))\n print('Sum center distance %s' % (clst.inertia_,))\n\n\ndef test_Kmeans_nclusters(*data):\n \"\"\"\n 测试KMeans的聚类结果随参数n_clusters的参数的影响\n 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数\n 的变化情况\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n ARIs = []\n Distances = []\n for num in nums:\n clst = cluster.KMeans(n_clusters=num)\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances.append(clst.inertia_)\n fig = plt.figure()\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs, marker='+')\n ax.set_xlabel('n_clusters')\n ax.set_ylabel('ARI')\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances, marker='o')\n ax.set_xlabel('n_cluster')\n ax.set_ylabel('intertia_')\n fig.suptitle('KMeans')\n plt.show()\n\n\ndef test_KMeans_n_init(*data):\n \"\"\"\n 该函数考察KMeans算法运行的次数和选择的初始中心向量策略的影响\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n fig = plt.figure()\n ARIs_k = []\n Distances_k = []\n ARIs_r = []\n Distances_r = []\n for num in nums:\n clst = cluster.KMeans(n_init=num, init='k-means++')\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs_k.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances_k.append(clst.inertia_)\n clst = cluster.KMeans(n_init=num, init='random')\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs_r.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances_r.append(clst.inertia_)\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs_k, marker='+', label='k-means++')\n ax.plot(nums, ARIs_r, marker='+', label='random')\n ax.set_xlabel('n_init')\n ax.set_ylabel('ARI')\n ax.set_ylim(0, 1)\n ax.legend(loc='best')\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances_k, marker='o', label='k-means++')\n ax.plot(nums, Distances_r, marker='o', label='random')\n ax.set_xlabel('n_init')\n ax.set_ylabel('inertia_')\n ax.legend(loc='best')\n fig.suptitle('KMeans')\n plt.show()\n", "step-4": "from sklearn import cluster\nfrom sklearn.metrics import adjusted_rand_score\nimport matplotlib.pyplot as plt\n\n\ndef test_Kmeans(*data):\n x, labels_true = data\n clst = cluster.KMeans()\n clst.fit(x)\n predicted_labels = clst.predict(x)\n print('ARI: %s' % adjusted_rand_score(labels_true, predicted_labels))\n print('Sum center distance %s' % (clst.inertia_,))\n\n\ndef test_Kmeans_nclusters(*data):\n \"\"\"\n 测试KMeans的聚类结果随参数n_clusters的参数的影响\n 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数\n 的变化情况\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n ARIs = []\n Distances = []\n for num in nums:\n clst = cluster.KMeans(n_clusters=num)\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances.append(clst.inertia_)\n fig = plt.figure()\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs, marker='+')\n ax.set_xlabel('n_clusters')\n ax.set_ylabel('ARI')\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances, marker='o')\n ax.set_xlabel('n_cluster')\n ax.set_ylabel('intertia_')\n fig.suptitle('KMeans')\n plt.show()\n\n\ndef test_KMeans_n_init(*data):\n \"\"\"\n 该函数考察KMeans算法运行的次数和选择的初始中心向量策略的影响\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n fig = plt.figure()\n ARIs_k = []\n Distances_k = []\n ARIs_r = []\n Distances_r = []\n for num in nums:\n clst = cluster.KMeans(n_init=num, init='k-means++')\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs_k.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances_k.append(clst.inertia_)\n clst = cluster.KMeans(n_init=num, init='random')\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs_r.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances_r.append(clst.inertia_)\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs_k, marker='+', label='k-means++')\n ax.plot(nums, ARIs_r, marker='+', label='random')\n ax.set_xlabel('n_init')\n ax.set_ylabel('ARI')\n ax.set_ylim(0, 1)\n ax.legend(loc='best')\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances_k, marker='o', label='k-means++')\n ax.plot(nums, Distances_r, marker='o', label='random')\n ax.set_xlabel('n_init')\n ax.set_ylabel('inertia_')\n ax.legend(loc='best')\n fig.suptitle('KMeans')\n plt.show()\n", "step-5": "from sklearn import cluster\nfrom sklearn.metrics import adjusted_rand_score\nimport matplotlib.pyplot as plt\n\ndef test_Kmeans(*data):\n x,labels_true = data\n clst = cluster.KMeans()\n clst.fit(x)\n predicted_labels = clst.predict(x)\n print(\"ARI: %s\" % adjusted_rand_score(labels_true, predicted_labels))\n print(\"Sum center distance %s\" % (clst.inertia_,))\n\n\ndef test_Kmeans_nclusters(*data):\n \"\"\"\n 测试KMeans的聚类结果随参数n_clusters的参数的影响\n 在这里,主要分别研究ARI和所有样本距离各簇中心的距离值和随簇的个数\n 的变化情况\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n ARIs = []\n Distances = []\n for num in nums:\n clst = cluster.KMeans(n_clusters = num)\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances.append(clst.inertia_)\n # 绘图\n fig = plt.figure()\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs, marker = \"+\")\n ax.set_xlabel(\"n_clusters\")\n ax.set_ylabel(\"ARI\")\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances, marker = \"o\")\n ax.set_xlabel(\"n_cluster\")\n ax.set_ylabel(\"intertia_\")\n fig.suptitle(\"KMeans\")\n plt.show()\n\n\ndef test_KMeans_n_init(*data):\n \"\"\"\n 该函数考察KMeans算法运行的次数和选择的初始中心向量策略的影响\n \"\"\"\n x, labels_true = data\n nums = range(1, 50)\n # 绘图\n fig = plt.figure()\n\n ARIs_k = []\n Distances_k = []\n ARIs_r = []\n Distances_r = []\n for num in nums:\n clst = cluster.KMeans(n_init = num, init = \"k-means++\")\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs_k.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances_k.append(clst.inertia_)\n \n clst = cluster.KMeans(n_init = num, init = \"random\")\n clst.fit(x)\n predicted_labels = clst.predict(x)\n ARIs_r.append(adjusted_rand_score(labels_true, predicted_labels))\n Distances_r.append(clst.inertia_)\n ax = fig.add_subplot(1, 2, 1)\n ax.plot(nums, ARIs_k, marker = \"+\", label = \"k-means++\")\n ax.plot(nums, ARIs_r, marker = \"+\", label = \"random\")\n ax.set_xlabel(\"n_init\")\n ax.set_ylabel(\"ARI\")\n ax.set_ylim(0, 1)\n ax.legend(loc = \"best\")\n ax = fig.add_subplot(1, 2, 2)\n ax.plot(nums, Distances_k, marker = \"o\", label = \"k-means++\")\n ax.plot(nums, Distances_r, marker = \"o\", label = \"random\")\n ax.set_xlabel(\"n_init\")\n ax.set_ylabel(\"inertia_\")\n ax.legend(loc = \"best\")\n fig.suptitle(\"KMeans\")\n plt.show()\n\n\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
import matplotlib.pyplot as plotOp import numpy as np from random import randint import re as regexOp
normal
{ "blob_id": "6c0a1d4ffd64e0566be53937d9b48975f2530852", "index": 7767, "step-1": "<mask token>\n", "step-2": "import matplotlib.pyplot as plotOp\nimport numpy as np\nfrom random import randint\nimport re as regexOp\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: <|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: def maxSideLength(self, mat: List[List[int]], threshold: int) ->int: def squareSum(r1: int, c1: int, r2: int, c2: int) ->int: return prefixSum[r2 + 1][c2 + 1] - prefixSum[r1][c2 + 1 ] - prefixSum[r2 + 1][c1] + prefixSum[r1][c1] m = len(mat) n = len(mat[0]) ans = 0 prefixSum = [([0] * (n + 1)) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): prefixSum[i][j] = mat[i - 1][j - 1] + prefixSum[i][j - 1 ] + prefixSum[i - 1][j] - prefixSum[i - 1][j - 1] for i in range(m): for j in range(n): for length in range(ans, min(m - i, n - j)): if squareSum(i, j, i + length, j + length) > threshold: break ans = max(ans, length + 1) return ans <|reserved_special_token_1|> class Solution: def maxSideLength(self, mat: List[List[int]], threshold: int) -> int: def squareSum(r1: int, c1: int, r2: int, c2: int) -> int: return prefixSum[r2 + 1][c2 + 1] - prefixSum[r1][c2 + 1] - prefixSum[r2 + 1][c1] + prefixSum[r1][c1] m = len(mat) n = len(mat[0]) ans = 0 prefixSum = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): prefixSum[i][j] = mat[i - 1][j - 1] + prefixSum[i][j - 1] + \ prefixSum[i - 1][j] - prefixSum[i - 1][j - 1] for i in range(m): for j in range(n): for length in range(ans, min(m - i, n - j)): if squareSum(i, j, i + length, j + length) > threshold: break ans = max(ans, length + 1) return ans
flexible
{ "blob_id": "c8f2df1471a9581d245d52437470b6c67b341ece", "index": 7297, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def maxSideLength(self, mat: List[List[int]], threshold: int) ->int:\n\n def squareSum(r1: int, c1: int, r2: int, c2: int) ->int:\n return prefixSum[r2 + 1][c2 + 1] - prefixSum[r1][c2 + 1\n ] - prefixSum[r2 + 1][c1] + prefixSum[r1][c1]\n m = len(mat)\n n = len(mat[0])\n ans = 0\n prefixSum = [([0] * (n + 1)) for _ in range(m + 1)]\n for i in range(1, m + 1):\n for j in range(1, n + 1):\n prefixSum[i][j] = mat[i - 1][j - 1] + prefixSum[i][j - 1\n ] + prefixSum[i - 1][j] - prefixSum[i - 1][j - 1]\n for i in range(m):\n for j in range(n):\n for length in range(ans, min(m - i, n - j)):\n if squareSum(i, j, i + length, j + length) > threshold:\n break\n ans = max(ans, length + 1)\n return ans\n", "step-4": "class Solution:\n def maxSideLength(self, mat: List[List[int]], threshold: int) -> int:\n def squareSum(r1: int, c1: int, r2: int, c2: int) -> int:\n return prefixSum[r2 + 1][c2 + 1] - prefixSum[r1][c2 + 1] - prefixSum[r2 + 1][c1] + prefixSum[r1][c1]\n\n m = len(mat)\n n = len(mat[0])\n\n ans = 0\n prefixSum = [[0] * (n + 1) for _ in range(m + 1)]\n\n for i in range(1, m + 1):\n for j in range(1, n + 1):\n prefixSum[i][j] = mat[i - 1][j - 1] + prefixSum[i][j - 1] + \\\n prefixSum[i - 1][j] - prefixSum[i - 1][j - 1]\n\n for i in range(m):\n for j in range(n):\n for length in range(ans, min(m - i, n - j)):\n if squareSum(i, j, i + length, j + length) > threshold:\n break\n ans = max(ans, length + 1)\n\n return ans\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> plt.plot(dev_x, dev_y, label='All Devs') <|reserved_special_token_0|> plt.plot(dev_x, py_dev_y, label='Python') plt.xlabel('Ages') plt.ylabel('Median Salary') plt.title('Median Salary (USD) by Age') plt.legend() plt.show() <|reserved_special_token_1|> <|reserved_special_token_0|> dev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] dev_y = [4000, 45000, 50000, 55000, 60000, 56000, 62316, 64928, 67317, 68748, 73752] plt.plot(dev_x, dev_y, label='All Devs') py_dev_y = [45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, 75370, 83640] plt.plot(dev_x, py_dev_y, label='Python') plt.xlabel('Ages') plt.ylabel('Median Salary') plt.title('Median Salary (USD) by Age') plt.legend() plt.show() <|reserved_special_token_1|> from matplotlib import pyplot as plt dev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] dev_y = [4000, 45000, 50000, 55000, 60000, 56000, 62316, 64928, 67317, 68748, 73752] plt.plot(dev_x, dev_y, label='All Devs') py_dev_y = [45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, 75370, 83640] plt.plot(dev_x, py_dev_y, label='Python') plt.xlabel('Ages') plt.ylabel('Median Salary') plt.title('Median Salary (USD) by Age') plt.legend() plt.show() <|reserved_special_token_1|> from matplotlib import pyplot as plt dev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] dev_y = [4000, 45000, 50000, 55000, 60000, 56000, 62316, 64928, 67317, 68748, 73752] plt.plot(dev_x, dev_y, label='All Devs') #dev_x and dev_y are respectively x-axis and y-axis # Median Python Developer Salaries by Age py_dev_y = [45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, 75370, 83640] plt.plot(dev_x, py_dev_y, label='Python') plt.xlabel('Ages') plt.ylabel('Median Salary') plt.title('Median Salary (USD) by Age') #Shows the title above the figure plt.legend() #This shows indexing of the chart or figure plt.show()
flexible
{ "blob_id": "796a13de72c2879956c5f9c9c9bdef7253760c9d", "index": 9895, "step-1": "<mask token>\n", "step-2": "<mask token>\nplt.plot(dev_x, dev_y, label='All Devs')\n<mask token>\nplt.plot(dev_x, py_dev_y, label='Python')\nplt.xlabel('Ages')\nplt.ylabel('Median Salary')\nplt.title('Median Salary (USD) by Age')\nplt.legend()\nplt.show()\n", "step-3": "<mask token>\ndev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]\ndev_y = [4000, 45000, 50000, 55000, 60000, 56000, 62316, 64928, 67317, \n 68748, 73752]\nplt.plot(dev_x, dev_y, label='All Devs')\npy_dev_y = [45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, \n 75370, 83640]\nplt.plot(dev_x, py_dev_y, label='Python')\nplt.xlabel('Ages')\nplt.ylabel('Median Salary')\nplt.title('Median Salary (USD) by Age')\nplt.legend()\nplt.show()\n", "step-4": "from matplotlib import pyplot as plt\ndev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]\ndev_y = [4000, 45000, 50000, 55000, 60000, 56000, 62316, 64928, 67317, \n 68748, 73752]\nplt.plot(dev_x, dev_y, label='All Devs')\npy_dev_y = [45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, \n 75370, 83640]\nplt.plot(dev_x, py_dev_y, label='Python')\nplt.xlabel('Ages')\nplt.ylabel('Median Salary')\nplt.title('Median Salary (USD) by Age')\nplt.legend()\nplt.show()\n", "step-5": "from matplotlib import pyplot as plt\n\n\n\n\ndev_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]\n\ndev_y = [4000, 45000, 50000, 55000, 60000,\n 56000, 62316, 64928, 67317, 68748, 73752]\n\nplt.plot(dev_x, dev_y, label='All Devs')\n#dev_x and dev_y are respectively x-axis and y-axis\n\n\n\n\n\n# Median Python Developer Salaries by Age\n\npy_dev_y = [45372, 48876, 53850, 57287, 63016,\n 65998, 70003, 70000, 71496, 75370, 83640]\n\nplt.plot(dev_x, py_dev_y, label='Python')\n\n\n\n\n\nplt.xlabel('Ages')\n\nplt.ylabel('Median Salary')\n\nplt.title('Median Salary (USD) by Age')\n#Shows the title above the figure\n\nplt.legend()\n#This shows indexing of the chart or figure\n\nplt.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def two_teams(sailors): result = [] temp = [[], []] for i in sailors.items(): if i[1] > 40 or i[1] < 20: temp[0].append(i[0]) else: temp[1].append(i[0]) result.append(sorted(temp[0])) result.append(sorted(temp[1])) return result <|reserved_special_token_0|> <|reserved_special_token_1|> def two_teams(sailors): result = [] temp = [[], []] for i in sailors.items(): if i[1] > 40 or i[1] < 20: temp[0].append(i[0]) else: temp[1].append(i[0]) result.append(sorted(temp[0])) result.append(sorted(temp[1])) return result if __name__ == '__main__': print('Example:') print(two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19}) ) print(two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54})) assert two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19} ) == [['Abrahams', 'Coleman'], ['Smith', 'Wesson']] assert two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54}) == [['Fernandes', 'Kale', 'McCortney'], ['Johnson']] print("Coding complete? Click 'Check' to earn cool rewards!") <|reserved_special_token_1|> #Answer to The Ship Teams - https://py.checkio.org/en/mission/the-ship-teams/ def two_teams(sailors): result = [] #To store the result temp = [[],[]] #To store the intermediatary values for i in sailors.items(): #To get the values of dictionary as Tuple if i[1] > 40 or i[1] < 20: #To get the people to be added to the First Ship temp[0].append(i[0]) #Adding each person name to first Temp List else: #To get the people to be added to the Second Ship temp[1].append(i[0]) #Adding each person name to second Temp List result.append(sorted(temp[0])) #Adding all the names of the Ship 1 to resultant result.append(sorted(temp[1])) #Adding all the names of the Ship 2 to resultant return result #Return the result if __name__ == '__main__': print("Example:") print(two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19})) print(two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54})) #These "asserts" using only for self-checking and not necessary for auto-testing assert two_teams({ 'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19}) == [ ['Abrahams', 'Coleman'], ['Smith', 'Wesson'] ] assert two_teams({ 'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54}) == [ ['Fernandes', 'Kale', 'McCortney'], ['Johnson'] ] print("Coding complete? Click 'Check' to earn cool rewards!")
flexible
{ "blob_id": "de634c95fddf4591cb15cd0eb20e798043075798", "index": 2464, "step-1": "<mask token>\n", "step-2": "def two_teams(sailors):\n result = []\n temp = [[], []]\n for i in sailors.items():\n if i[1] > 40 or i[1] < 20:\n temp[0].append(i[0])\n else:\n temp[1].append(i[0])\n result.append(sorted(temp[0]))\n result.append(sorted(temp[1]))\n return result\n\n\n<mask token>\n", "step-3": "def two_teams(sailors):\n result = []\n temp = [[], []]\n for i in sailors.items():\n if i[1] > 40 or i[1] < 20:\n temp[0].append(i[0])\n else:\n temp[1].append(i[0])\n result.append(sorted(temp[0]))\n result.append(sorted(temp[1]))\n return result\n\n\nif __name__ == '__main__':\n print('Example:')\n print(two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19})\n )\n print(two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41,\n 'McCortney': 54}))\n assert two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19}\n ) == [['Abrahams', 'Coleman'], ['Smith', 'Wesson']]\n assert two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41,\n 'McCortney': 54}) == [['Fernandes', 'Kale', 'McCortney'], ['Johnson']]\n print(\"Coding complete? Click 'Check' to earn cool rewards!\")\n", "step-4": "#Answer to The Ship Teams - https://py.checkio.org/en/mission/the-ship-teams/\n\ndef two_teams(sailors):\n result = [] #To store the result\n temp = [[],[]] #To store the intermediatary values\n for i in sailors.items(): #To get the values of dictionary as Tuple\n if i[1] > 40 or i[1] < 20: #To get the people to be added to the First Ship\n temp[0].append(i[0]) #Adding each person name to first Temp List\n else: #To get the people to be added to the Second Ship\n temp[1].append(i[0]) #Adding each person name to second Temp List\n result.append(sorted(temp[0])) #Adding all the names of the Ship 1 to resultant\n result.append(sorted(temp[1])) #Adding all the names of the Ship 2 to resultant\n return result #Return the result\n\nif __name__ == '__main__':\n print(\"Example:\")\n print(two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19}))\n print(two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54}))\n\n #These \"asserts\" using only for self-checking and not necessary for auto-testing\n assert two_teams({\n 'Smith': 34, \n 'Wesson': 22, \n 'Coleman': 45, \n 'Abrahams': 19}) == [\n ['Abrahams', 'Coleman'], \n ['Smith', 'Wesson']\n ]\n\n assert two_teams({\n 'Fernandes': 18,\n 'Johnson': 22,\n 'Kale': 41,\n 'McCortney': 54}) == [\n ['Fernandes', 'Kale', 'McCortney'], \n ['Johnson']\n ]\n print(\"Coding complete? Click 'Check' to earn cool rewards!\")", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class demo: <|reserved_special_token_0|> def __init__(self): self._myKey = RPiKeyButtons() def _getKeyButtonName(self, keyBtn): if keyBtn == CONFIG_KEY.BUTTON_ACT_A: return 'BUTTON_A' if keyBtn == CONFIG_KEY.BUTTON_ACT_B: return 'BUTTON_B' if keyBtn == CONFIG_KEY.BUTTON_JOY_UP: return 'JOY_UP' if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN: return 'JOY_DOWN' if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT: return 'JOY_RIGHT' if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT: return 'JOY_LEFT' if keyBtn == CONFIG_KEY.BUTTON_JOY_OK: return 'JOY_CENTER' return 'UNKNOW' def onKeyButtonDown(self, channel): print('DOWN:\t{}'.format(self._getKeyButtonName(channel))) pass <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def readExitButtonStatus(self): """! Read Exit action ( button A and Joy UP press down same time ) """ pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A) pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP) return pressA and pressUp def run(self): print( '\nPress any key button to test ...\n < JOY UP + Button A to Exit >\n\n' ) self.initKeyButtons('INT') while True: if self.readExitButtonStatus(): break pass self.releaseKeyButtons() GPIO.cleanup() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class demo: _myKey = None def __init__(self): self._myKey = RPiKeyButtons() def _getKeyButtonName(self, keyBtn): if keyBtn == CONFIG_KEY.BUTTON_ACT_A: return 'BUTTON_A' if keyBtn == CONFIG_KEY.BUTTON_ACT_B: return 'BUTTON_B' if keyBtn == CONFIG_KEY.BUTTON_JOY_UP: return 'JOY_UP' if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN: return 'JOY_DOWN' if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT: return 'JOY_RIGHT' if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT: return 'JOY_LEFT' if keyBtn == CONFIG_KEY.BUTTON_JOY_OK: return 'JOY_CENTER' return 'UNKNOW' def onKeyButtonDown(self, channel): print('DOWN:\t{}'.format(self._getKeyButtonName(channel))) pass def onKeyButtonUp(self, channel): print('UP:\t{}\n'.format(self._getKeyButtonName(channel))) pass def _callbackKeyButton(self, channel): """! Key button interrupt event callback function Inherit this method to implement your want """ if self._myKey.readKeyButton(channel) == 0: self.onKeyButtonDown(channel) return if self._myKey.readKeyButton(channel) == 1: self.onKeyButtonUp(channel) return def initKeyButtons(self, mode='INT'): """! Init all key buttons interrupt events or query mode. Inherit the onKeyButtonDown and onKeyButtonUp to implement your want @param mode: Can be { "INT" | "QUERY" }, default is "INT" """ if mode.upper() == 'INT': try: self._myKey.configKeyButtons(enableButtons=[{'id': CONFIG_KEY.BUTTON_ACT_A, 'callback': self. _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_ACT_B, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY .BUTTON_JOY_UP, 'callback': self._callbackKeyButton}, { 'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': self. _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY .BUTTON_JOY_RIGHT, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': self. _callbackKeyButton}], bounceTime=DEF_BOUNCE_TIME_SHORT_MON) except: pass if mode.upper() == 'QUERY': self._myKey.configKeyButtons([{'id': CONFIG_KEY.BUTTON_ACT_A, 'callback': None}, {'id': CONFIG_KEY.BUTTON_ACT_B, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_UP, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_RIGHT, 'callback': None}]) def releaseKeyButtons(self): """! Release all key button events """ self._myKey.removeKeyButtonEvent([CONFIG_KEY.BUTTON_ACT_A, CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY. BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY. BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK]) def readKeyButton(self, keyBtn): """! Read key button status, return 0 / 1 """ if self._myKey.readKeyButton(keyBtn) == 0: sleep(0.02) return 0 if self._myKey.readKeyButton(keyBtn) else 1 return 0 def readExitButtonStatus(self): """! Read Exit action ( button A and Joy UP press down same time ) """ pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A) pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP) return pressA and pressUp def run(self): print( '\nPress any key button to test ...\n < JOY UP + Button A to Exit >\n\n' ) self.initKeyButtons('INT') while True: if self.readExitButtonStatus(): break pass self.releaseKeyButtons() GPIO.cleanup() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class CONFIG_KEY: BUTTON_ACT_A = 22 BUTTON_ACT_B = 23 BUTTON_JOY_LEFT = 26 BUTTON_JOY_RIGHT = 27 BUTTON_JOY_UP = 5 BUTTON_JOY_DOWN = 6 BUTTON_JOY_OK = 24 class demo: _myKey = None def __init__(self): self._myKey = RPiKeyButtons() def _getKeyButtonName(self, keyBtn): if keyBtn == CONFIG_KEY.BUTTON_ACT_A: return 'BUTTON_A' if keyBtn == CONFIG_KEY.BUTTON_ACT_B: return 'BUTTON_B' if keyBtn == CONFIG_KEY.BUTTON_JOY_UP: return 'JOY_UP' if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN: return 'JOY_DOWN' if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT: return 'JOY_RIGHT' if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT: return 'JOY_LEFT' if keyBtn == CONFIG_KEY.BUTTON_JOY_OK: return 'JOY_CENTER' return 'UNKNOW' def onKeyButtonDown(self, channel): print('DOWN:\t{}'.format(self._getKeyButtonName(channel))) pass def onKeyButtonUp(self, channel): print('UP:\t{}\n'.format(self._getKeyButtonName(channel))) pass def _callbackKeyButton(self, channel): """! Key button interrupt event callback function Inherit this method to implement your want """ if self._myKey.readKeyButton(channel) == 0: self.onKeyButtonDown(channel) return if self._myKey.readKeyButton(channel) == 1: self.onKeyButtonUp(channel) return def initKeyButtons(self, mode='INT'): """! Init all key buttons interrupt events or query mode. Inherit the onKeyButtonDown and onKeyButtonUp to implement your want @param mode: Can be { "INT" | "QUERY" }, default is "INT" """ if mode.upper() == 'INT': try: self._myKey.configKeyButtons(enableButtons=[{'id': CONFIG_KEY.BUTTON_ACT_A, 'callback': self. _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_ACT_B, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY .BUTTON_JOY_UP, 'callback': self._callbackKeyButton}, { 'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': self. _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY .BUTTON_JOY_RIGHT, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': self. _callbackKeyButton}], bounceTime=DEF_BOUNCE_TIME_SHORT_MON) except: pass if mode.upper() == 'QUERY': self._myKey.configKeyButtons([{'id': CONFIG_KEY.BUTTON_ACT_A, 'callback': None}, {'id': CONFIG_KEY.BUTTON_ACT_B, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_UP, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_RIGHT, 'callback': None}]) def releaseKeyButtons(self): """! Release all key button events """ self._myKey.removeKeyButtonEvent([CONFIG_KEY.BUTTON_ACT_A, CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY. BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY. BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK]) def readKeyButton(self, keyBtn): """! Read key button status, return 0 / 1 """ if self._myKey.readKeyButton(keyBtn) == 0: sleep(0.02) return 0 if self._myKey.readKeyButton(keyBtn) else 1 return 0 def readExitButtonStatus(self): """! Read Exit action ( button A and Joy UP press down same time ) """ pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A) pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP) return pressA and pressUp def run(self): print( '\nPress any key button to test ...\n < JOY UP + Button A to Exit >\n\n' ) self.initKeyButtons('INT') while True: if self.readExitButtonStatus(): break pass self.releaseKeyButtons() GPIO.cleanup() if __name__ == '__main__': demo().run() print('Key buttons demo is end.') <|reserved_special_token_1|> from time import sleep import RPi.GPIO as GPIO from JMRPiSpark.Drives.Key.RPiKeyButtons import RPiKeyButtons from JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_SHORT_MON from JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_NORMAL class CONFIG_KEY: BUTTON_ACT_A = 22 BUTTON_ACT_B = 23 BUTTON_JOY_LEFT = 26 BUTTON_JOY_RIGHT = 27 BUTTON_JOY_UP = 5 BUTTON_JOY_DOWN = 6 BUTTON_JOY_OK = 24 class demo: _myKey = None def __init__(self): self._myKey = RPiKeyButtons() def _getKeyButtonName(self, keyBtn): if keyBtn == CONFIG_KEY.BUTTON_ACT_A: return 'BUTTON_A' if keyBtn == CONFIG_KEY.BUTTON_ACT_B: return 'BUTTON_B' if keyBtn == CONFIG_KEY.BUTTON_JOY_UP: return 'JOY_UP' if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN: return 'JOY_DOWN' if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT: return 'JOY_RIGHT' if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT: return 'JOY_LEFT' if keyBtn == CONFIG_KEY.BUTTON_JOY_OK: return 'JOY_CENTER' return 'UNKNOW' def onKeyButtonDown(self, channel): print('DOWN:\t{}'.format(self._getKeyButtonName(channel))) pass def onKeyButtonUp(self, channel): print('UP:\t{}\n'.format(self._getKeyButtonName(channel))) pass def _callbackKeyButton(self, channel): """! Key button interrupt event callback function Inherit this method to implement your want """ if self._myKey.readKeyButton(channel) == 0: self.onKeyButtonDown(channel) return if self._myKey.readKeyButton(channel) == 1: self.onKeyButtonUp(channel) return def initKeyButtons(self, mode='INT'): """! Init all key buttons interrupt events or query mode. Inherit the onKeyButtonDown and onKeyButtonUp to implement your want @param mode: Can be { "INT" | "QUERY" }, default is "INT" """ if mode.upper() == 'INT': try: self._myKey.configKeyButtons(enableButtons=[{'id': CONFIG_KEY.BUTTON_ACT_A, 'callback': self. _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_ACT_B, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY .BUTTON_JOY_UP, 'callback': self._callbackKeyButton}, { 'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': self. _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY .BUTTON_JOY_RIGHT, 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': self. _callbackKeyButton}], bounceTime=DEF_BOUNCE_TIME_SHORT_MON) except: pass if mode.upper() == 'QUERY': self._myKey.configKeyButtons([{'id': CONFIG_KEY.BUTTON_ACT_A, 'callback': None}, {'id': CONFIG_KEY.BUTTON_ACT_B, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_UP, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT, 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_RIGHT, 'callback': None}]) def releaseKeyButtons(self): """! Release all key button events """ self._myKey.removeKeyButtonEvent([CONFIG_KEY.BUTTON_ACT_A, CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY. BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY. BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK]) def readKeyButton(self, keyBtn): """! Read key button status, return 0 / 1 """ if self._myKey.readKeyButton(keyBtn) == 0: sleep(0.02) return 0 if self._myKey.readKeyButton(keyBtn) else 1 return 0 def readExitButtonStatus(self): """! Read Exit action ( button A and Joy UP press down same time ) """ pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A) pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP) return pressA and pressUp def run(self): print( '\nPress any key button to test ...\n < JOY UP + Button A to Exit >\n\n' ) self.initKeyButtons('INT') while True: if self.readExitButtonStatus(): break pass self.releaseKeyButtons() GPIO.cleanup() if __name__ == '__main__': demo().run() print('Key buttons demo is end.') <|reserved_special_token_1|> # -*- coding: utf-8 -*- # # RPi.Spark KeyButton Demo # # Author: Kunpeng Zhang # 2018.6.6 # # See LICENSE for details. from time import sleep import RPi.GPIO as GPIO from JMRPiSpark.Drives.Key.RPiKeyButtons import RPiKeyButtons from JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_SHORT_MON from JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_NORMAL ######################################################################## # Key buttons include Joystick buttons and Action buttons, # use BCM mode, there are keyboard layout: # # [JOY UP] # [JOY LEFT] [JOY RIGHT] [ACT_A] [ACT_B] # [JOY DOWN] # class CONFIG_KEY: # Action Buttons BCM_IO_NUM BUTTON_ACT_A = 22 BUTTON_ACT_B = 23 # Joy Buttons BCM_IO_NUM BUTTON_JOY_LEFT = 26 BUTTON_JOY_RIGHT = 27 BUTTON_JOY_UP = 5 BUTTON_JOY_DOWN = 6 BUTTON_JOY_OK = 24 class demo: _myKey = None def __init__(self): self._myKey = RPiKeyButtons() def _getKeyButtonName(self, keyBtn): if keyBtn == CONFIG_KEY.BUTTON_ACT_A: return "BUTTON_A" if keyBtn == CONFIG_KEY.BUTTON_ACT_B: return "BUTTON_B" if keyBtn == CONFIG_KEY.BUTTON_JOY_UP: return "JOY_UP" if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN: return "JOY_DOWN" if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT: return "JOY_RIGHT" if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT: return "JOY_LEFT" if keyBtn == CONFIG_KEY.BUTTON_JOY_OK: return "JOY_CENTER" return "UNKNOW" def onKeyButtonDown(self, channel): print("DOWN:\t{}".format(self._getKeyButtonName(channel))) pass def onKeyButtonUp(self, channel): print("UP:\t{}\n".format(self._getKeyButtonName(channel))) pass def _callbackKeyButton(self, channel): """! Key button interrupt event callback function Inherit this method to implement your want """ if self._myKey.readKeyButton(channel) == 0: self.onKeyButtonDown(channel) return if self._myKey.readKeyButton(channel) == 1: self.onKeyButtonUp(channel) return def initKeyButtons(self, mode = "INT"): """! Init all key buttons interrupt events or query mode. Inherit the onKeyButtonDown and onKeyButtonUp to implement your want @param mode: Can be { "INT" | "QUERY" }, default is "INT" """ if mode.upper() == "INT": try: self._myKey.configKeyButtons( enableButtons = [ {"id":CONFIG_KEY.BUTTON_ACT_A, "callback":self._callbackKeyButton}, {"id":CONFIG_KEY.BUTTON_ACT_B, "callback":self._callbackKeyButton}, {"id":CONFIG_KEY.BUTTON_JOY_UP, "callback":self._callbackKeyButton}, {"id":CONFIG_KEY.BUTTON_JOY_DOWN, "callback":self._callbackKeyButton}, {"id":CONFIG_KEY.BUTTON_JOY_LEFT, "callback":self._callbackKeyButton}, {"id":CONFIG_KEY.BUTTON_JOY_RIGHT, "callback":self._callbackKeyButton}, {"id":CONFIG_KEY.BUTTON_JOY_OK, "callback":self._callbackKeyButton} ], bounceTime = DEF_BOUNCE_TIME_SHORT_MON ) except: pass if mode.upper() == "QUERY": self._myKey.configKeyButtons([ {"id":CONFIG_KEY.BUTTON_ACT_A, "callback":None}, {"id":CONFIG_KEY.BUTTON_ACT_B, "callback":None}, {"id":CONFIG_KEY.BUTTON_JOY_OK, "callback":None}, {"id":CONFIG_KEY.BUTTON_JOY_UP, "callback":None}, {"id":CONFIG_KEY.BUTTON_JOY_DOWN, "callback":None}, {"id":CONFIG_KEY.BUTTON_JOY_LEFT, "callback":None}, {"id":CONFIG_KEY.BUTTON_JOY_RIGHT, "callback":None} ]) def releaseKeyButtons(self): """! Release all key button events """ self._myKey.removeKeyButtonEvent([ CONFIG_KEY.BUTTON_ACT_A, CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY.BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY.BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK ]) def readKeyButton(self, keyBtn): """! Read key button status, return 0 / 1 """ if self._myKey.readKeyButton( keyBtn ) == 0: sleep(0.02) return 0 if self._myKey.readKeyButton( keyBtn ) else 1 return 0 def readExitButtonStatus(self): """! Read Exit action ( button A and Joy UP press down same time ) """ pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A) pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP) return pressA and pressUp def run(self): print("\nPress any key button to test ...\n < JOY UP + Button A to Exit >\n\n") self.initKeyButtons("INT") while True: if self.readExitButtonStatus(): break pass self.releaseKeyButtons() GPIO.cleanup() if __name__ == "__main__": demo().run() print("Key buttons demo is end.")
flexible
{ "blob_id": "50c274e0365f2556a46eb58edcd1f0a7301e89db", "index": 8716, "step-1": "<mask token>\n\n\nclass demo:\n <mask token>\n\n def __init__(self):\n self._myKey = RPiKeyButtons()\n\n def _getKeyButtonName(self, keyBtn):\n if keyBtn == CONFIG_KEY.BUTTON_ACT_A:\n return 'BUTTON_A'\n if keyBtn == CONFIG_KEY.BUTTON_ACT_B:\n return 'BUTTON_B'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_UP:\n return 'JOY_UP'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN:\n return 'JOY_DOWN'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT:\n return 'JOY_RIGHT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT:\n return 'JOY_LEFT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_OK:\n return 'JOY_CENTER'\n return 'UNKNOW'\n\n def onKeyButtonDown(self, channel):\n print('DOWN:\\t{}'.format(self._getKeyButtonName(channel)))\n pass\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def readExitButtonStatus(self):\n \"\"\"!\n Read Exit action ( button A and Joy UP press down same time )\n \"\"\"\n pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A)\n pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP)\n return pressA and pressUp\n\n def run(self):\n print(\n '\\nPress any key button to test ...\\n < JOY UP + Button A to Exit >\\n\\n'\n )\n self.initKeyButtons('INT')\n while True:\n if self.readExitButtonStatus():\n break\n pass\n self.releaseKeyButtons()\n GPIO.cleanup()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass demo:\n _myKey = None\n\n def __init__(self):\n self._myKey = RPiKeyButtons()\n\n def _getKeyButtonName(self, keyBtn):\n if keyBtn == CONFIG_KEY.BUTTON_ACT_A:\n return 'BUTTON_A'\n if keyBtn == CONFIG_KEY.BUTTON_ACT_B:\n return 'BUTTON_B'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_UP:\n return 'JOY_UP'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN:\n return 'JOY_DOWN'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT:\n return 'JOY_RIGHT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT:\n return 'JOY_LEFT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_OK:\n return 'JOY_CENTER'\n return 'UNKNOW'\n\n def onKeyButtonDown(self, channel):\n print('DOWN:\\t{}'.format(self._getKeyButtonName(channel)))\n pass\n\n def onKeyButtonUp(self, channel):\n print('UP:\\t{}\\n'.format(self._getKeyButtonName(channel)))\n pass\n\n def _callbackKeyButton(self, channel):\n \"\"\"!\n Key button interrupt event callback function\n Inherit this method to implement your want\n \"\"\"\n if self._myKey.readKeyButton(channel) == 0:\n self.onKeyButtonDown(channel)\n return\n if self._myKey.readKeyButton(channel) == 1:\n self.onKeyButtonUp(channel)\n return\n\n def initKeyButtons(self, mode='INT'):\n \"\"\"!\n Init all key buttons interrupt events or query mode. \n Inherit the onKeyButtonDown and onKeyButtonUp to implement your want\n\n @param mode: Can be { \"INT\" | \"QUERY\" }, default is \"INT\" \n \"\"\"\n if mode.upper() == 'INT':\n try:\n self._myKey.configKeyButtons(enableButtons=[{'id':\n CONFIG_KEY.BUTTON_ACT_A, 'callback': self.\n _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_ACT_B,\n 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY\n .BUTTON_JOY_UP, 'callback': self._callbackKeyButton}, {\n 'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': self.\n _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT,\n 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY\n .BUTTON_JOY_RIGHT, 'callback': self._callbackKeyButton},\n {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': self.\n _callbackKeyButton}], bounceTime=DEF_BOUNCE_TIME_SHORT_MON)\n except:\n pass\n if mode.upper() == 'QUERY':\n self._myKey.configKeyButtons([{'id': CONFIG_KEY.BUTTON_ACT_A,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_ACT_B,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_OK,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_UP,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_DOWN,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_RIGHT,\n 'callback': None}])\n\n def releaseKeyButtons(self):\n \"\"\"!\n Release all key button events\n \"\"\"\n self._myKey.removeKeyButtonEvent([CONFIG_KEY.BUTTON_ACT_A,\n CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY.\n BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY.\n BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK])\n\n def readKeyButton(self, keyBtn):\n \"\"\"!\n Read key button status, return 0 / 1\n \"\"\"\n if self._myKey.readKeyButton(keyBtn) == 0:\n sleep(0.02)\n return 0 if self._myKey.readKeyButton(keyBtn) else 1\n return 0\n\n def readExitButtonStatus(self):\n \"\"\"!\n Read Exit action ( button A and Joy UP press down same time )\n \"\"\"\n pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A)\n pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP)\n return pressA and pressUp\n\n def run(self):\n print(\n '\\nPress any key button to test ...\\n < JOY UP + Button A to Exit >\\n\\n'\n )\n self.initKeyButtons('INT')\n while True:\n if self.readExitButtonStatus():\n break\n pass\n self.releaseKeyButtons()\n GPIO.cleanup()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass CONFIG_KEY:\n BUTTON_ACT_A = 22\n BUTTON_ACT_B = 23\n BUTTON_JOY_LEFT = 26\n BUTTON_JOY_RIGHT = 27\n BUTTON_JOY_UP = 5\n BUTTON_JOY_DOWN = 6\n BUTTON_JOY_OK = 24\n\n\nclass demo:\n _myKey = None\n\n def __init__(self):\n self._myKey = RPiKeyButtons()\n\n def _getKeyButtonName(self, keyBtn):\n if keyBtn == CONFIG_KEY.BUTTON_ACT_A:\n return 'BUTTON_A'\n if keyBtn == CONFIG_KEY.BUTTON_ACT_B:\n return 'BUTTON_B'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_UP:\n return 'JOY_UP'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN:\n return 'JOY_DOWN'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT:\n return 'JOY_RIGHT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT:\n return 'JOY_LEFT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_OK:\n return 'JOY_CENTER'\n return 'UNKNOW'\n\n def onKeyButtonDown(self, channel):\n print('DOWN:\\t{}'.format(self._getKeyButtonName(channel)))\n pass\n\n def onKeyButtonUp(self, channel):\n print('UP:\\t{}\\n'.format(self._getKeyButtonName(channel)))\n pass\n\n def _callbackKeyButton(self, channel):\n \"\"\"!\n Key button interrupt event callback function\n Inherit this method to implement your want\n \"\"\"\n if self._myKey.readKeyButton(channel) == 0:\n self.onKeyButtonDown(channel)\n return\n if self._myKey.readKeyButton(channel) == 1:\n self.onKeyButtonUp(channel)\n return\n\n def initKeyButtons(self, mode='INT'):\n \"\"\"!\n Init all key buttons interrupt events or query mode. \n Inherit the onKeyButtonDown and onKeyButtonUp to implement your want\n\n @param mode: Can be { \"INT\" | \"QUERY\" }, default is \"INT\" \n \"\"\"\n if mode.upper() == 'INT':\n try:\n self._myKey.configKeyButtons(enableButtons=[{'id':\n CONFIG_KEY.BUTTON_ACT_A, 'callback': self.\n _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_ACT_B,\n 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY\n .BUTTON_JOY_UP, 'callback': self._callbackKeyButton}, {\n 'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': self.\n _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT,\n 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY\n .BUTTON_JOY_RIGHT, 'callback': self._callbackKeyButton},\n {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': self.\n _callbackKeyButton}], bounceTime=DEF_BOUNCE_TIME_SHORT_MON)\n except:\n pass\n if mode.upper() == 'QUERY':\n self._myKey.configKeyButtons([{'id': CONFIG_KEY.BUTTON_ACT_A,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_ACT_B,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_OK,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_UP,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_DOWN,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_RIGHT,\n 'callback': None}])\n\n def releaseKeyButtons(self):\n \"\"\"!\n Release all key button events\n \"\"\"\n self._myKey.removeKeyButtonEvent([CONFIG_KEY.BUTTON_ACT_A,\n CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY.\n BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY.\n BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK])\n\n def readKeyButton(self, keyBtn):\n \"\"\"!\n Read key button status, return 0 / 1\n \"\"\"\n if self._myKey.readKeyButton(keyBtn) == 0:\n sleep(0.02)\n return 0 if self._myKey.readKeyButton(keyBtn) else 1\n return 0\n\n def readExitButtonStatus(self):\n \"\"\"!\n Read Exit action ( button A and Joy UP press down same time )\n \"\"\"\n pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A)\n pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP)\n return pressA and pressUp\n\n def run(self):\n print(\n '\\nPress any key button to test ...\\n < JOY UP + Button A to Exit >\\n\\n'\n )\n self.initKeyButtons('INT')\n while True:\n if self.readExitButtonStatus():\n break\n pass\n self.releaseKeyButtons()\n GPIO.cleanup()\n\n\nif __name__ == '__main__':\n demo().run()\n print('Key buttons demo is end.')\n", "step-4": "from time import sleep\nimport RPi.GPIO as GPIO\nfrom JMRPiSpark.Drives.Key.RPiKeyButtons import RPiKeyButtons\nfrom JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_SHORT_MON\nfrom JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_NORMAL\n\n\nclass CONFIG_KEY:\n BUTTON_ACT_A = 22\n BUTTON_ACT_B = 23\n BUTTON_JOY_LEFT = 26\n BUTTON_JOY_RIGHT = 27\n BUTTON_JOY_UP = 5\n BUTTON_JOY_DOWN = 6\n BUTTON_JOY_OK = 24\n\n\nclass demo:\n _myKey = None\n\n def __init__(self):\n self._myKey = RPiKeyButtons()\n\n def _getKeyButtonName(self, keyBtn):\n if keyBtn == CONFIG_KEY.BUTTON_ACT_A:\n return 'BUTTON_A'\n if keyBtn == CONFIG_KEY.BUTTON_ACT_B:\n return 'BUTTON_B'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_UP:\n return 'JOY_UP'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN:\n return 'JOY_DOWN'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT:\n return 'JOY_RIGHT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT:\n return 'JOY_LEFT'\n if keyBtn == CONFIG_KEY.BUTTON_JOY_OK:\n return 'JOY_CENTER'\n return 'UNKNOW'\n\n def onKeyButtonDown(self, channel):\n print('DOWN:\\t{}'.format(self._getKeyButtonName(channel)))\n pass\n\n def onKeyButtonUp(self, channel):\n print('UP:\\t{}\\n'.format(self._getKeyButtonName(channel)))\n pass\n\n def _callbackKeyButton(self, channel):\n \"\"\"!\n Key button interrupt event callback function\n Inherit this method to implement your want\n \"\"\"\n if self._myKey.readKeyButton(channel) == 0:\n self.onKeyButtonDown(channel)\n return\n if self._myKey.readKeyButton(channel) == 1:\n self.onKeyButtonUp(channel)\n return\n\n def initKeyButtons(self, mode='INT'):\n \"\"\"!\n Init all key buttons interrupt events or query mode. \n Inherit the onKeyButtonDown and onKeyButtonUp to implement your want\n\n @param mode: Can be { \"INT\" | \"QUERY\" }, default is \"INT\" \n \"\"\"\n if mode.upper() == 'INT':\n try:\n self._myKey.configKeyButtons(enableButtons=[{'id':\n CONFIG_KEY.BUTTON_ACT_A, 'callback': self.\n _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_ACT_B,\n 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY\n .BUTTON_JOY_UP, 'callback': self._callbackKeyButton}, {\n 'id': CONFIG_KEY.BUTTON_JOY_DOWN, 'callback': self.\n _callbackKeyButton}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT,\n 'callback': self._callbackKeyButton}, {'id': CONFIG_KEY\n .BUTTON_JOY_RIGHT, 'callback': self._callbackKeyButton},\n {'id': CONFIG_KEY.BUTTON_JOY_OK, 'callback': self.\n _callbackKeyButton}], bounceTime=DEF_BOUNCE_TIME_SHORT_MON)\n except:\n pass\n if mode.upper() == 'QUERY':\n self._myKey.configKeyButtons([{'id': CONFIG_KEY.BUTTON_ACT_A,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_ACT_B,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_OK,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_UP,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_DOWN,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_LEFT,\n 'callback': None}, {'id': CONFIG_KEY.BUTTON_JOY_RIGHT,\n 'callback': None}])\n\n def releaseKeyButtons(self):\n \"\"\"!\n Release all key button events\n \"\"\"\n self._myKey.removeKeyButtonEvent([CONFIG_KEY.BUTTON_ACT_A,\n CONFIG_KEY.BUTTON_ACT_B, CONFIG_KEY.BUTTON_JOY_UP, CONFIG_KEY.\n BUTTON_JOY_DOWN, CONFIG_KEY.BUTTON_JOY_LEFT, CONFIG_KEY.\n BUTTON_JOY_RIGHT, CONFIG_KEY.BUTTON_JOY_OK])\n\n def readKeyButton(self, keyBtn):\n \"\"\"!\n Read key button status, return 0 / 1\n \"\"\"\n if self._myKey.readKeyButton(keyBtn) == 0:\n sleep(0.02)\n return 0 if self._myKey.readKeyButton(keyBtn) else 1\n return 0\n\n def readExitButtonStatus(self):\n \"\"\"!\n Read Exit action ( button A and Joy UP press down same time )\n \"\"\"\n pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A)\n pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP)\n return pressA and pressUp\n\n def run(self):\n print(\n '\\nPress any key button to test ...\\n < JOY UP + Button A to Exit >\\n\\n'\n )\n self.initKeyButtons('INT')\n while True:\n if self.readExitButtonStatus():\n break\n pass\n self.releaseKeyButtons()\n GPIO.cleanup()\n\n\nif __name__ == '__main__':\n demo().run()\n print('Key buttons demo is end.')\n", "step-5": "# -*- coding: utf-8 -*-\n#\n# RPi.Spark KeyButton Demo\n#\n# Author: Kunpeng Zhang\n# 2018.6.6\n#\n# See LICENSE for details.\n\nfrom time import sleep\nimport RPi.GPIO as GPIO\n\nfrom JMRPiSpark.Drives.Key.RPiKeyButtons import RPiKeyButtons\nfrom JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_SHORT_MON\nfrom JMRPiSpark.Drives.Key.RPiKeyButtons import DEF_BOUNCE_TIME_NORMAL\n\n########################################################################\n# Key buttons include Joystick buttons and Action buttons, \n# use BCM mode, there are keyboard layout:\n# \n# [JOY UP] \n# [JOY LEFT] [JOY RIGHT] [ACT_A] [ACT_B]\n# [JOY DOWN] \n#\nclass CONFIG_KEY:\n # Action Buttons BCM_IO_NUM\n BUTTON_ACT_A = 22\n BUTTON_ACT_B = 23\n \n # Joy Buttons BCM_IO_NUM\n BUTTON_JOY_LEFT = 26\n BUTTON_JOY_RIGHT = 27\n BUTTON_JOY_UP = 5\n BUTTON_JOY_DOWN = 6\n BUTTON_JOY_OK = 24\n\nclass demo:\n _myKey = None\n\n def __init__(self):\n self._myKey = RPiKeyButtons()\n\n def _getKeyButtonName(self, keyBtn):\n if keyBtn == CONFIG_KEY.BUTTON_ACT_A: return \"BUTTON_A\"\n if keyBtn == CONFIG_KEY.BUTTON_ACT_B: return \"BUTTON_B\"\n \n if keyBtn == CONFIG_KEY.BUTTON_JOY_UP: return \"JOY_UP\"\n if keyBtn == CONFIG_KEY.BUTTON_JOY_DOWN: return \"JOY_DOWN\"\n if keyBtn == CONFIG_KEY.BUTTON_JOY_RIGHT: return \"JOY_RIGHT\"\n if keyBtn == CONFIG_KEY.BUTTON_JOY_LEFT: return \"JOY_LEFT\"\n if keyBtn == CONFIG_KEY.BUTTON_JOY_OK: return \"JOY_CENTER\"\n return \"UNKNOW\"\n\n def onKeyButtonDown(self, channel):\n print(\"DOWN:\\t{}\".format(self._getKeyButtonName(channel)))\n pass\n\n def onKeyButtonUp(self, channel):\n print(\"UP:\\t{}\\n\".format(self._getKeyButtonName(channel)))\n pass\n\n def _callbackKeyButton(self, channel):\n \"\"\"!\n Key button interrupt event callback function\n Inherit this method to implement your want\n \"\"\"\n if self._myKey.readKeyButton(channel) == 0:\n self.onKeyButtonDown(channel)\n return\n\n if self._myKey.readKeyButton(channel) == 1:\n self.onKeyButtonUp(channel)\n return\n\n def initKeyButtons(self, mode = \"INT\"):\n \"\"\"!\n Init all key buttons interrupt events or query mode. \n Inherit the onKeyButtonDown and onKeyButtonUp to implement your want\n\n @param mode: Can be { \"INT\" | \"QUERY\" }, default is \"INT\" \n \"\"\"\n if mode.upper() == \"INT\":\n try:\n self._myKey.configKeyButtons(\n enableButtons = [\n {\"id\":CONFIG_KEY.BUTTON_ACT_A, \"callback\":self._callbackKeyButton},\n {\"id\":CONFIG_KEY.BUTTON_ACT_B, \"callback\":self._callbackKeyButton},\n {\"id\":CONFIG_KEY.BUTTON_JOY_UP, \"callback\":self._callbackKeyButton},\n {\"id\":CONFIG_KEY.BUTTON_JOY_DOWN, \"callback\":self._callbackKeyButton},\n {\"id\":CONFIG_KEY.BUTTON_JOY_LEFT, \"callback\":self._callbackKeyButton},\n {\"id\":CONFIG_KEY.BUTTON_JOY_RIGHT, \"callback\":self._callbackKeyButton},\n {\"id\":CONFIG_KEY.BUTTON_JOY_OK, \"callback\":self._callbackKeyButton}\n ],\n bounceTime = DEF_BOUNCE_TIME_SHORT_MON )\n except:\n pass\n\n if mode.upper() == \"QUERY\":\n self._myKey.configKeyButtons([\n {\"id\":CONFIG_KEY.BUTTON_ACT_A, \"callback\":None},\n {\"id\":CONFIG_KEY.BUTTON_ACT_B, \"callback\":None},\n {\"id\":CONFIG_KEY.BUTTON_JOY_OK, \"callback\":None},\n {\"id\":CONFIG_KEY.BUTTON_JOY_UP, \"callback\":None},\n {\"id\":CONFIG_KEY.BUTTON_JOY_DOWN, \"callback\":None},\n {\"id\":CONFIG_KEY.BUTTON_JOY_LEFT, \"callback\":None},\n {\"id\":CONFIG_KEY.BUTTON_JOY_RIGHT, \"callback\":None}\n ])\n \n def releaseKeyButtons(self):\n \"\"\"!\n Release all key button events\n \"\"\"\n self._myKey.removeKeyButtonEvent([\n CONFIG_KEY.BUTTON_ACT_A,\n CONFIG_KEY.BUTTON_ACT_B,\n CONFIG_KEY.BUTTON_JOY_UP,\n CONFIG_KEY.BUTTON_JOY_DOWN,\n CONFIG_KEY.BUTTON_JOY_LEFT,\n CONFIG_KEY.BUTTON_JOY_RIGHT,\n CONFIG_KEY.BUTTON_JOY_OK\n ])\n \n def readKeyButton(self, keyBtn):\n \"\"\"!\n Read key button status, return 0 / 1\n \"\"\"\n if self._myKey.readKeyButton( keyBtn ) == 0:\n sleep(0.02)\n return 0 if self._myKey.readKeyButton( keyBtn ) else 1\n return 0\n \n def readExitButtonStatus(self):\n \"\"\"!\n Read Exit action ( button A and Joy UP press down same time )\n \"\"\"\n pressA = self.readKeyButton(CONFIG_KEY.BUTTON_ACT_A)\n pressUp = self.readKeyButton(CONFIG_KEY.BUTTON_JOY_UP)\n return pressA and pressUp\n\n def run(self):\n print(\"\\nPress any key button to test ...\\n < JOY UP + Button A to Exit >\\n\\n\")\n self.initKeyButtons(\"INT\")\n\n while True:\n if self.readExitButtonStatus(): break\n pass\n\n self.releaseKeyButtons()\n GPIO.cleanup()\n\nif __name__ == \"__main__\":\n demo().run()\n print(\"Key buttons demo is end.\")", "step-ids": [ 6, 12, 15, 16, 17 ] }
[ 6, 12, 15, 16, 17 ]
# Copyright (C) 2019 Catalyst Cloud Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import hashlib from logging import getLogger from confspirator import groups from confspirator import fields from adjutant import actions as adj_actions from adjutant.api.models import Task from adjutant.config import CONF from django.utils import timezone from adjutant.notifications.utils import create_notification from adjutant.tasks.v1.utils import send_stage_email, create_token, handle_task_error from adjutant import exceptions def make_task_config(task_class): config_group = groups.DynamicNameConfigGroup() config_group.register_child_config( fields.BoolConfig( "allow_auto_approve", help_text="Override if this task allows auto_approval. " "Otherwise uses task default.", default=task_class.allow_auto_approve, ) ) config_group.register_child_config( fields.ListConfig( "additional_actions", help_text="Additional actions to be run as part of the task " "after default actions.", default=task_class.additional_actions or [], ) ) config_group.register_child_config( fields.IntConfig( "token_expiry", help_text="Override for the task token expiry. " "Otherwise uses task default.", default=task_class.token_expiry, ) ) config_group.register_child_config( fields.DictConfig( "actions", help_text="Action config overrides over the action defaults. " "See 'adjutant.workflow.action_defaults'.", is_json=True, default=task_class.action_config or {}, sample_default={ "SomeCustomAction": {"some_action_setting": "<a-uuid-probably>"} }, ) ) config_group.register_child_config( fields.DictConfig( "emails", help_text="Email config overrides for this task over task defaults." "See 'adjutant.workflow.emails'.", is_json=True, default=task_class.email_config or {}, sample_default={ "initial": None, "token": { "subject": "Some custom subject", }, }, ) ) config_group.register_child_config( fields.DictConfig( "notifications", help_text="Notification config overrides for this task over task defaults." "See 'adjutant.workflow.notifications'.", is_json=True, default=task_class.notification_config or {}, sample_default={ "standard_handlers": ["EmailNotification"], "error_handlers": ["EmailNotification"], "standard_handler_config": { "EmailNotification": { "emails": ["[email protected]"], "reply": "[email protected]", } }, "error_handler_config": { "EmailNotification": { "emails": ["[email protected]"], "reply": "[email protected]", } }, }, ) ) return config_group class BaseTask(object): """ Base class for in memory task representation. This serves as the internal task logic handler, and is used to define what a task looks like. Most of the time this class shouldn't be called or used directly as the task manager is what handles the direct interaction to the logic here, and includes some wrapper logic to help deal with workflows. """ # required values in custom task task_type = None default_actions = None # default values to optionally override in task definition deprecated_task_types = None duplicate_policy = "cancel" send_approval_notification = True token_requires_authentication = False # config defaults for the task (used to generate default config): allow_auto_approve = True additional_actions = None token_expiry = None action_config = None email_config = None notification_config = None def __init__(self, task_model=None, task_data=None, action_data=None): self._config = None self.logger = getLogger("adjutant") if task_model: self.task = task_model self._refresh_actions() else: # raises 400 validation error action_serializer_list = self._instantiate_action_serializers(action_data) hash_key = self._create_task_hash(action_serializer_list) # raises duplicate error self._handle_duplicates(hash_key) keystone_user = task_data.get("keystone_user", {}) self.task = Task.objects.create( keystone_user=keystone_user, project_id=keystone_user.get("project_id"), task_type=self.task_type, hash_key=hash_key, ) self.task.save() # Instantiate actions with serializers self.actions = [] for i, action in enumerate(action_serializer_list): data = action["serializer"].validated_data # construct the action class self.actions.append( action["action"](data=data, task=self.task, order=i) ) self.logger.info( "(%s) - '%s' task created (%s)." % (timezone.now(), self.task_type, self.task.uuid) ) def _instantiate_action_serializers(self, action_data, use_existing_actions=False): action_serializer_list = [] if use_existing_actions: actions = self.actions else: actions = self.default_actions[:] actions += self.config.additional_actions # instantiate all action serializers and check validity valid = True for action in actions: if use_existing_actions: action_name = action.action.action_name else: action_name = action action_class = adj_actions.ACTION_CLASSES[action_name] if use_existing_actions: action_class = action # instantiate serializer class if not action_class.serializer: raise exceptions.SerializerMissingException( "No serializer defined for action %s" % action_name ) serializer = action_class.serializer(data=action_data) action_serializer_list.append( {"name": action_name, "action": action_class, "serializer": serializer} ) if serializer and not serializer.is_valid(): valid = False if not valid: errors = {} for action in action_serializer_list: if action["serializer"]: errors.update(action["serializer"].errors) raise exceptions.TaskSerializersInvalid(errors) return action_serializer_list def _create_task_hash(self, action_list): hashable_list = [ self.task_type, ] for action in action_list: hashable_list.append(action["name"]) if not action["serializer"]: continue # iterate like this to maintain consistent order for hash fields = sorted(action["serializer"].validated_data.keys()) for field in fields: try: hashable_list.append(action["serializer"].validated_data[field]) except KeyError: if field == "username" and CONF.identity.username_is_email: continue else: raise return hashlib.sha256(str(hashable_list).encode("utf-8")).hexdigest() def _handle_duplicates(self, hash_key): duplicate_tasks = Task.objects.filter( hash_key=hash_key, completed=0, cancelled=0 ) if not duplicate_tasks: return if self.duplicate_policy == "cancel": now = timezone.now() self.logger.info("(%s) - Task is a duplicate - Cancelling old tasks." % now) for task in duplicate_tasks: task.add_task_note( "Task cancelled because was an old duplicate. - (%s)" % now ) task.get_task().cancel() return raise exceptions.TaskDuplicateFound() def _refresh_actions(self): self.actions = [a.get_action() for a in self.task.actions] def _create_token(self): self.clear_tokens() token_expiry = self.config.token_expiry or self.token_expiry token = create_token(self.task, token_expiry) self.add_note("Token created for task.") try: # will throw a key error if the token template has not # been specified email_conf = self.config.emails.token send_stage_email(self.task, email_conf, token) except KeyError as e: handle_task_error(e, self.task, error_text="while sending token") def add_note(self, note): """ Logs the note, and also adds it to the task notes. """ now = timezone.now() self.logger.info( "(%s)(%s)(%s) - %s" % (now, self.task_type, self.task.uuid, note) ) note = "%s - (%s)" % (note, now) self.task.add_task_note(note) @property def config(self): """Get my config. Returns a dict of the config for this task. """ if self._config is None: try: task_conf = CONF.workflow.tasks[self.task_type] except KeyError: task_conf = {} self._config = CONF.workflow.task_defaults.overlay(task_conf) return self._config def is_valid(self, internal_message=None): self._refresh_actions() valid = all([act.valid for act in self.actions]) if not valid: # TODO(amelia): get action invalidation reasons and raise those raise exceptions.TaskActionsInvalid( self.task, "actions invalid", internal_message ) @property def approved(self): return self.task.approved @property def completed(self): return self.task.completed @property def cancelled(self): return self.task.cancelled def confirm_state(self, approved=None, completed=None, cancelled=None): """Check that the Task is in a given state. None value means state is ignored. Otherwise expects true or false. """ if completed is not None: if self.task.completed and not completed: raise exceptions.TaskStateInvalid( self.task, "This task has already been completed." ) if not self.task.completed and completed: raise exceptions.TaskStateInvalid( self.task, "This task hasn't been completed." ) if cancelled is not None: if self.task.cancelled and not cancelled: raise exceptions.TaskStateInvalid( self.task, "This task has been cancelled." ) if not self.task.cancelled and cancelled: raise exceptions.TaskStateInvalid( self.task, "This task has not been cancelled." ) if approved is not None: if self.task.approved and not approved: raise exceptions.TaskStateInvalid( self.task, "This task has already been approved." ) if not self.task.approved and approved: raise exceptions.TaskStateInvalid( self.task, "This task has not been approved." ) def update(self, action_data): self.confirm_state(approved=False, completed=False, cancelled=False) action_serializer_list = self._instantiate_action_serializers( action_data, use_existing_actions=True ) hash_key = self._create_task_hash(action_serializer_list) self._handle_duplicates(hash_key) for action in action_serializer_list: data = action["serializer"].validated_data action["action"].action.action_data = data action["action"].action.save() self._refresh_actions() self.prepare() def prepare(self): """Run the prepare stage for all the actions. If the task can be auto approved, this will also run the approve stage. """ self.confirm_state(approved=False, completed=False, cancelled=False) for action in self.actions: try: action.prepare() except Exception as e: handle_task_error(e, self.task, error_text="while setting up task") # send initial confirmation email: email_conf = self.config.emails.initial send_stage_email(self.task, email_conf) approve_list = [act.auto_approve for act in self.actions] # TODO(amelia): It would be nice to explicitly test this, however # currently we don't have the right combinations of # actions to allow for it. if False in approve_list: can_auto_approve = False elif True in approve_list: can_auto_approve = True else: can_auto_approve = False if self.config.allow_auto_approve is not None: allow_auto_approve = self.config.allow_auto_approve else: allow_auto_approve = self.allow_auto_approve if can_auto_approve and not allow_auto_approve: self.add_note("Actions allow auto aproval, but task does not.") elif can_auto_approve: self.add_note("Action allow auto approval. Auto approving.") self.approve() return if self.send_approval_notification: notes = {"notes": ["'%s' task needs approval." % self.task_type]} create_notification(self.task, notes) def approve(self, approved_by="system"): """Run the approve stage for all the actions.""" self.confirm_state(completed=False, cancelled=False) self.is_valid("task invalid before approval") # We approve the task before running actions, # that way if something goes wrong we know if it was approved, # when it was approved, and who approved it. self.task.approved = True self.task.approved_on = timezone.now() self.task.approved_by = approved_by self.task.save() # approve all actions for action in self.actions: try: action.approve() except Exception as e: handle_task_error(e, self.task, error_text="while approving task") self.is_valid("task invalid after approval") need_token = any([act.need_token for act in self.actions]) if need_token: self._create_token() else: self.submit() def reissue_token(self): self.confirm_state(approved=True, completed=False, cancelled=False) need_token = any([act.need_token for act in self.actions]) if need_token: self._create_token() def clear_tokens(self): for token in self.task.tokens: token.delete() def submit(self, token_data=None, keystone_user=None): self.confirm_state(approved=True, completed=False, cancelled=False) required_fields = set() actions = [] for action in self.task.actions: a = action.get_action() actions.append(a) for field in a.token_fields: required_fields.add(field) if not token_data: token_data = {} errors = {} data = {} for field in required_fields: try: data[field] = token_data[field] except KeyError: errors[field] = [ "This field is required.", ] except TypeError: errors = ["Improperly formated json. " "Should be a key-value object."] break if errors: raise exceptions.TaskTokenSerializersInvalid(self.task, errors) self.is_valid("task invalid before submit") for action in actions: try: action.submit(data, keystone_user) except Exception as e: handle_task_error(e, self.task, "while submiting task") self.is_valid("task invalid after submit") self.task.completed = True self.task.completed_on = timezone.now() self.task.save() for token in self.task.tokens: token.delete() # Sending confirmation email: email_conf = self.config.emails.completed send_stage_email(self.task, email_conf) def cancel(self): self.confirm_state(completed=False, cancelled=False) self.clear_tokens() self.task.cancelled = True self.task.save()
normal
{ "blob_id": "cc23eeed44ff66d68c700163cca8b9f4986d497d", "index": 7681, "step-1": "<mask token>\n\n\nclass BaseTask(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, task_model=None, task_data=None, action_data=None):\n self._config = None\n self.logger = getLogger('adjutant')\n if task_model:\n self.task = task_model\n self._refresh_actions()\n else:\n action_serializer_list = self._instantiate_action_serializers(\n action_data)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n keystone_user = task_data.get('keystone_user', {})\n self.task = Task.objects.create(keystone_user=keystone_user,\n project_id=keystone_user.get('project_id'), task_type=self.\n task_type, hash_key=hash_key)\n self.task.save()\n self.actions = []\n for i, action in enumerate(action_serializer_list):\n data = action['serializer'].validated_data\n self.actions.append(action['action'](data=data, task=self.\n task, order=i))\n self.logger.info(\"(%s) - '%s' task created (%s).\" % (timezone.\n now(), self.task_type, self.task.uuid))\n <mask token>\n\n def _create_task_hash(self, action_list):\n hashable_list = [self.task_type]\n for action in action_list:\n hashable_list.append(action['name'])\n if not action['serializer']:\n continue\n fields = sorted(action['serializer'].validated_data.keys())\n for field in fields:\n try:\n hashable_list.append(action['serializer'].\n validated_data[field])\n except KeyError:\n if field == 'username' and CONF.identity.username_is_email:\n continue\n else:\n raise\n return hashlib.sha256(str(hashable_list).encode('utf-8')).hexdigest()\n\n def _handle_duplicates(self, hash_key):\n duplicate_tasks = Task.objects.filter(hash_key=hash_key, completed=\n 0, cancelled=0)\n if not duplicate_tasks:\n return\n if self.duplicate_policy == 'cancel':\n now = timezone.now()\n self.logger.info(\n '(%s) - Task is a duplicate - Cancelling old tasks.' % now)\n for task in duplicate_tasks:\n task.add_task_note(\n 'Task cancelled because was an old duplicate. - (%s)' % now\n )\n task.get_task().cancel()\n return\n raise exceptions.TaskDuplicateFound()\n\n def _refresh_actions(self):\n self.actions = [a.get_action() for a in self.task.actions]\n\n def _create_token(self):\n self.clear_tokens()\n token_expiry = self.config.token_expiry or self.token_expiry\n token = create_token(self.task, token_expiry)\n self.add_note('Token created for task.')\n try:\n email_conf = self.config.emails.token\n send_stage_email(self.task, email_conf, token)\n except KeyError as e:\n handle_task_error(e, self.task, error_text='while sending token')\n\n def add_note(self, note):\n \"\"\"\n Logs the note, and also adds it to the task notes.\n \"\"\"\n now = timezone.now()\n self.logger.info('(%s)(%s)(%s) - %s' % (now, self.task_type, self.\n task.uuid, note))\n note = '%s - (%s)' % (note, now)\n self.task.add_task_note(note)\n <mask token>\n\n def is_valid(self, internal_message=None):\n self._refresh_actions()\n valid = all([act.valid for act in self.actions])\n if not valid:\n raise exceptions.TaskActionsInvalid(self.task,\n 'actions invalid', internal_message)\n\n @property\n def approved(self):\n return self.task.approved\n <mask token>\n <mask token>\n\n def confirm_state(self, approved=None, completed=None, cancelled=None):\n \"\"\"Check that the Task is in a given state.\n\n None value means state is ignored. Otherwise expects true or false.\n \"\"\"\n if completed is not None:\n if self.task.completed and not completed:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been completed.')\n if not self.task.completed and completed:\n raise exceptions.TaskStateInvalid(self.task,\n \"This task hasn't been completed.\")\n if cancelled is not None:\n if self.task.cancelled and not cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has been cancelled.')\n if not self.task.cancelled and cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been cancelled.')\n if approved is not None:\n if self.task.approved and not approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been approved.')\n if not self.task.approved and approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been approved.')\n\n def update(self, action_data):\n self.confirm_state(approved=False, completed=False, cancelled=False)\n action_serializer_list = self._instantiate_action_serializers(\n action_data, use_existing_actions=True)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n for action in action_serializer_list:\n data = action['serializer'].validated_data\n action['action'].action.action_data = data\n action['action'].action.save()\n self._refresh_actions()\n self.prepare()\n <mask token>\n\n def approve(self, approved_by='system'):\n \"\"\"Run the approve stage for all the actions.\"\"\"\n self.confirm_state(completed=False, cancelled=False)\n self.is_valid('task invalid before approval')\n self.task.approved = True\n self.task.approved_on = timezone.now()\n self.task.approved_by = approved_by\n self.task.save()\n for action in self.actions:\n try:\n action.approve()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\n 'while approving task')\n self.is_valid('task invalid after approval')\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n else:\n self.submit()\n\n def reissue_token(self):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n <mask token>\n\n def submit(self, token_data=None, keystone_user=None):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n required_fields = set()\n actions = []\n for action in self.task.actions:\n a = action.get_action()\n actions.append(a)\n for field in a.token_fields:\n required_fields.add(field)\n if not token_data:\n token_data = {}\n errors = {}\n data = {}\n for field in required_fields:\n try:\n data[field] = token_data[field]\n except KeyError:\n errors[field] = ['This field is required.']\n except TypeError:\n errors = [\n 'Improperly formated json. Should be a key-value object.']\n break\n if errors:\n raise exceptions.TaskTokenSerializersInvalid(self.task, errors)\n self.is_valid('task invalid before submit')\n for action in actions:\n try:\n action.submit(data, keystone_user)\n except Exception as e:\n handle_task_error(e, self.task, 'while submiting task')\n self.is_valid('task invalid after submit')\n self.task.completed = True\n self.task.completed_on = timezone.now()\n self.task.save()\n for token in self.task.tokens:\n token.delete()\n email_conf = self.config.emails.completed\n send_stage_email(self.task, email_conf)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass BaseTask(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, task_model=None, task_data=None, action_data=None):\n self._config = None\n self.logger = getLogger('adjutant')\n if task_model:\n self.task = task_model\n self._refresh_actions()\n else:\n action_serializer_list = self._instantiate_action_serializers(\n action_data)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n keystone_user = task_data.get('keystone_user', {})\n self.task = Task.objects.create(keystone_user=keystone_user,\n project_id=keystone_user.get('project_id'), task_type=self.\n task_type, hash_key=hash_key)\n self.task.save()\n self.actions = []\n for i, action in enumerate(action_serializer_list):\n data = action['serializer'].validated_data\n self.actions.append(action['action'](data=data, task=self.\n task, order=i))\n self.logger.info(\"(%s) - '%s' task created (%s).\" % (timezone.\n now(), self.task_type, self.task.uuid))\n <mask token>\n\n def _create_task_hash(self, action_list):\n hashable_list = [self.task_type]\n for action in action_list:\n hashable_list.append(action['name'])\n if not action['serializer']:\n continue\n fields = sorted(action['serializer'].validated_data.keys())\n for field in fields:\n try:\n hashable_list.append(action['serializer'].\n validated_data[field])\n except KeyError:\n if field == 'username' and CONF.identity.username_is_email:\n continue\n else:\n raise\n return hashlib.sha256(str(hashable_list).encode('utf-8')).hexdigest()\n\n def _handle_duplicates(self, hash_key):\n duplicate_tasks = Task.objects.filter(hash_key=hash_key, completed=\n 0, cancelled=0)\n if not duplicate_tasks:\n return\n if self.duplicate_policy == 'cancel':\n now = timezone.now()\n self.logger.info(\n '(%s) - Task is a duplicate - Cancelling old tasks.' % now)\n for task in duplicate_tasks:\n task.add_task_note(\n 'Task cancelled because was an old duplicate. - (%s)' % now\n )\n task.get_task().cancel()\n return\n raise exceptions.TaskDuplicateFound()\n\n def _refresh_actions(self):\n self.actions = [a.get_action() for a in self.task.actions]\n\n def _create_token(self):\n self.clear_tokens()\n token_expiry = self.config.token_expiry or self.token_expiry\n token = create_token(self.task, token_expiry)\n self.add_note('Token created for task.')\n try:\n email_conf = self.config.emails.token\n send_stage_email(self.task, email_conf, token)\n except KeyError as e:\n handle_task_error(e, self.task, error_text='while sending token')\n\n def add_note(self, note):\n \"\"\"\n Logs the note, and also adds it to the task notes.\n \"\"\"\n now = timezone.now()\n self.logger.info('(%s)(%s)(%s) - %s' % (now, self.task_type, self.\n task.uuid, note))\n note = '%s - (%s)' % (note, now)\n self.task.add_task_note(note)\n\n @property\n def config(self):\n \"\"\"Get my config.\n\n Returns a dict of the config for this task.\n \"\"\"\n if self._config is None:\n try:\n task_conf = CONF.workflow.tasks[self.task_type]\n except KeyError:\n task_conf = {}\n self._config = CONF.workflow.task_defaults.overlay(task_conf)\n return self._config\n\n def is_valid(self, internal_message=None):\n self._refresh_actions()\n valid = all([act.valid for act in self.actions])\n if not valid:\n raise exceptions.TaskActionsInvalid(self.task,\n 'actions invalid', internal_message)\n\n @property\n def approved(self):\n return self.task.approved\n <mask token>\n\n @property\n def cancelled(self):\n return self.task.cancelled\n\n def confirm_state(self, approved=None, completed=None, cancelled=None):\n \"\"\"Check that the Task is in a given state.\n\n None value means state is ignored. Otherwise expects true or false.\n \"\"\"\n if completed is not None:\n if self.task.completed and not completed:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been completed.')\n if not self.task.completed and completed:\n raise exceptions.TaskStateInvalid(self.task,\n \"This task hasn't been completed.\")\n if cancelled is not None:\n if self.task.cancelled and not cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has been cancelled.')\n if not self.task.cancelled and cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been cancelled.')\n if approved is not None:\n if self.task.approved and not approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been approved.')\n if not self.task.approved and approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been approved.')\n\n def update(self, action_data):\n self.confirm_state(approved=False, completed=False, cancelled=False)\n action_serializer_list = self._instantiate_action_serializers(\n action_data, use_existing_actions=True)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n for action in action_serializer_list:\n data = action['serializer'].validated_data\n action['action'].action.action_data = data\n action['action'].action.save()\n self._refresh_actions()\n self.prepare()\n <mask token>\n\n def approve(self, approved_by='system'):\n \"\"\"Run the approve stage for all the actions.\"\"\"\n self.confirm_state(completed=False, cancelled=False)\n self.is_valid('task invalid before approval')\n self.task.approved = True\n self.task.approved_on = timezone.now()\n self.task.approved_by = approved_by\n self.task.save()\n for action in self.actions:\n try:\n action.approve()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\n 'while approving task')\n self.is_valid('task invalid after approval')\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n else:\n self.submit()\n\n def reissue_token(self):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n\n def clear_tokens(self):\n for token in self.task.tokens:\n token.delete()\n\n def submit(self, token_data=None, keystone_user=None):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n required_fields = set()\n actions = []\n for action in self.task.actions:\n a = action.get_action()\n actions.append(a)\n for field in a.token_fields:\n required_fields.add(field)\n if not token_data:\n token_data = {}\n errors = {}\n data = {}\n for field in required_fields:\n try:\n data[field] = token_data[field]\n except KeyError:\n errors[field] = ['This field is required.']\n except TypeError:\n errors = [\n 'Improperly formated json. Should be a key-value object.']\n break\n if errors:\n raise exceptions.TaskTokenSerializersInvalid(self.task, errors)\n self.is_valid('task invalid before submit')\n for action in actions:\n try:\n action.submit(data, keystone_user)\n except Exception as e:\n handle_task_error(e, self.task, 'while submiting task')\n self.is_valid('task invalid after submit')\n self.task.completed = True\n self.task.completed_on = timezone.now()\n self.task.save()\n for token in self.task.tokens:\n token.delete()\n email_conf = self.config.emails.completed\n send_stage_email(self.task, email_conf)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass BaseTask(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, task_model=None, task_data=None, action_data=None):\n self._config = None\n self.logger = getLogger('adjutant')\n if task_model:\n self.task = task_model\n self._refresh_actions()\n else:\n action_serializer_list = self._instantiate_action_serializers(\n action_data)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n keystone_user = task_data.get('keystone_user', {})\n self.task = Task.objects.create(keystone_user=keystone_user,\n project_id=keystone_user.get('project_id'), task_type=self.\n task_type, hash_key=hash_key)\n self.task.save()\n self.actions = []\n for i, action in enumerate(action_serializer_list):\n data = action['serializer'].validated_data\n self.actions.append(action['action'](data=data, task=self.\n task, order=i))\n self.logger.info(\"(%s) - '%s' task created (%s).\" % (timezone.\n now(), self.task_type, self.task.uuid))\n <mask token>\n\n def _create_task_hash(self, action_list):\n hashable_list = [self.task_type]\n for action in action_list:\n hashable_list.append(action['name'])\n if not action['serializer']:\n continue\n fields = sorted(action['serializer'].validated_data.keys())\n for field in fields:\n try:\n hashable_list.append(action['serializer'].\n validated_data[field])\n except KeyError:\n if field == 'username' and CONF.identity.username_is_email:\n continue\n else:\n raise\n return hashlib.sha256(str(hashable_list).encode('utf-8')).hexdigest()\n\n def _handle_duplicates(self, hash_key):\n duplicate_tasks = Task.objects.filter(hash_key=hash_key, completed=\n 0, cancelled=0)\n if not duplicate_tasks:\n return\n if self.duplicate_policy == 'cancel':\n now = timezone.now()\n self.logger.info(\n '(%s) - Task is a duplicate - Cancelling old tasks.' % now)\n for task in duplicate_tasks:\n task.add_task_note(\n 'Task cancelled because was an old duplicate. - (%s)' % now\n )\n task.get_task().cancel()\n return\n raise exceptions.TaskDuplicateFound()\n\n def _refresh_actions(self):\n self.actions = [a.get_action() for a in self.task.actions]\n\n def _create_token(self):\n self.clear_tokens()\n token_expiry = self.config.token_expiry or self.token_expiry\n token = create_token(self.task, token_expiry)\n self.add_note('Token created for task.')\n try:\n email_conf = self.config.emails.token\n send_stage_email(self.task, email_conf, token)\n except KeyError as e:\n handle_task_error(e, self.task, error_text='while sending token')\n\n def add_note(self, note):\n \"\"\"\n Logs the note, and also adds it to the task notes.\n \"\"\"\n now = timezone.now()\n self.logger.info('(%s)(%s)(%s) - %s' % (now, self.task_type, self.\n task.uuid, note))\n note = '%s - (%s)' % (note, now)\n self.task.add_task_note(note)\n\n @property\n def config(self):\n \"\"\"Get my config.\n\n Returns a dict of the config for this task.\n \"\"\"\n if self._config is None:\n try:\n task_conf = CONF.workflow.tasks[self.task_type]\n except KeyError:\n task_conf = {}\n self._config = CONF.workflow.task_defaults.overlay(task_conf)\n return self._config\n\n def is_valid(self, internal_message=None):\n self._refresh_actions()\n valid = all([act.valid for act in self.actions])\n if not valid:\n raise exceptions.TaskActionsInvalid(self.task,\n 'actions invalid', internal_message)\n\n @property\n def approved(self):\n return self.task.approved\n\n @property\n def completed(self):\n return self.task.completed\n\n @property\n def cancelled(self):\n return self.task.cancelled\n\n def confirm_state(self, approved=None, completed=None, cancelled=None):\n \"\"\"Check that the Task is in a given state.\n\n None value means state is ignored. Otherwise expects true or false.\n \"\"\"\n if completed is not None:\n if self.task.completed and not completed:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been completed.')\n if not self.task.completed and completed:\n raise exceptions.TaskStateInvalid(self.task,\n \"This task hasn't been completed.\")\n if cancelled is not None:\n if self.task.cancelled and not cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has been cancelled.')\n if not self.task.cancelled and cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been cancelled.')\n if approved is not None:\n if self.task.approved and not approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been approved.')\n if not self.task.approved and approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been approved.')\n\n def update(self, action_data):\n self.confirm_state(approved=False, completed=False, cancelled=False)\n action_serializer_list = self._instantiate_action_serializers(\n action_data, use_existing_actions=True)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n for action in action_serializer_list:\n data = action['serializer'].validated_data\n action['action'].action.action_data = data\n action['action'].action.save()\n self._refresh_actions()\n self.prepare()\n <mask token>\n\n def approve(self, approved_by='system'):\n \"\"\"Run the approve stage for all the actions.\"\"\"\n self.confirm_state(completed=False, cancelled=False)\n self.is_valid('task invalid before approval')\n self.task.approved = True\n self.task.approved_on = timezone.now()\n self.task.approved_by = approved_by\n self.task.save()\n for action in self.actions:\n try:\n action.approve()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\n 'while approving task')\n self.is_valid('task invalid after approval')\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n else:\n self.submit()\n\n def reissue_token(self):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n\n def clear_tokens(self):\n for token in self.task.tokens:\n token.delete()\n\n def submit(self, token_data=None, keystone_user=None):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n required_fields = set()\n actions = []\n for action in self.task.actions:\n a = action.get_action()\n actions.append(a)\n for field in a.token_fields:\n required_fields.add(field)\n if not token_data:\n token_data = {}\n errors = {}\n data = {}\n for field in required_fields:\n try:\n data[field] = token_data[field]\n except KeyError:\n errors[field] = ['This field is required.']\n except TypeError:\n errors = [\n 'Improperly formated json. Should be a key-value object.']\n break\n if errors:\n raise exceptions.TaskTokenSerializersInvalid(self.task, errors)\n self.is_valid('task invalid before submit')\n for action in actions:\n try:\n action.submit(data, keystone_user)\n except Exception as e:\n handle_task_error(e, self.task, 'while submiting task')\n self.is_valid('task invalid after submit')\n self.task.completed = True\n self.task.completed_on = timezone.now()\n self.task.save()\n for token in self.task.tokens:\n token.delete()\n email_conf = self.config.emails.completed\n send_stage_email(self.task, email_conf)\n <mask token>\n", "step-4": "<mask token>\n\n\nclass BaseTask(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, task_model=None, task_data=None, action_data=None):\n self._config = None\n self.logger = getLogger('adjutant')\n if task_model:\n self.task = task_model\n self._refresh_actions()\n else:\n action_serializer_list = self._instantiate_action_serializers(\n action_data)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n keystone_user = task_data.get('keystone_user', {})\n self.task = Task.objects.create(keystone_user=keystone_user,\n project_id=keystone_user.get('project_id'), task_type=self.\n task_type, hash_key=hash_key)\n self.task.save()\n self.actions = []\n for i, action in enumerate(action_serializer_list):\n data = action['serializer'].validated_data\n self.actions.append(action['action'](data=data, task=self.\n task, order=i))\n self.logger.info(\"(%s) - '%s' task created (%s).\" % (timezone.\n now(), self.task_type, self.task.uuid))\n\n def _instantiate_action_serializers(self, action_data,\n use_existing_actions=False):\n action_serializer_list = []\n if use_existing_actions:\n actions = self.actions\n else:\n actions = self.default_actions[:]\n actions += self.config.additional_actions\n valid = True\n for action in actions:\n if use_existing_actions:\n action_name = action.action.action_name\n else:\n action_name = action\n action_class = adj_actions.ACTION_CLASSES[action_name]\n if use_existing_actions:\n action_class = action\n if not action_class.serializer:\n raise exceptions.SerializerMissingException(\n 'No serializer defined for action %s' % action_name)\n serializer = action_class.serializer(data=action_data)\n action_serializer_list.append({'name': action_name, 'action':\n action_class, 'serializer': serializer})\n if serializer and not serializer.is_valid():\n valid = False\n if not valid:\n errors = {}\n for action in action_serializer_list:\n if action['serializer']:\n errors.update(action['serializer'].errors)\n raise exceptions.TaskSerializersInvalid(errors)\n return action_serializer_list\n\n def _create_task_hash(self, action_list):\n hashable_list = [self.task_type]\n for action in action_list:\n hashable_list.append(action['name'])\n if not action['serializer']:\n continue\n fields = sorted(action['serializer'].validated_data.keys())\n for field in fields:\n try:\n hashable_list.append(action['serializer'].\n validated_data[field])\n except KeyError:\n if field == 'username' and CONF.identity.username_is_email:\n continue\n else:\n raise\n return hashlib.sha256(str(hashable_list).encode('utf-8')).hexdigest()\n\n def _handle_duplicates(self, hash_key):\n duplicate_tasks = Task.objects.filter(hash_key=hash_key, completed=\n 0, cancelled=0)\n if not duplicate_tasks:\n return\n if self.duplicate_policy == 'cancel':\n now = timezone.now()\n self.logger.info(\n '(%s) - Task is a duplicate - Cancelling old tasks.' % now)\n for task in duplicate_tasks:\n task.add_task_note(\n 'Task cancelled because was an old duplicate. - (%s)' % now\n )\n task.get_task().cancel()\n return\n raise exceptions.TaskDuplicateFound()\n\n def _refresh_actions(self):\n self.actions = [a.get_action() for a in self.task.actions]\n\n def _create_token(self):\n self.clear_tokens()\n token_expiry = self.config.token_expiry or self.token_expiry\n token = create_token(self.task, token_expiry)\n self.add_note('Token created for task.')\n try:\n email_conf = self.config.emails.token\n send_stage_email(self.task, email_conf, token)\n except KeyError as e:\n handle_task_error(e, self.task, error_text='while sending token')\n\n def add_note(self, note):\n \"\"\"\n Logs the note, and also adds it to the task notes.\n \"\"\"\n now = timezone.now()\n self.logger.info('(%s)(%s)(%s) - %s' % (now, self.task_type, self.\n task.uuid, note))\n note = '%s - (%s)' % (note, now)\n self.task.add_task_note(note)\n\n @property\n def config(self):\n \"\"\"Get my config.\n\n Returns a dict of the config for this task.\n \"\"\"\n if self._config is None:\n try:\n task_conf = CONF.workflow.tasks[self.task_type]\n except KeyError:\n task_conf = {}\n self._config = CONF.workflow.task_defaults.overlay(task_conf)\n return self._config\n\n def is_valid(self, internal_message=None):\n self._refresh_actions()\n valid = all([act.valid for act in self.actions])\n if not valid:\n raise exceptions.TaskActionsInvalid(self.task,\n 'actions invalid', internal_message)\n\n @property\n def approved(self):\n return self.task.approved\n\n @property\n def completed(self):\n return self.task.completed\n\n @property\n def cancelled(self):\n return self.task.cancelled\n\n def confirm_state(self, approved=None, completed=None, cancelled=None):\n \"\"\"Check that the Task is in a given state.\n\n None value means state is ignored. Otherwise expects true or false.\n \"\"\"\n if completed is not None:\n if self.task.completed and not completed:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been completed.')\n if not self.task.completed and completed:\n raise exceptions.TaskStateInvalid(self.task,\n \"This task hasn't been completed.\")\n if cancelled is not None:\n if self.task.cancelled and not cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has been cancelled.')\n if not self.task.cancelled and cancelled:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been cancelled.')\n if approved is not None:\n if self.task.approved and not approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has already been approved.')\n if not self.task.approved and approved:\n raise exceptions.TaskStateInvalid(self.task,\n 'This task has not been approved.')\n\n def update(self, action_data):\n self.confirm_state(approved=False, completed=False, cancelled=False)\n action_serializer_list = self._instantiate_action_serializers(\n action_data, use_existing_actions=True)\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n for action in action_serializer_list:\n data = action['serializer'].validated_data\n action['action'].action.action_data = data\n action['action'].action.save()\n self._refresh_actions()\n self.prepare()\n\n def prepare(self):\n \"\"\"Run the prepare stage for all the actions.\n\n If the task can be auto approved, this will also run the approve\n stage.\n \"\"\"\n self.confirm_state(approved=False, completed=False, cancelled=False)\n for action in self.actions:\n try:\n action.prepare()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\n 'while setting up task')\n email_conf = self.config.emails.initial\n send_stage_email(self.task, email_conf)\n approve_list = [act.auto_approve for act in self.actions]\n if False in approve_list:\n can_auto_approve = False\n elif True in approve_list:\n can_auto_approve = True\n else:\n can_auto_approve = False\n if self.config.allow_auto_approve is not None:\n allow_auto_approve = self.config.allow_auto_approve\n else:\n allow_auto_approve = self.allow_auto_approve\n if can_auto_approve and not allow_auto_approve:\n self.add_note('Actions allow auto aproval, but task does not.')\n elif can_auto_approve:\n self.add_note('Action allow auto approval. Auto approving.')\n self.approve()\n return\n if self.send_approval_notification:\n notes = {'notes': [\"'%s' task needs approval.\" % self.task_type]}\n create_notification(self.task, notes)\n\n def approve(self, approved_by='system'):\n \"\"\"Run the approve stage for all the actions.\"\"\"\n self.confirm_state(completed=False, cancelled=False)\n self.is_valid('task invalid before approval')\n self.task.approved = True\n self.task.approved_on = timezone.now()\n self.task.approved_by = approved_by\n self.task.save()\n for action in self.actions:\n try:\n action.approve()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\n 'while approving task')\n self.is_valid('task invalid after approval')\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n else:\n self.submit()\n\n def reissue_token(self):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n\n def clear_tokens(self):\n for token in self.task.tokens:\n token.delete()\n\n def submit(self, token_data=None, keystone_user=None):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n required_fields = set()\n actions = []\n for action in self.task.actions:\n a = action.get_action()\n actions.append(a)\n for field in a.token_fields:\n required_fields.add(field)\n if not token_data:\n token_data = {}\n errors = {}\n data = {}\n for field in required_fields:\n try:\n data[field] = token_data[field]\n except KeyError:\n errors[field] = ['This field is required.']\n except TypeError:\n errors = [\n 'Improperly formated json. Should be a key-value object.']\n break\n if errors:\n raise exceptions.TaskTokenSerializersInvalid(self.task, errors)\n self.is_valid('task invalid before submit')\n for action in actions:\n try:\n action.submit(data, keystone_user)\n except Exception as e:\n handle_task_error(e, self.task, 'while submiting task')\n self.is_valid('task invalid after submit')\n self.task.completed = True\n self.task.completed_on = timezone.now()\n self.task.save()\n for token in self.task.tokens:\n token.delete()\n email_conf = self.config.emails.completed\n send_stage_email(self.task, email_conf)\n <mask token>\n", "step-5": "# Copyright (C) 2019 Catalyst Cloud Ltd\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\nimport hashlib\nfrom logging import getLogger\n\nfrom confspirator import groups\nfrom confspirator import fields\n\nfrom adjutant import actions as adj_actions\nfrom adjutant.api.models import Task\nfrom adjutant.config import CONF\nfrom django.utils import timezone\nfrom adjutant.notifications.utils import create_notification\nfrom adjutant.tasks.v1.utils import send_stage_email, create_token, handle_task_error\nfrom adjutant import exceptions\n\n\ndef make_task_config(task_class):\n config_group = groups.DynamicNameConfigGroup()\n config_group.register_child_config(\n fields.BoolConfig(\n \"allow_auto_approve\",\n help_text=\"Override if this task allows auto_approval. \"\n \"Otherwise uses task default.\",\n default=task_class.allow_auto_approve,\n )\n )\n config_group.register_child_config(\n fields.ListConfig(\n \"additional_actions\",\n help_text=\"Additional actions to be run as part of the task \"\n \"after default actions.\",\n default=task_class.additional_actions or [],\n )\n )\n config_group.register_child_config(\n fields.IntConfig(\n \"token_expiry\",\n help_text=\"Override for the task token expiry. \"\n \"Otherwise uses task default.\",\n default=task_class.token_expiry,\n )\n )\n config_group.register_child_config(\n fields.DictConfig(\n \"actions\",\n help_text=\"Action config overrides over the action defaults. \"\n \"See 'adjutant.workflow.action_defaults'.\",\n is_json=True,\n default=task_class.action_config or {},\n sample_default={\n \"SomeCustomAction\": {\"some_action_setting\": \"<a-uuid-probably>\"}\n },\n )\n )\n config_group.register_child_config(\n fields.DictConfig(\n \"emails\",\n help_text=\"Email config overrides for this task over task defaults.\"\n \"See 'adjutant.workflow.emails'.\",\n is_json=True,\n default=task_class.email_config or {},\n sample_default={\n \"initial\": None,\n \"token\": {\n \"subject\": \"Some custom subject\",\n },\n },\n )\n )\n config_group.register_child_config(\n fields.DictConfig(\n \"notifications\",\n help_text=\"Notification config overrides for this task over task defaults.\"\n \"See 'adjutant.workflow.notifications'.\",\n is_json=True,\n default=task_class.notification_config or {},\n sample_default={\n \"standard_handlers\": [\"EmailNotification\"],\n \"error_handlers\": [\"EmailNotification\"],\n \"standard_handler_config\": {\n \"EmailNotification\": {\n \"emails\": [\"[email protected]\"],\n \"reply\": \"[email protected]\",\n }\n },\n \"error_handler_config\": {\n \"EmailNotification\": {\n \"emails\": [\"[email protected]\"],\n \"reply\": \"[email protected]\",\n }\n },\n },\n )\n )\n return config_group\n\n\nclass BaseTask(object):\n \"\"\"\n Base class for in memory task representation.\n\n This serves as the internal task logic handler, and is used to\n define what a task looks like.\n\n Most of the time this class shouldn't be called or used directly\n as the task manager is what handles the direct interaction to the\n logic here, and includes some wrapper logic to help deal with workflows.\n \"\"\"\n\n # required values in custom task\n task_type = None\n default_actions = None\n\n # default values to optionally override in task definition\n deprecated_task_types = None\n duplicate_policy = \"cancel\"\n send_approval_notification = True\n token_requires_authentication = False\n\n # config defaults for the task (used to generate default config):\n allow_auto_approve = True\n additional_actions = None\n token_expiry = None\n action_config = None\n email_config = None\n notification_config = None\n\n def __init__(self, task_model=None, task_data=None, action_data=None):\n self._config = None\n self.logger = getLogger(\"adjutant\")\n\n if task_model:\n self.task = task_model\n self._refresh_actions()\n else:\n # raises 400 validation error\n action_serializer_list = self._instantiate_action_serializers(action_data)\n\n hash_key = self._create_task_hash(action_serializer_list)\n # raises duplicate error\n self._handle_duplicates(hash_key)\n\n keystone_user = task_data.get(\"keystone_user\", {})\n self.task = Task.objects.create(\n keystone_user=keystone_user,\n project_id=keystone_user.get(\"project_id\"),\n task_type=self.task_type,\n hash_key=hash_key,\n )\n self.task.save()\n\n # Instantiate actions with serializers\n self.actions = []\n for i, action in enumerate(action_serializer_list):\n data = action[\"serializer\"].validated_data\n\n # construct the action class\n self.actions.append(\n action[\"action\"](data=data, task=self.task, order=i)\n )\n self.logger.info(\n \"(%s) - '%s' task created (%s).\"\n % (timezone.now(), self.task_type, self.task.uuid)\n )\n\n def _instantiate_action_serializers(self, action_data, use_existing_actions=False):\n action_serializer_list = []\n\n if use_existing_actions:\n actions = self.actions\n else:\n actions = self.default_actions[:]\n actions += self.config.additional_actions\n\n # instantiate all action serializers and check validity\n valid = True\n for action in actions:\n if use_existing_actions:\n action_name = action.action.action_name\n else:\n action_name = action\n\n action_class = adj_actions.ACTION_CLASSES[action_name]\n\n if use_existing_actions:\n action_class = action\n\n # instantiate serializer class\n if not action_class.serializer:\n raise exceptions.SerializerMissingException(\n \"No serializer defined for action %s\" % action_name\n )\n serializer = action_class.serializer(data=action_data)\n\n action_serializer_list.append(\n {\"name\": action_name, \"action\": action_class, \"serializer\": serializer}\n )\n\n if serializer and not serializer.is_valid():\n valid = False\n\n if not valid:\n errors = {}\n for action in action_serializer_list:\n if action[\"serializer\"]:\n errors.update(action[\"serializer\"].errors)\n raise exceptions.TaskSerializersInvalid(errors)\n\n return action_serializer_list\n\n def _create_task_hash(self, action_list):\n hashable_list = [\n self.task_type,\n ]\n\n for action in action_list:\n hashable_list.append(action[\"name\"])\n if not action[\"serializer\"]:\n continue\n # iterate like this to maintain consistent order for hash\n fields = sorted(action[\"serializer\"].validated_data.keys())\n for field in fields:\n try:\n hashable_list.append(action[\"serializer\"].validated_data[field])\n except KeyError:\n if field == \"username\" and CONF.identity.username_is_email:\n continue\n else:\n raise\n\n return hashlib.sha256(str(hashable_list).encode(\"utf-8\")).hexdigest()\n\n def _handle_duplicates(self, hash_key):\n duplicate_tasks = Task.objects.filter(\n hash_key=hash_key, completed=0, cancelled=0\n )\n\n if not duplicate_tasks:\n return\n\n if self.duplicate_policy == \"cancel\":\n now = timezone.now()\n self.logger.info(\"(%s) - Task is a duplicate - Cancelling old tasks.\" % now)\n for task in duplicate_tasks:\n task.add_task_note(\n \"Task cancelled because was an old duplicate. - (%s)\" % now\n )\n task.get_task().cancel()\n return\n\n raise exceptions.TaskDuplicateFound()\n\n def _refresh_actions(self):\n self.actions = [a.get_action() for a in self.task.actions]\n\n def _create_token(self):\n self.clear_tokens()\n token_expiry = self.config.token_expiry or self.token_expiry\n token = create_token(self.task, token_expiry)\n self.add_note(\"Token created for task.\")\n try:\n # will throw a key error if the token template has not\n # been specified\n email_conf = self.config.emails.token\n send_stage_email(self.task, email_conf, token)\n except KeyError as e:\n handle_task_error(e, self.task, error_text=\"while sending token\")\n\n def add_note(self, note):\n \"\"\"\n Logs the note, and also adds it to the task notes.\n \"\"\"\n now = timezone.now()\n self.logger.info(\n \"(%s)(%s)(%s) - %s\" % (now, self.task_type, self.task.uuid, note)\n )\n note = \"%s - (%s)\" % (note, now)\n self.task.add_task_note(note)\n\n @property\n def config(self):\n \"\"\"Get my config.\n\n Returns a dict of the config for this task.\n \"\"\"\n if self._config is None:\n try:\n task_conf = CONF.workflow.tasks[self.task_type]\n except KeyError:\n task_conf = {}\n self._config = CONF.workflow.task_defaults.overlay(task_conf)\n return self._config\n\n def is_valid(self, internal_message=None):\n self._refresh_actions()\n valid = all([act.valid for act in self.actions])\n if not valid:\n # TODO(amelia): get action invalidation reasons and raise those\n raise exceptions.TaskActionsInvalid(\n self.task, \"actions invalid\", internal_message\n )\n\n @property\n def approved(self):\n return self.task.approved\n\n @property\n def completed(self):\n return self.task.completed\n\n @property\n def cancelled(self):\n return self.task.cancelled\n\n def confirm_state(self, approved=None, completed=None, cancelled=None):\n \"\"\"Check that the Task is in a given state.\n\n None value means state is ignored. Otherwise expects true or false.\n \"\"\"\n if completed is not None:\n if self.task.completed and not completed:\n raise exceptions.TaskStateInvalid(\n self.task, \"This task has already been completed.\"\n )\n if not self.task.completed and completed:\n raise exceptions.TaskStateInvalid(\n self.task, \"This task hasn't been completed.\"\n )\n\n if cancelled is not None:\n if self.task.cancelled and not cancelled:\n raise exceptions.TaskStateInvalid(\n self.task, \"This task has been cancelled.\"\n )\n if not self.task.cancelled and cancelled:\n raise exceptions.TaskStateInvalid(\n self.task, \"This task has not been cancelled.\"\n )\n if approved is not None:\n if self.task.approved and not approved:\n raise exceptions.TaskStateInvalid(\n self.task, \"This task has already been approved.\"\n )\n if not self.task.approved and approved:\n raise exceptions.TaskStateInvalid(\n self.task, \"This task has not been approved.\"\n )\n\n def update(self, action_data):\n self.confirm_state(approved=False, completed=False, cancelled=False)\n\n action_serializer_list = self._instantiate_action_serializers(\n action_data, use_existing_actions=True\n )\n\n hash_key = self._create_task_hash(action_serializer_list)\n self._handle_duplicates(hash_key)\n\n for action in action_serializer_list:\n data = action[\"serializer\"].validated_data\n\n action[\"action\"].action.action_data = data\n action[\"action\"].action.save()\n self._refresh_actions()\n self.prepare()\n\n def prepare(self):\n \"\"\"Run the prepare stage for all the actions.\n\n If the task can be auto approved, this will also run the approve\n stage.\n \"\"\"\n\n self.confirm_state(approved=False, completed=False, cancelled=False)\n\n for action in self.actions:\n try:\n action.prepare()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\"while setting up task\")\n\n # send initial confirmation email:\n email_conf = self.config.emails.initial\n send_stage_email(self.task, email_conf)\n\n approve_list = [act.auto_approve for act in self.actions]\n\n # TODO(amelia): It would be nice to explicitly test this, however\n # currently we don't have the right combinations of\n # actions to allow for it.\n if False in approve_list:\n can_auto_approve = False\n elif True in approve_list:\n can_auto_approve = True\n else:\n can_auto_approve = False\n\n if self.config.allow_auto_approve is not None:\n allow_auto_approve = self.config.allow_auto_approve\n else:\n allow_auto_approve = self.allow_auto_approve\n\n if can_auto_approve and not allow_auto_approve:\n self.add_note(\"Actions allow auto aproval, but task does not.\")\n elif can_auto_approve:\n self.add_note(\"Action allow auto approval. Auto approving.\")\n self.approve()\n return\n\n if self.send_approval_notification:\n notes = {\"notes\": [\"'%s' task needs approval.\" % self.task_type]}\n create_notification(self.task, notes)\n\n def approve(self, approved_by=\"system\"):\n \"\"\"Run the approve stage for all the actions.\"\"\"\n\n self.confirm_state(completed=False, cancelled=False)\n\n self.is_valid(\"task invalid before approval\")\n\n # We approve the task before running actions,\n # that way if something goes wrong we know if it was approved,\n # when it was approved, and who approved it.\n self.task.approved = True\n self.task.approved_on = timezone.now()\n self.task.approved_by = approved_by\n self.task.save()\n\n # approve all actions\n for action in self.actions:\n try:\n action.approve()\n except Exception as e:\n handle_task_error(e, self.task, error_text=\"while approving task\")\n\n self.is_valid(\"task invalid after approval\")\n\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n else:\n self.submit()\n\n def reissue_token(self):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n\n need_token = any([act.need_token for act in self.actions])\n if need_token:\n self._create_token()\n\n def clear_tokens(self):\n for token in self.task.tokens:\n token.delete()\n\n def submit(self, token_data=None, keystone_user=None):\n self.confirm_state(approved=True, completed=False, cancelled=False)\n\n required_fields = set()\n actions = []\n for action in self.task.actions:\n a = action.get_action()\n actions.append(a)\n for field in a.token_fields:\n required_fields.add(field)\n\n if not token_data:\n token_data = {}\n\n errors = {}\n data = {}\n\n for field in required_fields:\n try:\n data[field] = token_data[field]\n except KeyError:\n errors[field] = [\n \"This field is required.\",\n ]\n except TypeError:\n errors = [\"Improperly formated json. \" \"Should be a key-value object.\"]\n break\n\n if errors:\n raise exceptions.TaskTokenSerializersInvalid(self.task, errors)\n\n self.is_valid(\"task invalid before submit\")\n\n for action in actions:\n try:\n action.submit(data, keystone_user)\n except Exception as e:\n handle_task_error(e, self.task, \"while submiting task\")\n\n self.is_valid(\"task invalid after submit\")\n\n self.task.completed = True\n self.task.completed_on = timezone.now()\n self.task.save()\n for token in self.task.tokens:\n token.delete()\n\n # Sending confirmation email:\n email_conf = self.config.emails.completed\n send_stage_email(self.task, email_conf)\n\n def cancel(self):\n self.confirm_state(completed=False, cancelled=False)\n self.clear_tokens()\n self.task.cancelled = True\n self.task.save()\n", "step-ids": [ 14, 17, 18, 20, 26 ] }
[ 14, 17, 18, 20, 26 ]
def count_words(word): count = 0 count = len(word.split()) return count if __name__ == '__main__': print count_words("Boj is dope")
normal
{ "blob_id": "9f3b7d6dbf57157b5ebd6ad72f46befc94798a5f", "index": 3845, "step-1": "def count_words(word):\n\tcount = 0\n\tcount = len(word.split())\n\treturn count\n\n\nif __name__ == '__main__':\n\tprint count_words(\"Boj is dope\")\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class TubeloadResolver(ResolveUrl): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def get_url(self, host, media_id): return self._default_get_url(host, media_id, template= 'https://{host}/e/{media_id}') <|reserved_special_token_1|> <|reserved_special_token_0|> class TubeloadResolver(ResolveUrl): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) rurl = 'https://{}/'.format(host) headers = {'Referer': rurl, 'User-Agent': common.FF_USER_AGENT} html = self.net.http_GET(web_url, headers=headers).content if 'NOT FOUND' in html or 'Sorry' in html: raise ResolverError('File Removed') if jsunhunt.detect(html): html = re.findall('<head>(.*?)</head>', html, re.S)[0] html = jsunhunt.unhunt(html) source = re.search('var\\s*adbbdddffbad\\s*=\\s*"([^"]+)', html) if source: headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'}) url = source.group(1).replace( 'MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '') url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=', '') url = base64.b64decode(url).decode('utf-8') return url + helpers.append_headers(headers) raise ResolverError('File Not Found') def get_url(self, host, media_id): return self._default_get_url(host, media_id, template= 'https://{host}/e/{media_id}') <|reserved_special_token_1|> <|reserved_special_token_0|> class TubeloadResolver(ResolveUrl): name = 'tubeload' domains = ['tubeload.co'] pattern = '(?://|\\.)(tubeload\\.co)/(?:embed|e|f)/([0-9a-zA-Z]+)' def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) rurl = 'https://{}/'.format(host) headers = {'Referer': rurl, 'User-Agent': common.FF_USER_AGENT} html = self.net.http_GET(web_url, headers=headers).content if 'NOT FOUND' in html or 'Sorry' in html: raise ResolverError('File Removed') if jsunhunt.detect(html): html = re.findall('<head>(.*?)</head>', html, re.S)[0] html = jsunhunt.unhunt(html) source = re.search('var\\s*adbbdddffbad\\s*=\\s*"([^"]+)', html) if source: headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'}) url = source.group(1).replace( 'MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '') url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=', '') url = base64.b64decode(url).decode('utf-8') return url + helpers.append_headers(headers) raise ResolverError('File Not Found') def get_url(self, host, media_id): return self._default_get_url(host, media_id, template= 'https://{host}/e/{media_id}') <|reserved_special_token_1|> <|reserved_special_token_0|> import re import base64 from resolveurl import common from resolveurl.plugins.lib import helpers, jsunhunt from resolveurl.resolver import ResolveUrl, ResolverError class TubeloadResolver(ResolveUrl): name = 'tubeload' domains = ['tubeload.co'] pattern = '(?://|\\.)(tubeload\\.co)/(?:embed|e|f)/([0-9a-zA-Z]+)' def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) rurl = 'https://{}/'.format(host) headers = {'Referer': rurl, 'User-Agent': common.FF_USER_AGENT} html = self.net.http_GET(web_url, headers=headers).content if 'NOT FOUND' in html or 'Sorry' in html: raise ResolverError('File Removed') if jsunhunt.detect(html): html = re.findall('<head>(.*?)</head>', html, re.S)[0] html = jsunhunt.unhunt(html) source = re.search('var\\s*adbbdddffbad\\s*=\\s*"([^"]+)', html) if source: headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'}) url = source.group(1).replace( 'MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '') url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=', '') url = base64.b64decode(url).decode('utf-8') return url + helpers.append_headers(headers) raise ResolverError('File Not Found') def get_url(self, host, media_id): return self._default_get_url(host, media_id, template= 'https://{host}/e/{media_id}') <|reserved_special_token_1|> """ Plugin for ResolveUrl Copyright (C) 2022 shellc0de This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import re import base64 from resolveurl import common from resolveurl.plugins.lib import helpers, jsunhunt from resolveurl.resolver import ResolveUrl, ResolverError class TubeloadResolver(ResolveUrl): name = 'tubeload' domains = ['tubeload.co'] pattern = r'(?://|\.)(tubeload\.co)/(?:embed|e|f)/([0-9a-zA-Z]+)' def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) rurl = 'https://{}/'.format(host) headers = { 'Referer': rurl, 'User-Agent': common.FF_USER_AGENT } html = self.net.http_GET(web_url, headers=headers).content if 'NOT FOUND' in html or 'Sorry' in html: raise ResolverError('File Removed') if jsunhunt.detect(html): html = re.findall('<head>(.*?)</head>', html, re.S)[0] html = jsunhunt.unhunt(html) source = re.search(r'var\s*adbbdddffbad\s*=\s*"([^"]+)', html) if source: headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'}) url = source.group(1).replace('MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '') url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=', '') url = base64.b64decode(url).decode('utf-8') return url + helpers.append_headers(headers) raise ResolverError('File Not Found') def get_url(self, host, media_id): return self._default_get_url(host, media_id, template='https://{host}/e/{media_id}')
flexible
{ "blob_id": "8dfea24545ec4bb95b66d4b5ff3c4936990eb73a", "index": 9500, "step-1": "<mask token>\n\n\nclass TubeloadResolver(ResolveUrl):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def get_url(self, host, media_id):\n return self._default_get_url(host, media_id, template=\n 'https://{host}/e/{media_id}')\n", "step-2": "<mask token>\n\n\nclass TubeloadResolver(ResolveUrl):\n <mask token>\n <mask token>\n <mask token>\n\n def get_media_url(self, host, media_id):\n web_url = self.get_url(host, media_id)\n rurl = 'https://{}/'.format(host)\n headers = {'Referer': rurl, 'User-Agent': common.FF_USER_AGENT}\n html = self.net.http_GET(web_url, headers=headers).content\n if 'NOT FOUND' in html or 'Sorry' in html:\n raise ResolverError('File Removed')\n if jsunhunt.detect(html):\n html = re.findall('<head>(.*?)</head>', html, re.S)[0]\n html = jsunhunt.unhunt(html)\n source = re.search('var\\\\s*adbbdddffbad\\\\s*=\\\\s*\"([^\"]+)', html)\n if source:\n headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'})\n url = source.group(1).replace(\n 'MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '')\n url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=',\n '')\n url = base64.b64decode(url).decode('utf-8')\n return url + helpers.append_headers(headers)\n raise ResolverError('File Not Found')\n\n def get_url(self, host, media_id):\n return self._default_get_url(host, media_id, template=\n 'https://{host}/e/{media_id}')\n", "step-3": "<mask token>\n\n\nclass TubeloadResolver(ResolveUrl):\n name = 'tubeload'\n domains = ['tubeload.co']\n pattern = '(?://|\\\\.)(tubeload\\\\.co)/(?:embed|e|f)/([0-9a-zA-Z]+)'\n\n def get_media_url(self, host, media_id):\n web_url = self.get_url(host, media_id)\n rurl = 'https://{}/'.format(host)\n headers = {'Referer': rurl, 'User-Agent': common.FF_USER_AGENT}\n html = self.net.http_GET(web_url, headers=headers).content\n if 'NOT FOUND' in html or 'Sorry' in html:\n raise ResolverError('File Removed')\n if jsunhunt.detect(html):\n html = re.findall('<head>(.*?)</head>', html, re.S)[0]\n html = jsunhunt.unhunt(html)\n source = re.search('var\\\\s*adbbdddffbad\\\\s*=\\\\s*\"([^\"]+)', html)\n if source:\n headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'})\n url = source.group(1).replace(\n 'MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '')\n url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=',\n '')\n url = base64.b64decode(url).decode('utf-8')\n return url + helpers.append_headers(headers)\n raise ResolverError('File Not Found')\n\n def get_url(self, host, media_id):\n return self._default_get_url(host, media_id, template=\n 'https://{host}/e/{media_id}')\n", "step-4": "<mask token>\nimport re\nimport base64\nfrom resolveurl import common\nfrom resolveurl.plugins.lib import helpers, jsunhunt\nfrom resolveurl.resolver import ResolveUrl, ResolverError\n\n\nclass TubeloadResolver(ResolveUrl):\n name = 'tubeload'\n domains = ['tubeload.co']\n pattern = '(?://|\\\\.)(tubeload\\\\.co)/(?:embed|e|f)/([0-9a-zA-Z]+)'\n\n def get_media_url(self, host, media_id):\n web_url = self.get_url(host, media_id)\n rurl = 'https://{}/'.format(host)\n headers = {'Referer': rurl, 'User-Agent': common.FF_USER_AGENT}\n html = self.net.http_GET(web_url, headers=headers).content\n if 'NOT FOUND' in html or 'Sorry' in html:\n raise ResolverError('File Removed')\n if jsunhunt.detect(html):\n html = re.findall('<head>(.*?)</head>', html, re.S)[0]\n html = jsunhunt.unhunt(html)\n source = re.search('var\\\\s*adbbdddffbad\\\\s*=\\\\s*\"([^\"]+)', html)\n if source:\n headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'})\n url = source.group(1).replace(\n 'MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '')\n url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=',\n '')\n url = base64.b64decode(url).decode('utf-8')\n return url + helpers.append_headers(headers)\n raise ResolverError('File Not Found')\n\n def get_url(self, host, media_id):\n return self._default_get_url(host, media_id, template=\n 'https://{host}/e/{media_id}')\n", "step-5": "\"\"\"\n Plugin for ResolveUrl\n Copyright (C) 2022 shellc0de\n\n This program is free software: you can redistribute it and/or modify\n it under the terms of the GNU General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n\n This program is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU General Public License for more details.\n\n You should have received a copy of the GNU General Public License\n along with this program. If not, see <http://www.gnu.org/licenses/>.\n\"\"\"\n\nimport re\nimport base64\nfrom resolveurl import common\nfrom resolveurl.plugins.lib import helpers, jsunhunt\nfrom resolveurl.resolver import ResolveUrl, ResolverError\n\n\nclass TubeloadResolver(ResolveUrl):\n name = 'tubeload'\n domains = ['tubeload.co']\n pattern = r'(?://|\\.)(tubeload\\.co)/(?:embed|e|f)/([0-9a-zA-Z]+)'\n\n def get_media_url(self, host, media_id):\n web_url = self.get_url(host, media_id)\n rurl = 'https://{}/'.format(host)\n headers = {\n 'Referer': rurl,\n 'User-Agent': common.FF_USER_AGENT\n }\n html = self.net.http_GET(web_url, headers=headers).content\n if 'NOT FOUND' in html or 'Sorry' in html:\n raise ResolverError('File Removed')\n\n if jsunhunt.detect(html):\n html = re.findall('<head>(.*?)</head>', html, re.S)[0]\n html = jsunhunt.unhunt(html)\n\n source = re.search(r'var\\s*adbbdddffbad\\s*=\\s*\"([^\"]+)', html)\n if source:\n headers.update({'Origin': rurl[:-1], 'verifypeer': 'false'})\n url = source.group(1).replace('MzY3Y2E4NTAzNmQ5NDkzN2FiNTQzZTBiNmI4YTIwYzg', '')\n url = url.replace('NjYxOWU2OTNmZWQ0M2I3ZTFhM2U4NTc4Y2NhZmY3NmM=', '')\n url = base64.b64decode(url).decode('utf-8')\n return url + helpers.append_headers(headers)\n\n raise ResolverError('File Not Found')\n\n def get_url(self, host, media_id):\n return self._default_get_url(host, media_id, template='https://{host}/e/{media_id}')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import torch.nn as nn def my_loss(): return nn.CrossEntropyLoss()
normal
{ "blob_id": "418f2e1cbe4fb3ef369e981e72bf40eeddfd052e", "index": 2408, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef my_loss():\n return nn.CrossEntropyLoss()\n", "step-3": "import torch.nn as nn\n\n\ndef my_loss():\n return nn.CrossEntropyLoss()\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> class Trap(GameObject): <|reserved_special_token_0|> def __init__(self, gamedir, filename=None): self.attacks = list() self.x = 0 self.y = 0 self.radius = 0 self.is_first_round = True GameObject.__init__(self, gamedir, filename) <|reserved_special_token_0|> def trigger_trap(self, victim): attac = random.choice(self.attacks) attack = attac[0] damage = attac[1] victim.health = mb_subs.subtract_to_floor(victim.health, damage) if damage >= 0: commentary = '(OH NO!) %s' % (attack % victim.name) else: commentary = '(WOW!) %s' % (attack % victim.name) return commentary, damage <|reserved_special_token_1|> <|reserved_special_token_0|> class Trap(GameObject): <|reserved_special_token_0|> def __init__(self, gamedir, filename=None): self.attacks = list() self.x = 0 self.y = 0 self.radius = 0 self.is_first_round = True GameObject.__init__(self, gamedir, filename) def read_in_config(self, filename): parser = GameObject.read_in_config(self, filename) if parser.has_section('attacks'): self.attacks = mb_subs.actions(parser.items('attacks')) del parser def trigger_trap(self, victim): attac = random.choice(self.attacks) attack = attac[0] damage = attac[1] victim.health = mb_subs.subtract_to_floor(victim.health, damage) if damage >= 0: commentary = '(OH NO!) %s' % (attack % victim.name) else: commentary = '(WOW!) %s' % (attack % victim.name) return commentary, damage <|reserved_special_token_1|> <|reserved_special_token_0|> class Trap(GameObject): """ This class is used to create traps (or blessing objects) that exist in the arena on their own but that are not subject to attack. The only real attributes traps have is different types of attacks that they can carry out on combatants in the arena. """ def __init__(self, gamedir, filename=None): self.attacks = list() self.x = 0 self.y = 0 self.radius = 0 self.is_first_round = True GameObject.__init__(self, gamedir, filename) def read_in_config(self, filename): parser = GameObject.read_in_config(self, filename) if parser.has_section('attacks'): self.attacks = mb_subs.actions(parser.items('attacks')) del parser def trigger_trap(self, victim): attac = random.choice(self.attacks) attack = attac[0] damage = attac[1] victim.health = mb_subs.subtract_to_floor(victim.health, damage) if damage >= 0: commentary = '(OH NO!) %s' % (attack % victim.name) else: commentary = '(WOW!) %s' % (attack % victim.name) return commentary, damage <|reserved_special_token_1|> import random import mb_io import mb_subs from mb_go import GameObject class Trap(GameObject): """ This class is used to create traps (or blessing objects) that exist in the arena on their own but that are not subject to attack. The only real attributes traps have is different types of attacks that they can carry out on combatants in the arena. """ def __init__(self, gamedir, filename=None): self.attacks = list() self.x = 0 self.y = 0 self.radius = 0 self.is_first_round = True GameObject.__init__(self, gamedir, filename) def read_in_config(self, filename): parser = GameObject.read_in_config(self, filename) if parser.has_section('attacks'): self.attacks = mb_subs.actions(parser.items('attacks')) del parser def trigger_trap(self, victim): attac = random.choice(self.attacks) attack = attac[0] damage = attac[1] victim.health = mb_subs.subtract_to_floor(victim.health, damage) if damage >= 0: commentary = '(OH NO!) %s' % (attack % victim.name) else: commentary = '(WOW!) %s' % (attack % victim.name) return commentary, damage <|reserved_special_token_1|> # ------------------------------------------------------------------------- # File: mb_trap.py # Created: Tue Feb 7 20:51:32 2006 # ------------------------------------------------------------------------- import random import mb_io import mb_subs from mb_go import GameObject class Trap(GameObject): """ This class is used to create traps (or blessing objects) that exist in the arena on their own but that are not subject to attack. The only real attributes traps have is different types of attacks that they can carry out on combatants in the arena. """ def __init__(self, gamedir, filename = None): self.attacks = list() self.x = 0 self.y = 0 self.radius = 0 self.is_first_round = True GameObject.__init__(self, gamedir, filename) def read_in_config(self, filename): parser = GameObject.read_in_config(self, filename) if parser.has_section('attacks'): self.attacks = mb_subs.actions(parser.items('attacks')) del parser def trigger_trap(self, victim): attac = random.choice(self.attacks) attack = attac[0] damage = attac[1] victim.health = mb_subs.subtract_to_floor(victim.health, damage) if damage >= 0: commentary = '(OH NO!) %s' % (attack % victim.name) else: commentary = '(WOW!) %s' % (attack % victim.name) return commentary, damage
flexible
{ "blob_id": "f2a94f6bfe86af439a8248b40732340c45d89b93", "index": 9925, "step-1": "<mask token>\n\n\nclass Trap(GameObject):\n <mask token>\n\n def __init__(self, gamedir, filename=None):\n self.attacks = list()\n self.x = 0\n self.y = 0\n self.radius = 0\n self.is_first_round = True\n GameObject.__init__(self, gamedir, filename)\n <mask token>\n\n def trigger_trap(self, victim):\n attac = random.choice(self.attacks)\n attack = attac[0]\n damage = attac[1]\n victim.health = mb_subs.subtract_to_floor(victim.health, damage)\n if damage >= 0:\n commentary = '(OH NO!) %s' % (attack % victim.name)\n else:\n commentary = '(WOW!) %s' % (attack % victim.name)\n return commentary, damage\n", "step-2": "<mask token>\n\n\nclass Trap(GameObject):\n <mask token>\n\n def __init__(self, gamedir, filename=None):\n self.attacks = list()\n self.x = 0\n self.y = 0\n self.radius = 0\n self.is_first_round = True\n GameObject.__init__(self, gamedir, filename)\n\n def read_in_config(self, filename):\n parser = GameObject.read_in_config(self, filename)\n if parser.has_section('attacks'):\n self.attacks = mb_subs.actions(parser.items('attacks'))\n del parser\n\n def trigger_trap(self, victim):\n attac = random.choice(self.attacks)\n attack = attac[0]\n damage = attac[1]\n victim.health = mb_subs.subtract_to_floor(victim.health, damage)\n if damage >= 0:\n commentary = '(OH NO!) %s' % (attack % victim.name)\n else:\n commentary = '(WOW!) %s' % (attack % victim.name)\n return commentary, damage\n", "step-3": "<mask token>\n\n\nclass Trap(GameObject):\n \"\"\"\n This class is used to create traps (or blessing objects) that exist\n in the arena on their own but that are not subject to attack.\n The only real attributes traps have is different types of attacks that\n they can carry out on combatants in the arena.\n\n \"\"\"\n\n def __init__(self, gamedir, filename=None):\n self.attacks = list()\n self.x = 0\n self.y = 0\n self.radius = 0\n self.is_first_round = True\n GameObject.__init__(self, gamedir, filename)\n\n def read_in_config(self, filename):\n parser = GameObject.read_in_config(self, filename)\n if parser.has_section('attacks'):\n self.attacks = mb_subs.actions(parser.items('attacks'))\n del parser\n\n def trigger_trap(self, victim):\n attac = random.choice(self.attacks)\n attack = attac[0]\n damage = attac[1]\n victim.health = mb_subs.subtract_to_floor(victim.health, damage)\n if damage >= 0:\n commentary = '(OH NO!) %s' % (attack % victim.name)\n else:\n commentary = '(WOW!) %s' % (attack % victim.name)\n return commentary, damage\n", "step-4": "import random\nimport mb_io\nimport mb_subs\nfrom mb_go import GameObject\n\n\nclass Trap(GameObject):\n \"\"\"\n This class is used to create traps (or blessing objects) that exist\n in the arena on their own but that are not subject to attack.\n The only real attributes traps have is different types of attacks that\n they can carry out on combatants in the arena.\n\n \"\"\"\n\n def __init__(self, gamedir, filename=None):\n self.attacks = list()\n self.x = 0\n self.y = 0\n self.radius = 0\n self.is_first_round = True\n GameObject.__init__(self, gamedir, filename)\n\n def read_in_config(self, filename):\n parser = GameObject.read_in_config(self, filename)\n if parser.has_section('attacks'):\n self.attacks = mb_subs.actions(parser.items('attacks'))\n del parser\n\n def trigger_trap(self, victim):\n attac = random.choice(self.attacks)\n attack = attac[0]\n damage = attac[1]\n victim.health = mb_subs.subtract_to_floor(victim.health, damage)\n if damage >= 0:\n commentary = '(OH NO!) %s' % (attack % victim.name)\n else:\n commentary = '(WOW!) %s' % (attack % victim.name)\n return commentary, damage\n", "step-5": "# -------------------------------------------------------------------------\n# File: mb_trap.py\n# Created: Tue Feb 7 20:51:32 2006\n# -------------------------------------------------------------------------\n\nimport random\n\nimport mb_io\nimport mb_subs\nfrom mb_go import GameObject\n\nclass Trap(GameObject):\n \"\"\"\n This class is used to create traps (or blessing objects) that exist\n in the arena on their own but that are not subject to attack.\n The only real attributes traps have is different types of attacks that\n they can carry out on combatants in the arena.\n\n \"\"\"\n def __init__(self, gamedir, filename = None):\n\n self.attacks = list()\n self.x = 0\n self.y = 0\n self.radius = 0\n self.is_first_round = True\n GameObject.__init__(self, gamedir, filename)\n\n def read_in_config(self, filename):\n parser = GameObject.read_in_config(self, filename)\n if parser.has_section('attacks'):\n self.attacks = mb_subs.actions(parser.items('attacks'))\n del parser\n\n def trigger_trap(self, victim):\n\n attac = random.choice(self.attacks)\n attack = attac[0]\n damage = attac[1]\n victim.health = mb_subs.subtract_to_floor(victim.health, damage)\n\n if damage >= 0:\n commentary = '(OH NO!) %s' % (attack % victim.name)\n else:\n commentary = '(WOW!) %s' % (attack % victim.name)\n return commentary, damage\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> browser.get('https://www.google.com') time.sleep(3) browser.maximize_window() <|reserved_special_token_0|> print(title) assert 'Google' == title browser.close() <|reserved_special_token_1|> <|reserved_special_token_0|> capabilities = {'browserName': 'firefox', 'browserVersion': '92.0', 'selenoid:options': {'enableVNC': True, 'enableVideo': True}} browser = webdriver.Remote(command_executor='http://localhost:4444/wd/hub', desired_capabilities=capabilities) browser.get('https://www.google.com') time.sleep(3) browser.maximize_window() title = browser.title print(title) assert 'Google' == title browser.close() <|reserved_special_token_1|> import time from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from webdriver_manager.firefox import GeckoDriverManager from webdriver_manager.microsoft import EdgeChromiumDriverManager import os from selenium import webdriver capabilities = {'browserName': 'firefox', 'browserVersion': '92.0', 'selenoid:options': {'enableVNC': True, 'enableVideo': True}} browser = webdriver.Remote(command_executor='http://localhost:4444/wd/hub', desired_capabilities=capabilities) browser.get('https://www.google.com') time.sleep(3) browser.maximize_window() title = browser.title print(title) assert 'Google' == title browser.close() <|reserved_special_token_1|> import time from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager from webdriver_manager.firefox import GeckoDriverManager from webdriver_manager.microsoft import EdgeChromiumDriverManager import os # caps = {'browserName': os.getenv('BROWSER', 'firefox')} # browser = webdriver.Remote( # command_executor='http://localhost:4444/wd/hub', # desired_capabilities=caps # ) from selenium import webdriver capabilities = { "browserName": "firefox", "browserVersion": "92.0", "selenoid:options": { "enableVNC": True, "enableVideo": True } } browser = webdriver.Remote( command_executor="http://localhost:4444/wd/hub", desired_capabilities=capabilities) browser.get("https://www.google.com") time.sleep(3) browser.maximize_window() title = browser.title print(title) assert "Google" == title browser.close() #browser.quit()
flexible
{ "blob_id": "d84641ce2854d4af26cd46abbe9557d6006cfc2e", "index": 681, "step-1": "<mask token>\n", "step-2": "<mask token>\nbrowser.get('https://www.google.com')\ntime.sleep(3)\nbrowser.maximize_window()\n<mask token>\nprint(title)\nassert 'Google' == title\nbrowser.close()\n", "step-3": "<mask token>\ncapabilities = {'browserName': 'firefox', 'browserVersion': '92.0',\n 'selenoid:options': {'enableVNC': True, 'enableVideo': True}}\nbrowser = webdriver.Remote(command_executor='http://localhost:4444/wd/hub',\n desired_capabilities=capabilities)\nbrowser.get('https://www.google.com')\ntime.sleep(3)\nbrowser.maximize_window()\ntitle = browser.title\nprint(title)\nassert 'Google' == title\nbrowser.close()\n", "step-4": "import time\nfrom selenium import webdriver\nfrom webdriver_manager.chrome import ChromeDriverManager\nfrom webdriver_manager.firefox import GeckoDriverManager\nfrom webdriver_manager.microsoft import EdgeChromiumDriverManager\nimport os\nfrom selenium import webdriver\ncapabilities = {'browserName': 'firefox', 'browserVersion': '92.0',\n 'selenoid:options': {'enableVNC': True, 'enableVideo': True}}\nbrowser = webdriver.Remote(command_executor='http://localhost:4444/wd/hub',\n desired_capabilities=capabilities)\nbrowser.get('https://www.google.com')\ntime.sleep(3)\nbrowser.maximize_window()\ntitle = browser.title\nprint(title)\nassert 'Google' == title\nbrowser.close()\n", "step-5": "import time\n\nfrom selenium import webdriver\nfrom webdriver_manager.chrome import ChromeDriverManager\nfrom webdriver_manager.firefox import GeckoDriverManager\nfrom webdriver_manager.microsoft import EdgeChromiumDriverManager\nimport os\n\n\n# caps = {'browserName': os.getenv('BROWSER', 'firefox')}\n# browser = webdriver.Remote(\n# command_executor='http://localhost:4444/wd/hub',\n# desired_capabilities=caps\n# )\n\nfrom selenium import webdriver\n\ncapabilities = {\n \"browserName\": \"firefox\",\n \"browserVersion\": \"92.0\",\n \"selenoid:options\": {\n \"enableVNC\": True,\n \"enableVideo\": True\n }\n}\n\nbrowser = webdriver.Remote(\n command_executor=\"http://localhost:4444/wd/hub\",\n desired_capabilities=capabilities)\nbrowser.get(\"https://www.google.com\")\ntime.sleep(3)\nbrowser.maximize_window()\n\ntitle = browser.title\n\nprint(title)\n\nassert \"Google\" == title\n\nbrowser.close()\n\n#browser.quit()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> @exception_handler def get_doi_not_in_index(index, dois): es = get_client() results = es.search(index=index, body={'query': {'bool': {'filter': [{ 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len( dois), '_source': False}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set(dois) - existing_dois res = [] for doi in list(not_indexed_dois): res += get_doi_not_in_index_one(index, doi) logger.debug(f'{len(res)} dois not in index detected') return res @exception_handler def get_doi_not_in_index_one(index, doi): es = get_client() results = es.search(index=index, request_cache=False, body={'query': { 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [ 'doi'], '_source': True}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set([doi]) - existing_dois return list(not_indexed_dois) @exception_handler def update_local_affiliations(index, current_dois, local_affiliations): es = get_client() logger.debug( f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois' ) body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts': 'proceed', 'inline': 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())' , 'params': {'local_affiliations': local_affiliations}}, 'query': { 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}} es.update_by_query(index=index, body=body, request_timeout=60 * 5) @exception_handler def delete_index(index: str) ->None: logger.debug(f'Deleting {index}') es = get_client() response = es.indices.delete(index=index, ignore=[400, 404]) logger.debug(response) <|reserved_special_token_0|> def get_analyzers() ->dict: return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase', 'french_elision', 'icu_folding']}} <|reserved_special_token_0|> @exception_handler def reset_index(index: str) ->None: es = get_client() delete_index(index) settings = {'analysis': {'filter': get_filters(), 'analyzer': get_analyzers()}} dynamic_match = None if 'bso-publications' in index: dynamic_match = None elif 'publications-' in index: dynamic_match = '*authors' mappings = {'properties': {}} for f in ['title', 'affiliations.name', 'authors.first_name', 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']: mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'} if dynamic_match: mappings['dynamic_templates'] = [{'objects': {'match': dynamic_match, 'match_mapping_type': 'object', 'mapping': { 'type': 'nested'}}}] response = es.indices.create(index=index, body={'settings': settings, 'mappings': mappings}, ignore=400) if 'acknowledged' in response and response['acknowledged']: response = str(response['index']) logger.debug(f'Index mapping success for index: {response}') @exception_handler def load_in_es(data: list, index: str) ->list: es = get_client() actions = [{'_index': index, '_source': datum} for datum in data] ix = 0 indexed = [] for success, info in helpers.parallel_bulk(client=es, actions=actions, chunk_size=500, request_timeout=60, raise_on_error=False): if not success: logger.debug(f'A document failed: {info}') else: indexed.append(data[ix]) ix += 1 logger.debug(f'{len(data)} elements imported into {index}') return indexed <|reserved_special_token_1|> <|reserved_special_token_0|> @exception_handler def get_doi_not_in_index(index, dois): es = get_client() results = es.search(index=index, body={'query': {'bool': {'filter': [{ 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len( dois), '_source': False}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set(dois) - existing_dois res = [] for doi in list(not_indexed_dois): res += get_doi_not_in_index_one(index, doi) logger.debug(f'{len(res)} dois not in index detected') return res @exception_handler def get_doi_not_in_index_one(index, doi): es = get_client() results = es.search(index=index, request_cache=False, body={'query': { 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [ 'doi'], '_source': True}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set([doi]) - existing_dois return list(not_indexed_dois) @exception_handler def update_local_affiliations(index, current_dois, local_affiliations): es = get_client() logger.debug( f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois' ) body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts': 'proceed', 'inline': 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())' , 'params': {'local_affiliations': local_affiliations}}, 'query': { 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}} es.update_by_query(index=index, body=body, request_timeout=60 * 5) @exception_handler def delete_index(index: str) ->None: logger.debug(f'Deleting {index}') es = get_client() response = es.indices.delete(index=index, ignore=[400, 404]) logger.debug(response) <|reserved_special_token_0|> def get_analyzers() ->dict: return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase', 'french_elision', 'icu_folding']}} def get_filters() ->dict: return {'french_elision': {'type': 'elision', 'articles_case': True, 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu', 'quoiqu', 'lorsqu', 'puisqu']}} @exception_handler def reset_index(index: str) ->None: es = get_client() delete_index(index) settings = {'analysis': {'filter': get_filters(), 'analyzer': get_analyzers()}} dynamic_match = None if 'bso-publications' in index: dynamic_match = None elif 'publications-' in index: dynamic_match = '*authors' mappings = {'properties': {}} for f in ['title', 'affiliations.name', 'authors.first_name', 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']: mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'} if dynamic_match: mappings['dynamic_templates'] = [{'objects': {'match': dynamic_match, 'match_mapping_type': 'object', 'mapping': { 'type': 'nested'}}}] response = es.indices.create(index=index, body={'settings': settings, 'mappings': mappings}, ignore=400) if 'acknowledged' in response and response['acknowledged']: response = str(response['index']) logger.debug(f'Index mapping success for index: {response}') @exception_handler def load_in_es(data: list, index: str) ->list: es = get_client() actions = [{'_index': index, '_source': datum} for datum in data] ix = 0 indexed = [] for success, info in helpers.parallel_bulk(client=es, actions=actions, chunk_size=500, request_timeout=60, raise_on_error=False): if not success: logger.debug(f'A document failed: {info}') else: indexed.append(data[ix]) ix += 1 logger.debug(f'{len(data)} elements imported into {index}') return indexed <|reserved_special_token_1|> <|reserved_special_token_0|> @exception_handler def get_client(): global client if client is None: client = Elasticsearch(ES_URL, http_auth=(ES_LOGIN_BSO_BACK, ES_PASSWORD_BSO_BACK)) return client @exception_handler def get_doi_not_in_index(index, dois): es = get_client() results = es.search(index=index, body={'query': {'bool': {'filter': [{ 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len( dois), '_source': False}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set(dois) - existing_dois res = [] for doi in list(not_indexed_dois): res += get_doi_not_in_index_one(index, doi) logger.debug(f'{len(res)} dois not in index detected') return res @exception_handler def get_doi_not_in_index_one(index, doi): es = get_client() results = es.search(index=index, request_cache=False, body={'query': { 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [ 'doi'], '_source': True}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set([doi]) - existing_dois return list(not_indexed_dois) @exception_handler def update_local_affiliations(index, current_dois, local_affiliations): es = get_client() logger.debug( f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois' ) body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts': 'proceed', 'inline': 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())' , 'params': {'local_affiliations': local_affiliations}}, 'query': { 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}} es.update_by_query(index=index, body=body, request_timeout=60 * 5) @exception_handler def delete_index(index: str) ->None: logger.debug(f'Deleting {index}') es = get_client() response = es.indices.delete(index=index, ignore=[400, 404]) logger.debug(response) <|reserved_special_token_0|> def get_analyzers() ->dict: return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase', 'french_elision', 'icu_folding']}} def get_filters() ->dict: return {'french_elision': {'type': 'elision', 'articles_case': True, 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu', 'quoiqu', 'lorsqu', 'puisqu']}} @exception_handler def reset_index(index: str) ->None: es = get_client() delete_index(index) settings = {'analysis': {'filter': get_filters(), 'analyzer': get_analyzers()}} dynamic_match = None if 'bso-publications' in index: dynamic_match = None elif 'publications-' in index: dynamic_match = '*authors' mappings = {'properties': {}} for f in ['title', 'affiliations.name', 'authors.first_name', 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']: mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'} if dynamic_match: mappings['dynamic_templates'] = [{'objects': {'match': dynamic_match, 'match_mapping_type': 'object', 'mapping': { 'type': 'nested'}}}] response = es.indices.create(index=index, body={'settings': settings, 'mappings': mappings}, ignore=400) if 'acknowledged' in response and response['acknowledged']: response = str(response['index']) logger.debug(f'Index mapping success for index: {response}') @exception_handler def load_in_es(data: list, index: str) ->list: es = get_client() actions = [{'_index': index, '_source': datum} for datum in data] ix = 0 indexed = [] for success, info in helpers.parallel_bulk(client=es, actions=actions, chunk_size=500, request_timeout=60, raise_on_error=False): if not success: logger.debug(f'A document failed: {info}') else: indexed.append(data[ix]) ix += 1 logger.debug(f'{len(data)} elements imported into {index}') return indexed <|reserved_special_token_1|> <|reserved_special_token_0|> client = None logger = get_logger(__name__) @exception_handler def get_client(): global client if client is None: client = Elasticsearch(ES_URL, http_auth=(ES_LOGIN_BSO_BACK, ES_PASSWORD_BSO_BACK)) return client @exception_handler def get_doi_not_in_index(index, dois): es = get_client() results = es.search(index=index, body={'query': {'bool': {'filter': [{ 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len( dois), '_source': False}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set(dois) - existing_dois res = [] for doi in list(not_indexed_dois): res += get_doi_not_in_index_one(index, doi) logger.debug(f'{len(res)} dois not in index detected') return res @exception_handler def get_doi_not_in_index_one(index, doi): es = get_client() results = es.search(index=index, request_cache=False, body={'query': { 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [ 'doi'], '_source': True}, request_timeout=60 * 5) existing_dois = set([e['fields']['doi'][0] for e in results['hits'][ 'hits']]) not_indexed_dois = set([doi]) - existing_dois return list(not_indexed_dois) @exception_handler def update_local_affiliations(index, current_dois, local_affiliations): es = get_client() logger.debug( f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois' ) body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts': 'proceed', 'inline': 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())' , 'params': {'local_affiliations': local_affiliations}}, 'query': { 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}} es.update_by_query(index=index, body=body, request_timeout=60 * 5) @exception_handler def delete_index(index: str) ->None: logger.debug(f'Deleting {index}') es = get_client() response = es.indices.delete(index=index, ignore=[400, 404]) logger.debug(response) @exception_handler def update_alias(alias: str, old_index: str, new_index: str) ->None: es = get_client() logger.debug(f'updating alias {alias} from {old_index} to {new_index}') response = es.indices.update_aliases({'actions': [{'remove': {'index': old_index, 'alias': alias}}, {'add': {'index': new_index, 'alias': alias}}]}) logger.debug(response) def get_analyzers() ->dict: return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase', 'french_elision', 'icu_folding']}} def get_filters() ->dict: return {'french_elision': {'type': 'elision', 'articles_case': True, 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu', 'quoiqu', 'lorsqu', 'puisqu']}} @exception_handler def reset_index(index: str) ->None: es = get_client() delete_index(index) settings = {'analysis': {'filter': get_filters(), 'analyzer': get_analyzers()}} dynamic_match = None if 'bso-publications' in index: dynamic_match = None elif 'publications-' in index: dynamic_match = '*authors' mappings = {'properties': {}} for f in ['title', 'affiliations.name', 'authors.first_name', 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']: mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'} if dynamic_match: mappings['dynamic_templates'] = [{'objects': {'match': dynamic_match, 'match_mapping_type': 'object', 'mapping': { 'type': 'nested'}}}] response = es.indices.create(index=index, body={'settings': settings, 'mappings': mappings}, ignore=400) if 'acknowledged' in response and response['acknowledged']: response = str(response['index']) logger.debug(f'Index mapping success for index: {response}') @exception_handler def load_in_es(data: list, index: str) ->list: es = get_client() actions = [{'_index': index, '_source': datum} for datum in data] ix = 0 indexed = [] for success, info in helpers.parallel_bulk(client=es, actions=actions, chunk_size=500, request_timeout=60, raise_on_error=False): if not success: logger.debug(f'A document failed: {info}') else: indexed.append(data[ix]) ix += 1 logger.debug(f'{len(data)} elements imported into {index}') return indexed <|reserved_special_token_1|> from elasticsearch import Elasticsearch, helpers from bso.server.main.config import ES_LOGIN_BSO_BACK, ES_PASSWORD_BSO_BACK, ES_URL from bso.server.main.decorator import exception_handler from bso.server.main.logger import get_logger client = None logger = get_logger(__name__) @exception_handler def get_client(): global client if client is None: client = Elasticsearch(ES_URL, http_auth=(ES_LOGIN_BSO_BACK, ES_PASSWORD_BSO_BACK)) return client @exception_handler def get_doi_not_in_index(index, dois): es = get_client() results = es.search( index=index, body={"query": {"bool": {"filter": [{'terms': {'doi.keyword': dois}}]}}, "fields": ['doi'], "size": len(dois), "_source": False}, request_timeout=60*5 ) existing_dois = set([e['fields']['doi'][0] for e in results['hits']['hits']]) not_indexed_dois = set(dois) - existing_dois res = [] for doi in list(not_indexed_dois): res += get_doi_not_in_index_one(index, doi) logger.debug(f'{len(res)} dois not in index detected') return res @exception_handler def get_doi_not_in_index_one(index, doi): es = get_client() results = es.search( index=index, request_cache=False, body={"query": {"bool": {"filter": [{'term': {'doi.keyword': doi}}]}}, "fields": ['doi'], "_source": True}, request_timeout=60*5 ) existing_dois = set([e['fields']['doi'][0] for e in results['hits']['hits']]) not_indexed_dois = set([doi]) - existing_dois return list(not_indexed_dois) @exception_handler def update_local_affiliations(index, current_dois, local_affiliations): es = get_client() logger.debug(f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois') body = { "script": { "lang": "painless", "refresh": True, "conflicts": "proceed", "inline": "if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations =" " new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);" "ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct()" ".sorted().collect(Collectors.toList())", "params": {"local_affiliations": local_affiliations} }, "query": { "bool": { "filter": [{ "terms": { "doi.keyword": current_dois } }] } } } es.update_by_query(index=index, body=body, request_timeout=60*5) @exception_handler def delete_index(index: str) -> None: logger.debug(f'Deleting {index}') es = get_client() response = es.indices.delete(index=index, ignore=[400, 404]) logger.debug(response) @exception_handler def update_alias(alias: str, old_index: str, new_index: str) -> None: es = get_client() logger.debug(f'updating alias {alias} from {old_index} to {new_index}') response = es.indices.update_aliases({ 'actions': [ {'remove': {'index': old_index, 'alias': alias}}, {'add': {'index': new_index, 'alias': alias}} ] }) logger.debug(response) def get_analyzers() -> dict: return { 'light': { 'tokenizer': 'icu_tokenizer', 'filter': [ 'lowercase', 'french_elision', 'icu_folding' ] } } def get_filters() -> dict: return { 'french_elision': { 'type': 'elision', 'articles_case': True, 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu', 'quoiqu', 'lorsqu', 'puisqu'] } } @exception_handler def reset_index(index: str) -> None: es = get_client() delete_index(index) settings = { 'analysis': { 'filter': get_filters(), 'analyzer': get_analyzers() } } dynamic_match = None if 'bso-publications' in index: # dynamic_match = "*oa_locations" dynamic_match = None elif 'publications-' in index: dynamic_match = "*authors" mappings = { 'properties': {} } # attention l'analyzer .keyword ne sera pas présent pour ce champs ! for f in ['title', 'affiliations.name', 'authors.first_name', 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']: mappings['properties'][f] = { 'type': 'text', 'analyzer': 'light' } if dynamic_match: mappings["dynamic_templates"] = [ { "objects": { "match": dynamic_match, "match_mapping_type": "object", "mapping": { "type": "nested" } } } ] response = es.indices.create( index=index, body={'settings': settings, 'mappings': mappings}, ignore=400 # ignore 400 already exists code ) if 'acknowledged' in response and response['acknowledged']: response = str(response['index']) logger.debug(f'Index mapping success for index: {response}') @exception_handler def load_in_es(data: list, index: str) -> list: es = get_client() actions = [{'_index': index, '_source': datum} for datum in data] ix = 0 indexed = [] for success, info in helpers.parallel_bulk(client=es, actions=actions, chunk_size=500, request_timeout=60, raise_on_error=False): if not success: logger.debug(f'A document failed: {info}') else: indexed.append(data[ix]) ix += 1 logger.debug(f'{len(data)} elements imported into {index}') return indexed
flexible
{ "blob_id": "9f760c0cf2afc746a1fc19ac68d1b2f406c7efe1", "index": 5767, "step-1": "<mask token>\n\n\n@exception_handler\ndef get_doi_not_in_index(index, dois):\n es = get_client()\n results = es.search(index=index, body={'query': {'bool': {'filter': [{\n 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len(\n dois), '_source': False}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set(dois) - existing_dois\n res = []\n for doi in list(not_indexed_dois):\n res += get_doi_not_in_index_one(index, doi)\n logger.debug(f'{len(res)} dois not in index detected')\n return res\n\n\n@exception_handler\ndef get_doi_not_in_index_one(index, doi):\n es = get_client()\n results = es.search(index=index, request_cache=False, body={'query': {\n 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [\n 'doi'], '_source': True}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set([doi]) - existing_dois\n return list(not_indexed_dois)\n\n\n@exception_handler\ndef update_local_affiliations(index, current_dois, local_affiliations):\n es = get_client()\n logger.debug(\n f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois'\n )\n body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts':\n 'proceed', 'inline':\n 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())'\n , 'params': {'local_affiliations': local_affiliations}}, 'query': {\n 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}}\n es.update_by_query(index=index, body=body, request_timeout=60 * 5)\n\n\n@exception_handler\ndef delete_index(index: str) ->None:\n logger.debug(f'Deleting {index}')\n es = get_client()\n response = es.indices.delete(index=index, ignore=[400, 404])\n logger.debug(response)\n\n\n<mask token>\n\n\ndef get_analyzers() ->dict:\n return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase',\n 'french_elision', 'icu_folding']}}\n\n\n<mask token>\n\n\n@exception_handler\ndef reset_index(index: str) ->None:\n es = get_client()\n delete_index(index)\n settings = {'analysis': {'filter': get_filters(), 'analyzer':\n get_analyzers()}}\n dynamic_match = None\n if 'bso-publications' in index:\n dynamic_match = None\n elif 'publications-' in index:\n dynamic_match = '*authors'\n mappings = {'properties': {}}\n for f in ['title', 'affiliations.name', 'authors.first_name',\n 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']:\n mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'}\n if dynamic_match:\n mappings['dynamic_templates'] = [{'objects': {'match':\n dynamic_match, 'match_mapping_type': 'object', 'mapping': {\n 'type': 'nested'}}}]\n response = es.indices.create(index=index, body={'settings': settings,\n 'mappings': mappings}, ignore=400)\n if 'acknowledged' in response and response['acknowledged']:\n response = str(response['index'])\n logger.debug(f'Index mapping success for index: {response}')\n\n\n@exception_handler\ndef load_in_es(data: list, index: str) ->list:\n es = get_client()\n actions = [{'_index': index, '_source': datum} for datum in data]\n ix = 0\n indexed = []\n for success, info in helpers.parallel_bulk(client=es, actions=actions,\n chunk_size=500, request_timeout=60, raise_on_error=False):\n if not success:\n logger.debug(f'A document failed: {info}')\n else:\n indexed.append(data[ix])\n ix += 1\n logger.debug(f'{len(data)} elements imported into {index}')\n return indexed\n", "step-2": "<mask token>\n\n\n@exception_handler\ndef get_doi_not_in_index(index, dois):\n es = get_client()\n results = es.search(index=index, body={'query': {'bool': {'filter': [{\n 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len(\n dois), '_source': False}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set(dois) - existing_dois\n res = []\n for doi in list(not_indexed_dois):\n res += get_doi_not_in_index_one(index, doi)\n logger.debug(f'{len(res)} dois not in index detected')\n return res\n\n\n@exception_handler\ndef get_doi_not_in_index_one(index, doi):\n es = get_client()\n results = es.search(index=index, request_cache=False, body={'query': {\n 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [\n 'doi'], '_source': True}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set([doi]) - existing_dois\n return list(not_indexed_dois)\n\n\n@exception_handler\ndef update_local_affiliations(index, current_dois, local_affiliations):\n es = get_client()\n logger.debug(\n f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois'\n )\n body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts':\n 'proceed', 'inline':\n 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())'\n , 'params': {'local_affiliations': local_affiliations}}, 'query': {\n 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}}\n es.update_by_query(index=index, body=body, request_timeout=60 * 5)\n\n\n@exception_handler\ndef delete_index(index: str) ->None:\n logger.debug(f'Deleting {index}')\n es = get_client()\n response = es.indices.delete(index=index, ignore=[400, 404])\n logger.debug(response)\n\n\n<mask token>\n\n\ndef get_analyzers() ->dict:\n return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase',\n 'french_elision', 'icu_folding']}}\n\n\ndef get_filters() ->dict:\n return {'french_elision': {'type': 'elision', 'articles_case': True,\n 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu',\n 'quoiqu', 'lorsqu', 'puisqu']}}\n\n\n@exception_handler\ndef reset_index(index: str) ->None:\n es = get_client()\n delete_index(index)\n settings = {'analysis': {'filter': get_filters(), 'analyzer':\n get_analyzers()}}\n dynamic_match = None\n if 'bso-publications' in index:\n dynamic_match = None\n elif 'publications-' in index:\n dynamic_match = '*authors'\n mappings = {'properties': {}}\n for f in ['title', 'affiliations.name', 'authors.first_name',\n 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']:\n mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'}\n if dynamic_match:\n mappings['dynamic_templates'] = [{'objects': {'match':\n dynamic_match, 'match_mapping_type': 'object', 'mapping': {\n 'type': 'nested'}}}]\n response = es.indices.create(index=index, body={'settings': settings,\n 'mappings': mappings}, ignore=400)\n if 'acknowledged' in response and response['acknowledged']:\n response = str(response['index'])\n logger.debug(f'Index mapping success for index: {response}')\n\n\n@exception_handler\ndef load_in_es(data: list, index: str) ->list:\n es = get_client()\n actions = [{'_index': index, '_source': datum} for datum in data]\n ix = 0\n indexed = []\n for success, info in helpers.parallel_bulk(client=es, actions=actions,\n chunk_size=500, request_timeout=60, raise_on_error=False):\n if not success:\n logger.debug(f'A document failed: {info}')\n else:\n indexed.append(data[ix])\n ix += 1\n logger.debug(f'{len(data)} elements imported into {index}')\n return indexed\n", "step-3": "<mask token>\n\n\n@exception_handler\ndef get_client():\n global client\n if client is None:\n client = Elasticsearch(ES_URL, http_auth=(ES_LOGIN_BSO_BACK,\n ES_PASSWORD_BSO_BACK))\n return client\n\n\n@exception_handler\ndef get_doi_not_in_index(index, dois):\n es = get_client()\n results = es.search(index=index, body={'query': {'bool': {'filter': [{\n 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len(\n dois), '_source': False}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set(dois) - existing_dois\n res = []\n for doi in list(not_indexed_dois):\n res += get_doi_not_in_index_one(index, doi)\n logger.debug(f'{len(res)} dois not in index detected')\n return res\n\n\n@exception_handler\ndef get_doi_not_in_index_one(index, doi):\n es = get_client()\n results = es.search(index=index, request_cache=False, body={'query': {\n 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [\n 'doi'], '_source': True}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set([doi]) - existing_dois\n return list(not_indexed_dois)\n\n\n@exception_handler\ndef update_local_affiliations(index, current_dois, local_affiliations):\n es = get_client()\n logger.debug(\n f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois'\n )\n body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts':\n 'proceed', 'inline':\n 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())'\n , 'params': {'local_affiliations': local_affiliations}}, 'query': {\n 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}}\n es.update_by_query(index=index, body=body, request_timeout=60 * 5)\n\n\n@exception_handler\ndef delete_index(index: str) ->None:\n logger.debug(f'Deleting {index}')\n es = get_client()\n response = es.indices.delete(index=index, ignore=[400, 404])\n logger.debug(response)\n\n\n<mask token>\n\n\ndef get_analyzers() ->dict:\n return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase',\n 'french_elision', 'icu_folding']}}\n\n\ndef get_filters() ->dict:\n return {'french_elision': {'type': 'elision', 'articles_case': True,\n 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu',\n 'quoiqu', 'lorsqu', 'puisqu']}}\n\n\n@exception_handler\ndef reset_index(index: str) ->None:\n es = get_client()\n delete_index(index)\n settings = {'analysis': {'filter': get_filters(), 'analyzer':\n get_analyzers()}}\n dynamic_match = None\n if 'bso-publications' in index:\n dynamic_match = None\n elif 'publications-' in index:\n dynamic_match = '*authors'\n mappings = {'properties': {}}\n for f in ['title', 'affiliations.name', 'authors.first_name',\n 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']:\n mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'}\n if dynamic_match:\n mappings['dynamic_templates'] = [{'objects': {'match':\n dynamic_match, 'match_mapping_type': 'object', 'mapping': {\n 'type': 'nested'}}}]\n response = es.indices.create(index=index, body={'settings': settings,\n 'mappings': mappings}, ignore=400)\n if 'acknowledged' in response and response['acknowledged']:\n response = str(response['index'])\n logger.debug(f'Index mapping success for index: {response}')\n\n\n@exception_handler\ndef load_in_es(data: list, index: str) ->list:\n es = get_client()\n actions = [{'_index': index, '_source': datum} for datum in data]\n ix = 0\n indexed = []\n for success, info in helpers.parallel_bulk(client=es, actions=actions,\n chunk_size=500, request_timeout=60, raise_on_error=False):\n if not success:\n logger.debug(f'A document failed: {info}')\n else:\n indexed.append(data[ix])\n ix += 1\n logger.debug(f'{len(data)} elements imported into {index}')\n return indexed\n", "step-4": "<mask token>\nclient = None\nlogger = get_logger(__name__)\n\n\n@exception_handler\ndef get_client():\n global client\n if client is None:\n client = Elasticsearch(ES_URL, http_auth=(ES_LOGIN_BSO_BACK,\n ES_PASSWORD_BSO_BACK))\n return client\n\n\n@exception_handler\ndef get_doi_not_in_index(index, dois):\n es = get_client()\n results = es.search(index=index, body={'query': {'bool': {'filter': [{\n 'terms': {'doi.keyword': dois}}]}}, 'fields': ['doi'], 'size': len(\n dois), '_source': False}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set(dois) - existing_dois\n res = []\n for doi in list(not_indexed_dois):\n res += get_doi_not_in_index_one(index, doi)\n logger.debug(f'{len(res)} dois not in index detected')\n return res\n\n\n@exception_handler\ndef get_doi_not_in_index_one(index, doi):\n es = get_client()\n results = es.search(index=index, request_cache=False, body={'query': {\n 'bool': {'filter': [{'term': {'doi.keyword': doi}}]}}, 'fields': [\n 'doi'], '_source': True}, request_timeout=60 * 5)\n existing_dois = set([e['fields']['doi'][0] for e in results['hits'][\n 'hits']])\n not_indexed_dois = set([doi]) - existing_dois\n return list(not_indexed_dois)\n\n\n@exception_handler\ndef update_local_affiliations(index, current_dois, local_affiliations):\n es = get_client()\n logger.debug(\n f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois'\n )\n body = {'script': {'lang': 'painless', 'refresh': True, 'conflicts':\n 'proceed', 'inline':\n 'if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations = new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct().sorted().collect(Collectors.toList())'\n , 'params': {'local_affiliations': local_affiliations}}, 'query': {\n 'bool': {'filter': [{'terms': {'doi.keyword': current_dois}}]}}}\n es.update_by_query(index=index, body=body, request_timeout=60 * 5)\n\n\n@exception_handler\ndef delete_index(index: str) ->None:\n logger.debug(f'Deleting {index}')\n es = get_client()\n response = es.indices.delete(index=index, ignore=[400, 404])\n logger.debug(response)\n\n\n@exception_handler\ndef update_alias(alias: str, old_index: str, new_index: str) ->None:\n es = get_client()\n logger.debug(f'updating alias {alias} from {old_index} to {new_index}')\n response = es.indices.update_aliases({'actions': [{'remove': {'index':\n old_index, 'alias': alias}}, {'add': {'index': new_index, 'alias':\n alias}}]})\n logger.debug(response)\n\n\ndef get_analyzers() ->dict:\n return {'light': {'tokenizer': 'icu_tokenizer', 'filter': ['lowercase',\n 'french_elision', 'icu_folding']}}\n\n\ndef get_filters() ->dict:\n return {'french_elision': {'type': 'elision', 'articles_case': True,\n 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu',\n 'quoiqu', 'lorsqu', 'puisqu']}}\n\n\n@exception_handler\ndef reset_index(index: str) ->None:\n es = get_client()\n delete_index(index)\n settings = {'analysis': {'filter': get_filters(), 'analyzer':\n get_analyzers()}}\n dynamic_match = None\n if 'bso-publications' in index:\n dynamic_match = None\n elif 'publications-' in index:\n dynamic_match = '*authors'\n mappings = {'properties': {}}\n for f in ['title', 'affiliations.name', 'authors.first_name',\n 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']:\n mappings['properties'][f] = {'type': 'text', 'analyzer': 'light'}\n if dynamic_match:\n mappings['dynamic_templates'] = [{'objects': {'match':\n dynamic_match, 'match_mapping_type': 'object', 'mapping': {\n 'type': 'nested'}}}]\n response = es.indices.create(index=index, body={'settings': settings,\n 'mappings': mappings}, ignore=400)\n if 'acknowledged' in response and response['acknowledged']:\n response = str(response['index'])\n logger.debug(f'Index mapping success for index: {response}')\n\n\n@exception_handler\ndef load_in_es(data: list, index: str) ->list:\n es = get_client()\n actions = [{'_index': index, '_source': datum} for datum in data]\n ix = 0\n indexed = []\n for success, info in helpers.parallel_bulk(client=es, actions=actions,\n chunk_size=500, request_timeout=60, raise_on_error=False):\n if not success:\n logger.debug(f'A document failed: {info}')\n else:\n indexed.append(data[ix])\n ix += 1\n logger.debug(f'{len(data)} elements imported into {index}')\n return indexed\n", "step-5": "from elasticsearch import Elasticsearch, helpers\n\nfrom bso.server.main.config import ES_LOGIN_BSO_BACK, ES_PASSWORD_BSO_BACK, ES_URL\nfrom bso.server.main.decorator import exception_handler\nfrom bso.server.main.logger import get_logger\n\nclient = None\nlogger = get_logger(__name__)\n\n\n@exception_handler\ndef get_client():\n global client\n if client is None:\n client = Elasticsearch(ES_URL, http_auth=(ES_LOGIN_BSO_BACK, ES_PASSWORD_BSO_BACK))\n return client\n\n\n@exception_handler\ndef get_doi_not_in_index(index, dois):\n es = get_client()\n results = es.search(\n index=index,\n body={\"query\": {\"bool\": {\"filter\": [{'terms': {'doi.keyword': dois}}]}}, \"fields\": ['doi'], \"size\": len(dois),\n \"_source\": False},\n request_timeout=60*5\n )\n existing_dois = set([e['fields']['doi'][0] for e in results['hits']['hits']])\n not_indexed_dois = set(dois) - existing_dois\n res = []\n for doi in list(not_indexed_dois):\n res += get_doi_not_in_index_one(index, doi)\n logger.debug(f'{len(res)} dois not in index detected')\n return res\n\n\n@exception_handler\ndef get_doi_not_in_index_one(index, doi):\n es = get_client()\n results = es.search(\n index=index,\n request_cache=False,\n body={\"query\": {\"bool\": {\"filter\": [{'term': {'doi.keyword': doi}}]}}, \"fields\": ['doi'], \"_source\": True},\n request_timeout=60*5\n )\n existing_dois = set([e['fields']['doi'][0] for e in results['hits']['hits']])\n not_indexed_dois = set([doi]) - existing_dois\n return list(not_indexed_dois)\n\n\n@exception_handler\ndef update_local_affiliations(index, current_dois, local_affiliations):\n es = get_client()\n logger.debug(f'updating with local affiliations {local_affiliations} for {len(current_dois)} dois')\n body = {\n \"script\": {\n \"lang\": \"painless\",\n \"refresh\": True,\n \"conflicts\": \"proceed\",\n \"inline\": \"if (ctx._source.bso_local_affiliations == null) {ctx._source.bso_local_affiliations =\"\n \" new ArrayList();} ctx._source.bso_local_affiliations.addAll(params.local_affiliations);\"\n \"ctx._source.bso_local_affiliations = ctx._source.bso_local_affiliations.stream().distinct()\"\n \".sorted().collect(Collectors.toList())\",\n \"params\": {\"local_affiliations\": local_affiliations}\n },\n \"query\": {\n \"bool\": {\n \"filter\": [{\n \"terms\": {\n \"doi.keyword\": current_dois\n }\n }]\n }\n }\n }\n es.update_by_query(index=index, body=body, request_timeout=60*5)\n\n\n@exception_handler\ndef delete_index(index: str) -> None:\n logger.debug(f'Deleting {index}')\n es = get_client()\n response = es.indices.delete(index=index, ignore=[400, 404])\n logger.debug(response)\n\n\n@exception_handler\ndef update_alias(alias: str, old_index: str, new_index: str) -> None:\n es = get_client()\n logger.debug(f'updating alias {alias} from {old_index} to {new_index}')\n response = es.indices.update_aliases({\n 'actions': [\n {'remove': {'index': old_index, 'alias': alias}},\n {'add': {'index': new_index, 'alias': alias}}\n ]\n })\n logger.debug(response)\n\ndef get_analyzers() -> dict:\n return {\n 'light': {\n 'tokenizer': 'icu_tokenizer',\n 'filter': [\n 'lowercase',\n 'french_elision',\n 'icu_folding'\n ]\n }\n }\n\ndef get_filters() -> dict:\n return {\n 'french_elision': {\n 'type': 'elision',\n 'articles_case': True,\n 'articles': ['l', 'm', 't', 'qu', 'n', 's', 'j', 'd', 'c', 'jusqu', 'quoiqu', 'lorsqu', 'puisqu']\n }\n }\n\n@exception_handler\ndef reset_index(index: str) -> None:\n es = get_client()\n delete_index(index)\n \n settings = {\n 'analysis': {\n 'filter': get_filters(),\n 'analyzer': get_analyzers()\n }\n }\n \n dynamic_match = None\n if 'bso-publications' in index:\n # dynamic_match = \"*oa_locations\"\n dynamic_match = None\n elif 'publications-' in index:\n dynamic_match = \"*authors\"\n\n mappings = { 'properties': {} }\n # attention l'analyzer .keyword ne sera pas présent pour ce champs !\n for f in ['title', 'affiliations.name', 'authors.first_name', 'authors.last_name', 'authors.full_name', 'authors.affiliations.name']:\n mappings['properties'][f] = { \n 'type': 'text',\n 'analyzer': 'light' \n }\n\n if dynamic_match:\n mappings[\"dynamic_templates\"] = [\n {\n \"objects\": {\n \"match\": dynamic_match,\n \"match_mapping_type\": \"object\",\n \"mapping\": {\n \"type\": \"nested\"\n }\n }\n }\n ]\n response = es.indices.create(\n index=index,\n body={'settings': settings, 'mappings': mappings},\n ignore=400 # ignore 400 already exists code\n )\n if 'acknowledged' in response and response['acknowledged']:\n response = str(response['index'])\n logger.debug(f'Index mapping success for index: {response}')\n\n\n@exception_handler\ndef load_in_es(data: list, index: str) -> list:\n es = get_client()\n actions = [{'_index': index, '_source': datum} for datum in data]\n ix = 0\n indexed = []\n for success, info in helpers.parallel_bulk(client=es, actions=actions, chunk_size=500, request_timeout=60,\n raise_on_error=False):\n if not success:\n logger.debug(f'A document failed: {info}')\n else:\n indexed.append(data[ix])\n ix += 1\n logger.debug(f'{len(data)} elements imported into {index}')\n return indexed\n", "step-ids": [ 7, 8, 9, 11, 13 ] }
[ 7, 8, 9, 11, 13 ]
<|reserved_special_token_0|> def recieve_data(): while True: data = conn.recv(1024) if not data: break conn.sendall(data) msg = pickle.loads(data) time = float(msg[0]) gain = float(msg[1]) yield time, gain conn.close() def animate(i): xs = [] ys = [] for line in recieve_data(): if len(xs) < 50: x, y = line xs.append(float(x)) ys.append(float(y)) else: break print(xs, ys) ax1.clear() ax1.plot(xs, ys) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> s.bind((HOST, PORT)) s.listen(5) <|reserved_special_token_0|> ax1.set_ylim(-0.1, 1.1) ax1.set_xlim(0, 2) def recieve_data(): while True: data = conn.recv(1024) if not data: break conn.sendall(data) msg = pickle.loads(data) time = float(msg[0]) gain = float(msg[1]) yield time, gain conn.close() def animate(i): xs = [] ys = [] for line in recieve_data(): if len(xs) < 50: x, y = line xs.append(float(x)) ys.append(float(y)) else: break print(xs, ys) ax1.clear() ax1.plot(xs, ys) <|reserved_special_token_0|> plt.show() <|reserved_special_token_1|> <|reserved_special_token_0|> time_list = [] gain_list = [] HOST = '127.0.0.1' PORT = 65432 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((HOST, PORT)) s.listen(5) conn, addr = s.accept() fig, ax1 = plt.subplots() ax1.set_ylim(-0.1, 1.1) ax1.set_xlim(0, 2) def recieve_data(): while True: data = conn.recv(1024) if not data: break conn.sendall(data) msg = pickle.loads(data) time = float(msg[0]) gain = float(msg[1]) yield time, gain conn.close() def animate(i): xs = [] ys = [] for line in recieve_data(): if len(xs) < 50: x, y = line xs.append(float(x)) ys.append(float(y)) else: break print(xs, ys) ax1.clear() ax1.plot(xs, ys) ani = animation.FuncAnimation(fig, animate, interval=10) plt.show() <|reserved_special_token_1|> import socket import datetime as dt import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.animation import FuncAnimation from matplotlib import style import pickle time_list = [] gain_list = [] HOST = '127.0.0.1' PORT = 65432 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((HOST, PORT)) s.listen(5) conn, addr = s.accept() fig, ax1 = plt.subplots() ax1.set_ylim(-0.1, 1.1) ax1.set_xlim(0, 2) def recieve_data(): while True: data = conn.recv(1024) if not data: break conn.sendall(data) msg = pickle.loads(data) time = float(msg[0]) gain = float(msg[1]) yield time, gain conn.close() def animate(i): xs = [] ys = [] for line in recieve_data(): if len(xs) < 50: x, y = line xs.append(float(x)) ys.append(float(y)) else: break print(xs, ys) ax1.clear() ax1.plot(xs, ys) ani = animation.FuncAnimation(fig, animate, interval=10) plt.show() <|reserved_special_token_1|> #!/usr/bin/env python import socket import datetime as dt import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.animation import FuncAnimation from matplotlib import style import pickle # Create figure for plotting time_list = [] gain_list = [] HOST = '127.0.0.1' # Standard loopback interface address (localhost) PORT = 65432 # Port to listen on (non-privileged ports are > 1023) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((HOST, PORT)) s.listen(5) conn, addr = s.accept() fig, ax1 = plt.subplots() ax1.set_ylim(-.1, 1.1) ax1.set_xlim(0, 2) def recieve_data(): while True: data = conn.recv(1024) if not data: break conn.sendall(data) msg = pickle.loads(data) time = float(msg[0]) gain = float(msg[1]) yield time , gain conn.close() def animate(i): xs = [] ys = [] for line in recieve_data(): if len(xs) < 50: x, y = line #print(x,y) xs.append(float(x)) ys.append(float(y)) else:break print(xs,ys) ax1.clear() ax1.plot(xs, ys) ani = animation.FuncAnimation(fig, animate, interval=10) plt.show()
flexible
{ "blob_id": "a4d5064decdc9963dae1712c7c6918b3e5902bf2", "index": 9825, "step-1": "<mask token>\n\n\ndef recieve_data():\n while True:\n data = conn.recv(1024)\n if not data:\n break\n conn.sendall(data)\n msg = pickle.loads(data)\n time = float(msg[0])\n gain = float(msg[1])\n yield time, gain\n conn.close()\n\n\ndef animate(i):\n xs = []\n ys = []\n for line in recieve_data():\n if len(xs) < 50:\n x, y = line\n xs.append(float(x))\n ys.append(float(y))\n else:\n break\n print(xs, ys)\n ax1.clear()\n ax1.plot(xs, ys)\n\n\n<mask token>\n", "step-2": "<mask token>\ns.bind((HOST, PORT))\ns.listen(5)\n<mask token>\nax1.set_ylim(-0.1, 1.1)\nax1.set_xlim(0, 2)\n\n\ndef recieve_data():\n while True:\n data = conn.recv(1024)\n if not data:\n break\n conn.sendall(data)\n msg = pickle.loads(data)\n time = float(msg[0])\n gain = float(msg[1])\n yield time, gain\n conn.close()\n\n\ndef animate(i):\n xs = []\n ys = []\n for line in recieve_data():\n if len(xs) < 50:\n x, y = line\n xs.append(float(x))\n ys.append(float(y))\n else:\n break\n print(xs, ys)\n ax1.clear()\n ax1.plot(xs, ys)\n\n\n<mask token>\nplt.show()\n", "step-3": "<mask token>\ntime_list = []\ngain_list = []\nHOST = '127.0.0.1'\nPORT = 65432\ns = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\ns.bind((HOST, PORT))\ns.listen(5)\nconn, addr = s.accept()\nfig, ax1 = plt.subplots()\nax1.set_ylim(-0.1, 1.1)\nax1.set_xlim(0, 2)\n\n\ndef recieve_data():\n while True:\n data = conn.recv(1024)\n if not data:\n break\n conn.sendall(data)\n msg = pickle.loads(data)\n time = float(msg[0])\n gain = float(msg[1])\n yield time, gain\n conn.close()\n\n\ndef animate(i):\n xs = []\n ys = []\n for line in recieve_data():\n if len(xs) < 50:\n x, y = line\n xs.append(float(x))\n ys.append(float(y))\n else:\n break\n print(xs, ys)\n ax1.clear()\n ax1.plot(xs, ys)\n\n\nani = animation.FuncAnimation(fig, animate, interval=10)\nplt.show()\n", "step-4": "import socket\nimport datetime as dt\nimport matplotlib.pyplot as plt\nimport matplotlib.animation as animation\nfrom matplotlib.animation import FuncAnimation\nfrom matplotlib import style\nimport pickle\ntime_list = []\ngain_list = []\nHOST = '127.0.0.1'\nPORT = 65432\ns = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\ns.bind((HOST, PORT))\ns.listen(5)\nconn, addr = s.accept()\nfig, ax1 = plt.subplots()\nax1.set_ylim(-0.1, 1.1)\nax1.set_xlim(0, 2)\n\n\ndef recieve_data():\n while True:\n data = conn.recv(1024)\n if not data:\n break\n conn.sendall(data)\n msg = pickle.loads(data)\n time = float(msg[0])\n gain = float(msg[1])\n yield time, gain\n conn.close()\n\n\ndef animate(i):\n xs = []\n ys = []\n for line in recieve_data():\n if len(xs) < 50:\n x, y = line\n xs.append(float(x))\n ys.append(float(y))\n else:\n break\n print(xs, ys)\n ax1.clear()\n ax1.plot(xs, ys)\n\n\nani = animation.FuncAnimation(fig, animate, interval=10)\nplt.show()\n", "step-5": "#!/usr/bin/env python\n\nimport socket\nimport datetime as dt\nimport matplotlib.pyplot as plt\nimport matplotlib.animation as animation\nfrom matplotlib.animation import FuncAnimation\nfrom matplotlib import style\nimport pickle\n# Create figure for plotting\n\ntime_list = []\ngain_list = []\n\nHOST = '127.0.0.1' # Standard loopback interface address (localhost)\nPORT = 65432 # Port to listen on (non-privileged ports are > 1023)\n\n\ns = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\ns.bind((HOST, PORT))\ns.listen(5)\nconn, addr = s.accept()\n\n\nfig, ax1 = plt.subplots()\nax1.set_ylim(-.1, 1.1)\nax1.set_xlim(0, 2)\n\ndef recieve_data():\n\twhile True:\n\t\t data = conn.recv(1024)\n\t\t if not data:\n\t\t\t break\n\t\t conn.sendall(data)\n\t\t msg = pickle.loads(data)\n\t\t time = float(msg[0])\n\t\t gain = float(msg[1])\n\t\t yield time , gain\n\tconn.close()\n\n\n\ndef animate(i):\n xs = []\n ys = []\n for line in recieve_data():\n if len(xs) < 50:\n x, y = line\n #print(x,y)\n xs.append(float(x))\n ys.append(float(y))\n else:break\n print(xs,ys)\n ax1.clear()\n ax1.plot(xs, ys)\n\nani = animation.FuncAnimation(fig, animate, interval=10)\nplt.show()\n\n\n\n\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
def get_value(li, row, column): if row < 0 or column < 0: return 0 try: return li[row][column] except IndexError: return 0 n = int(input()) results = {} for asdf in range(n): table = [] title, rows, columns = input().split() rows = int(rows) columns = int(columns) for r in range(rows): table.append([int(x) for x in input().split()]) flattened = [j for sub in table for j in sub] sort = sorted(range(len(flattened)), key=lambda k: flattened[k]) distance = [[0 for i in range(columns)] for j in range(rows)] #print(sort) maxdist = 0 for i in sort: r = i//columns c = i % columns #print(r) #print(c) w = 1 x = 1 y = 1 z = 1 if get_value(table, r, c) == get_value(table, r-1, c): w = 0 if get_value(table, r, c) == get_value(table, r+1, c): x = 0 if get_value(table, r, c) == get_value(table, r, c-1): y = 0 if get_value(table, r, c) == get_value(table, r, c+1): z = 0 #print(distance) distance[r][c] = max(max(get_value(distance, r-1, c)*w, get_value(distance, r+1, c)*x), max(get_value(distance, r, c-1)*y, get_value(distance, r, c+1)*z)) + 1 if distance[r][c] > maxdist: maxdist = distance[r][c] results[title] = maxdist for key in results: print(key + ": " + str(results[key]))
normal
{ "blob_id": "badbfdbdeb8b4fd40b1c44bf7dcff6457a0c8795", "index": 7162, "step-1": "<mask token>\n", "step-2": "def get_value(li, row, column):\n if row < 0 or column < 0:\n return 0\n try:\n return li[row][column]\n except IndexError:\n return 0\n\n\n<mask token>\n", "step-3": "def get_value(li, row, column):\n if row < 0 or column < 0:\n return 0\n try:\n return li[row][column]\n except IndexError:\n return 0\n\n\n<mask token>\nfor asdf in range(n):\n table = []\n title, rows, columns = input().split()\n rows = int(rows)\n columns = int(columns)\n for r in range(rows):\n table.append([int(x) for x in input().split()])\n flattened = [j for sub in table for j in sub]\n sort = sorted(range(len(flattened)), key=lambda k: flattened[k])\n distance = [[(0) for i in range(columns)] for j in range(rows)]\n maxdist = 0\n for i in sort:\n r = i // columns\n c = i % columns\n w = 1\n x = 1\n y = 1\n z = 1\n if get_value(table, r, c) == get_value(table, r - 1, c):\n w = 0\n if get_value(table, r, c) == get_value(table, r + 1, c):\n x = 0\n if get_value(table, r, c) == get_value(table, r, c - 1):\n y = 0\n if get_value(table, r, c) == get_value(table, r, c + 1):\n z = 0\n distance[r][c] = max(max(get_value(distance, r - 1, c) * w, \n get_value(distance, r + 1, c) * x), max(get_value(distance, r, \n c - 1) * y, get_value(distance, r, c + 1) * z)) + 1\n if distance[r][c] > maxdist:\n maxdist = distance[r][c]\n results[title] = maxdist\nfor key in results:\n print(key + ': ' + str(results[key]))\n", "step-4": "def get_value(li, row, column):\n if row < 0 or column < 0:\n return 0\n try:\n return li[row][column]\n except IndexError:\n return 0\n\n\nn = int(input())\nresults = {}\nfor asdf in range(n):\n table = []\n title, rows, columns = input().split()\n rows = int(rows)\n columns = int(columns)\n for r in range(rows):\n table.append([int(x) for x in input().split()])\n flattened = [j for sub in table for j in sub]\n sort = sorted(range(len(flattened)), key=lambda k: flattened[k])\n distance = [[(0) for i in range(columns)] for j in range(rows)]\n maxdist = 0\n for i in sort:\n r = i // columns\n c = i % columns\n w = 1\n x = 1\n y = 1\n z = 1\n if get_value(table, r, c) == get_value(table, r - 1, c):\n w = 0\n if get_value(table, r, c) == get_value(table, r + 1, c):\n x = 0\n if get_value(table, r, c) == get_value(table, r, c - 1):\n y = 0\n if get_value(table, r, c) == get_value(table, r, c + 1):\n z = 0\n distance[r][c] = max(max(get_value(distance, r - 1, c) * w, \n get_value(distance, r + 1, c) * x), max(get_value(distance, r, \n c - 1) * y, get_value(distance, r, c + 1) * z)) + 1\n if distance[r][c] > maxdist:\n maxdist = distance[r][c]\n results[title] = maxdist\nfor key in results:\n print(key + ': ' + str(results[key]))\n", "step-5": "def get_value(li, row, column):\r\n if row < 0 or column < 0:\r\n return 0\r\n try:\r\n return li[row][column]\r\n except IndexError:\r\n return 0\r\n\r\n\r\nn = int(input())\r\nresults = {}\r\nfor asdf in range(n):\r\n table = []\r\n title, rows, columns = input().split()\r\n rows = int(rows)\r\n columns = int(columns)\r\n\r\n for r in range(rows):\r\n table.append([int(x) for x in input().split()])\r\n\r\n flattened = [j for sub in table for j in sub]\r\n\r\n sort = sorted(range(len(flattened)), key=lambda k: flattened[k])\r\n\r\n distance = [[0 for i in range(columns)] for j in range(rows)]\r\n #print(sort)\r\n maxdist = 0\r\n for i in sort:\r\n r = i//columns\r\n c = i % columns\r\n #print(r)\r\n #print(c)\r\n w = 1\r\n x = 1\r\n y = 1\r\n z = 1\r\n if get_value(table, r, c) == get_value(table, r-1, c):\r\n w = 0\r\n if get_value(table, r, c) == get_value(table, r+1, c):\r\n x = 0\r\n if get_value(table, r, c) == get_value(table, r, c-1):\r\n y = 0\r\n if get_value(table, r, c) == get_value(table, r, c+1):\r\n z = 0\r\n #print(distance)\r\n distance[r][c] = max(max(get_value(distance, r-1, c)*w, get_value(distance, r+1, c)*x),\r\n max(get_value(distance, r, c-1)*y, get_value(distance, r, c+1)*z)) + 1\r\n if distance[r][c] > maxdist:\r\n maxdist = distance[r][c]\r\n results[title] = maxdist\r\n\r\nfor key in results:\r\n print(key + \": \" + str(results[key])) \r\n\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask import Blueprint application_vue_demo = Blueprint('application_vue_demo', __name__) from . import views
normal
{ "blob_id": "a33abd253288140f8051aced1d0ed1e41b2fc786", "index": 8067, "step-1": "<mask token>\n", "step-2": "<mask token>\napplication_vue_demo = Blueprint('application_vue_demo', __name__)\n<mask token>\n", "step-3": "from flask import Blueprint\napplication_vue_demo = Blueprint('application_vue_demo', __name__)\nfrom . import views\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> def get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''): model = Sequential() act_fn = 'relu' if len(layer_dims) == 0: layer_dims = [10, 5, 0.2] else: layer_dims = [float(d) for d in layer_dims.split('-')] model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat, kernel_initializer='normal')) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) for layer_dim in layer_dims[1:-1]: model.add(Dense(int(num_feat * layer_dim))) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) model.add(Dense(int(num_feat * layer_dims[-1]))) model.add(Activation(act_fn)) model.add(Dropout(drop_out)) model.add(Dense(1)) adam = Adam(lr=lr) model.compile(loss='logcosh', optimizer=adam) return model <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> np.random.seed(seed) def get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''): model = Sequential() act_fn = 'relu' if len(layer_dims) == 0: layer_dims = [10, 5, 0.2] else: layer_dims = [float(d) for d in layer_dims.split('-')] model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat, kernel_initializer='normal')) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) for layer_dim in layer_dims[1:-1]: model.add(Dense(int(num_feat * layer_dim))) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) model.add(Dense(int(num_feat * layer_dims[-1]))) model.add(Activation(act_fn)) model.add(Dropout(drop_out)) model.add(Dense(1)) adam = Adam(lr=lr) model.compile(loss='logcosh', optimizer=adam) return model <|reserved_special_token_0|> def generate_training_input(mol_file): """ :param mol_file: str :return: pd.DataFrame """ ifs = oechem.oemolistream(mol_file) training_data = [] for mol in ifs.GetOEGraphMols(): energy = float(oechem.OEGetSDData(mol, ENERGY_KEY)) sf_elements = get_sf_elements(mol) dihe_inchi = get_dihedral_inchi_key(mol) data = [dihe_inchi, energy] data.extend(sf_elements) training_data.append(data) ifs.close() columns = [INCHI_KEY, ENERGY_KEY] num_sf_elements = len(training_data[0]) - 2 sf_columns = [('sf_%d' % (i + 1)) for i in range(num_sf_elements)] columns.extend(sf_columns) df = pd.DataFrame(training_data, columns=columns) grouped = df.loc[:, [INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY) df2 = grouped.transform(lambda x: x - x.min()) df[ENERGY_KEY] = df2[ENERGY_KEY] return df if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Train neural network model to predict torsional relative energy') parser.add_argument('--input', type=str, help= 'sd file containing MM structures alongwith sd properties with torsion atom indices and QM energy' ) parser.add_argument('--num_epoch', default=5000, type=int, help= 'number of epoch (default = 2000)') parser.add_argument('--batch_size', default=256, type=int, help= 'batch size (default: 256)') parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str, help='layer dimensions') parser.add_argument('--lr', default=0.0001, type=float, help= 'learning rate (default: 1e-r)') parser.add_argument('--dropout', default=0.2, type=float, help= 'dropout (default: 0.2)') parser.add_argument('--val_split', default=0.1, type=float, help= 'validation split (default: 0.1)') parser.add_argument('--scalar', default='scaler.pkl', type=str, help= 'output file with standard scaler') parser.add_argument('--model', default='model.h5', type=str, help= 'output file with trained model') parser.add_argument('-v', '--verbose', action='count', default=0) args = parser.parse_args() input_file = args.input num_epoch = args.num_epoch batch_size = args.batch_size lr = args.lr dropout = args.dropout layer_dims = args.layer_dims df = generate_training_input(input_file) tmp_idx = df.ENERGY > 30 df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx]) dihe_inchis = df[INCHI_KEY].unique() print('Number of profiles: %d' % len(dihe_inchis)) desc_bgn_idx = df.columns.get_loc('sf_1') Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:]) ytrain = df.ENERGY scaler = StandardScaler().fit(Xtrain) Xtrain = scaler.transform(Xtrain) print('Xtrain.shape ', Xtrain.shape) with open(args.scalar, 'wb') as fptr: pickle.dump(scaler, fptr) _, num_feat = Xtrain.shape earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience =100, verbose=1, mode='auto') model_file = args.model model = get_model(num_feat, lr, dropout, layer_dims) print(model.summary()) checkpointer = ModelCheckpoint(filepath=model_file, verbose=1, save_best_only=True) callbacks_list = [checkpointer] model.fit(Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size, validation_split=args.val_split, callbacks=callbacks_list, verbose=1) print('Training complete') print('Standard scalar is saved in %s' % args.scalar) print('Model is saved in %s' % args.model) <|reserved_special_token_1|> <|reserved_special_token_0|> seed = 7 np.random.seed(seed) def get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''): model = Sequential() act_fn = 'relu' if len(layer_dims) == 0: layer_dims = [10, 5, 0.2] else: layer_dims = [float(d) for d in layer_dims.split('-')] model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat, kernel_initializer='normal')) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) for layer_dim in layer_dims[1:-1]: model.add(Dense(int(num_feat * layer_dim))) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) model.add(Dense(int(num_feat * layer_dims[-1]))) model.add(Activation(act_fn)) model.add(Dropout(drop_out)) model.add(Dense(1)) adam = Adam(lr=lr) model.compile(loss='logcosh', optimizer=adam) return model ENERGY_KEY = 'ENERGY' INCHI_KEY = 'Inchi' def generate_training_input(mol_file): """ :param mol_file: str :return: pd.DataFrame """ ifs = oechem.oemolistream(mol_file) training_data = [] for mol in ifs.GetOEGraphMols(): energy = float(oechem.OEGetSDData(mol, ENERGY_KEY)) sf_elements = get_sf_elements(mol) dihe_inchi = get_dihedral_inchi_key(mol) data = [dihe_inchi, energy] data.extend(sf_elements) training_data.append(data) ifs.close() columns = [INCHI_KEY, ENERGY_KEY] num_sf_elements = len(training_data[0]) - 2 sf_columns = [('sf_%d' % (i + 1)) for i in range(num_sf_elements)] columns.extend(sf_columns) df = pd.DataFrame(training_data, columns=columns) grouped = df.loc[:, [INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY) df2 = grouped.transform(lambda x: x - x.min()) df[ENERGY_KEY] = df2[ENERGY_KEY] return df if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Train neural network model to predict torsional relative energy') parser.add_argument('--input', type=str, help= 'sd file containing MM structures alongwith sd properties with torsion atom indices and QM energy' ) parser.add_argument('--num_epoch', default=5000, type=int, help= 'number of epoch (default = 2000)') parser.add_argument('--batch_size', default=256, type=int, help= 'batch size (default: 256)') parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str, help='layer dimensions') parser.add_argument('--lr', default=0.0001, type=float, help= 'learning rate (default: 1e-r)') parser.add_argument('--dropout', default=0.2, type=float, help= 'dropout (default: 0.2)') parser.add_argument('--val_split', default=0.1, type=float, help= 'validation split (default: 0.1)') parser.add_argument('--scalar', default='scaler.pkl', type=str, help= 'output file with standard scaler') parser.add_argument('--model', default='model.h5', type=str, help= 'output file with trained model') parser.add_argument('-v', '--verbose', action='count', default=0) args = parser.parse_args() input_file = args.input num_epoch = args.num_epoch batch_size = args.batch_size lr = args.lr dropout = args.dropout layer_dims = args.layer_dims df = generate_training_input(input_file) tmp_idx = df.ENERGY > 30 df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx]) dihe_inchis = df[INCHI_KEY].unique() print('Number of profiles: %d' % len(dihe_inchis)) desc_bgn_idx = df.columns.get_loc('sf_1') Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:]) ytrain = df.ENERGY scaler = StandardScaler().fit(Xtrain) Xtrain = scaler.transform(Xtrain) print('Xtrain.shape ', Xtrain.shape) with open(args.scalar, 'wb') as fptr: pickle.dump(scaler, fptr) _, num_feat = Xtrain.shape earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience =100, verbose=1, mode='auto') model_file = args.model model = get_model(num_feat, lr, dropout, layer_dims) print(model.summary()) checkpointer = ModelCheckpoint(filepath=model_file, verbose=1, save_best_only=True) callbacks_list = [checkpointer] model.fit(Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size, validation_split=args.val_split, callbacks=callbacks_list, verbose=1) print('Training complete') print('Standard scalar is saved in %s' % args.scalar) print('Model is saved in %s' % args.model) <|reserved_special_token_1|> import os, sys import math import argparse import shutil import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import KFold from keras.models import Sequential from keras.layers import Dense, Dropout, LocallyConnected1D, Activation, GaussianNoise, GaussianDropout from keras.layers.normalization import BatchNormalization from keras.wrappers.scikit_learn import KerasRegressor from keras.utils import multi_gpu_model from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.optimizers import Adam from keras.models import load_model from keras.callbacks import Callback import timeit import pickle from openeye import oechem from torsion.model import get_sf_elements from torsion.analysis import get_dihedral_inchi_key import matplotlib.pyplot as plt seed = 7 np.random.seed(seed) def get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''): model = Sequential() act_fn = 'relu' if len(layer_dims) == 0: layer_dims = [10, 5, 0.2] else: layer_dims = [float(d) for d in layer_dims.split('-')] model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat, kernel_initializer='normal')) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) for layer_dim in layer_dims[1:-1]: model.add(Dense(int(num_feat * layer_dim))) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) model.add(Dense(int(num_feat * layer_dims[-1]))) model.add(Activation(act_fn)) model.add(Dropout(drop_out)) model.add(Dense(1)) adam = Adam(lr=lr) model.compile(loss='logcosh', optimizer=adam) return model ENERGY_KEY = 'ENERGY' INCHI_KEY = 'Inchi' def generate_training_input(mol_file): """ :param mol_file: str :return: pd.DataFrame """ ifs = oechem.oemolistream(mol_file) training_data = [] for mol in ifs.GetOEGraphMols(): energy = float(oechem.OEGetSDData(mol, ENERGY_KEY)) sf_elements = get_sf_elements(mol) dihe_inchi = get_dihedral_inchi_key(mol) data = [dihe_inchi, energy] data.extend(sf_elements) training_data.append(data) ifs.close() columns = [INCHI_KEY, ENERGY_KEY] num_sf_elements = len(training_data[0]) - 2 sf_columns = [('sf_%d' % (i + 1)) for i in range(num_sf_elements)] columns.extend(sf_columns) df = pd.DataFrame(training_data, columns=columns) grouped = df.loc[:, [INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY) df2 = grouped.transform(lambda x: x - x.min()) df[ENERGY_KEY] = df2[ENERGY_KEY] return df if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Train neural network model to predict torsional relative energy') parser.add_argument('--input', type=str, help= 'sd file containing MM structures alongwith sd properties with torsion atom indices and QM energy' ) parser.add_argument('--num_epoch', default=5000, type=int, help= 'number of epoch (default = 2000)') parser.add_argument('--batch_size', default=256, type=int, help= 'batch size (default: 256)') parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str, help='layer dimensions') parser.add_argument('--lr', default=0.0001, type=float, help= 'learning rate (default: 1e-r)') parser.add_argument('--dropout', default=0.2, type=float, help= 'dropout (default: 0.2)') parser.add_argument('--val_split', default=0.1, type=float, help= 'validation split (default: 0.1)') parser.add_argument('--scalar', default='scaler.pkl', type=str, help= 'output file with standard scaler') parser.add_argument('--model', default='model.h5', type=str, help= 'output file with trained model') parser.add_argument('-v', '--verbose', action='count', default=0) args = parser.parse_args() input_file = args.input num_epoch = args.num_epoch batch_size = args.batch_size lr = args.lr dropout = args.dropout layer_dims = args.layer_dims df = generate_training_input(input_file) tmp_idx = df.ENERGY > 30 df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx]) dihe_inchis = df[INCHI_KEY].unique() print('Number of profiles: %d' % len(dihe_inchis)) desc_bgn_idx = df.columns.get_loc('sf_1') Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:]) ytrain = df.ENERGY scaler = StandardScaler().fit(Xtrain) Xtrain = scaler.transform(Xtrain) print('Xtrain.shape ', Xtrain.shape) with open(args.scalar, 'wb') as fptr: pickle.dump(scaler, fptr) _, num_feat = Xtrain.shape earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience =100, verbose=1, mode='auto') model_file = args.model model = get_model(num_feat, lr, dropout, layer_dims) print(model.summary()) checkpointer = ModelCheckpoint(filepath=model_file, verbose=1, save_best_only=True) callbacks_list = [checkpointer] model.fit(Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size, validation_split=args.val_split, callbacks=callbacks_list, verbose=1) print('Training complete') print('Standard scalar is saved in %s' % args.scalar) print('Model is saved in %s' % args.model) <|reserved_special_token_1|> import os, sys import math import argparse import shutil import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import KFold from keras.models import Sequential from keras.layers import Dense, Dropout, LocallyConnected1D, Activation, \ GaussianNoise, GaussianDropout from keras.layers.normalization import BatchNormalization from keras.wrappers.scikit_learn import KerasRegressor from keras.utils import multi_gpu_model from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint from keras.optimizers import Adam from keras.models import load_model from keras.callbacks import Callback import timeit import pickle from openeye import oechem from torsion.model import get_sf_elements from torsion.analysis import get_dihedral_inchi_key import matplotlib.pyplot as plt # fix random seed for reproducibility seed = 7 np.random.seed(seed) def get_model(num_feat=294, lr=1e-3, drop_out=0.1, layer_dims=''): model = Sequential() act_fn = 'relu' if len(layer_dims) == 0: layer_dims = [10, 5, 0.2] else: layer_dims = [float(d) for d in layer_dims.split('-')] model.add( Dense( int(num_feat * layer_dims[0]), input_dim=num_feat, kernel_initializer='normal')) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) for layer_dim in layer_dims[1:-1]: model.add(Dense(int(num_feat * layer_dim))) model.add(Activation(act_fn)) model.add(BatchNormalization()) model.add(Dropout(drop_out)) model.add(Dense(int(num_feat * layer_dims[-1]))) model.add(Activation(act_fn)) model.add(Dropout(drop_out)) model.add(Dense(1)) adam = Adam(lr=lr) model.compile(loss='logcosh', optimizer=adam) return model ENERGY_KEY = 'ENERGY' INCHI_KEY = 'Inchi' def generate_training_input(mol_file): ''' :param mol_file: str :return: pd.DataFrame ''' ifs = oechem.oemolistream(mol_file) training_data = [] for mol in ifs.GetOEGraphMols(): energy = float(oechem.OEGetSDData(mol, ENERGY_KEY)) sf_elements = get_sf_elements(mol) dihe_inchi = get_dihedral_inchi_key(mol) data = [dihe_inchi, energy] data.extend(sf_elements) training_data.append(data) ifs.close() columns = [INCHI_KEY, ENERGY_KEY] num_sf_elements = len(training_data[0]) - 2 sf_columns = ['sf_%d'%(i+1) for i in range(num_sf_elements)] columns.extend(sf_columns) df = pd.DataFrame(training_data, columns=columns) # calculate relative energy for each profile grouped = df.loc[:,[INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY) df2 = grouped.transform(lambda x: x - x.min()) df[ENERGY_KEY] = df2[ENERGY_KEY] return df if __name__ == '__main__': parser = argparse.ArgumentParser( description='Train neural network model to predict torsional relative energy') parser.add_argument('--input', type=str, help='sd file containing MM structures alongwith ' 'sd properties with torsion atom indices and QM energy') parser.add_argument('--num_epoch', default=5000, type=int, help='number of epoch (default = 2000)') parser.add_argument('--batch_size', default=256, type=int, help='batch size (default: 256)') parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str, help='layer dimensions') parser.add_argument('--lr', default=0.0001, type=float, help='learning rate (default: 1e-r)') parser.add_argument('--dropout', default=0.2, type=float, help='dropout (default: 0.2)') parser.add_argument('--val_split', default=0.1, type=float, help='validation split (default: 0.1)') parser.add_argument('--scalar', default='scaler.pkl', type=str, help='output file with standard scaler') parser.add_argument('--model', default='model.h5', type=str, help='output file with trained model') parser.add_argument('-v', '--verbose', action='count', default=0) args = parser.parse_args() input_file = args.input num_epoch = args.num_epoch batch_size = args.batch_size lr = args.lr dropout = args.dropout layer_dims = args.layer_dims # generate training data using the molecules in the input file # for each molecule in the input file, extract the QM energy from SD property "ENERGY" # and generate symmetry function elements around the specified torsion (SD property "TORSION_ATOMS_FRAGMENT") df = generate_training_input(input_file) # cap the relative energy tmp_idx = df.ENERGY > 30 df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx]) dihe_inchis = df[INCHI_KEY].unique() print('Number of profiles: %d' % len(dihe_inchis)) desc_bgn_idx = df.columns.get_loc('sf_1') Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:]) ytrain = df.ENERGY # feature transformation scaler = StandardScaler().fit(Xtrain) Xtrain = scaler.transform(Xtrain) print('Xtrain.shape ', Xtrain.shape) # save feature transformation with open(args.scalar, 'wb') as fptr: pickle.dump(scaler, fptr) _, num_feat = Xtrain.shape # early stopping criteria earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=100, \ verbose=1, mode='auto') model_file = args.model # create DNN model model = get_model(num_feat, lr, dropout, layer_dims) print(model.summary()) checkpointer = ModelCheckpoint( filepath=model_file, verbose=1, save_best_only=True) callbacks_list = [checkpointer] # train DNN model model.fit( Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size, validation_split=args.val_split, callbacks=callbacks_list, verbose=1) print('Training complete') print('Standard scalar is saved in %s' % args.scalar) print('Model is saved in %s' % args.model)
flexible
{ "blob_id": "ed35a9bc3dd267c9a5fe76ccbb1b4ac5261fc3c8", "index": 1993, "step-1": "<mask token>\n\n\ndef get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''):\n model = Sequential()\n act_fn = 'relu'\n if len(layer_dims) == 0:\n layer_dims = [10, 5, 0.2]\n else:\n layer_dims = [float(d) for d in layer_dims.split('-')]\n model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat,\n kernel_initializer='normal'))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n for layer_dim in layer_dims[1:-1]:\n model.add(Dense(int(num_feat * layer_dim)))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n model.add(Dense(int(num_feat * layer_dims[-1])))\n model.add(Activation(act_fn))\n model.add(Dropout(drop_out))\n model.add(Dense(1))\n adam = Adam(lr=lr)\n model.compile(loss='logcosh', optimizer=adam)\n return model\n\n\n<mask token>\n", "step-2": "<mask token>\nnp.random.seed(seed)\n\n\ndef get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''):\n model = Sequential()\n act_fn = 'relu'\n if len(layer_dims) == 0:\n layer_dims = [10, 5, 0.2]\n else:\n layer_dims = [float(d) for d in layer_dims.split('-')]\n model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat,\n kernel_initializer='normal'))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n for layer_dim in layer_dims[1:-1]:\n model.add(Dense(int(num_feat * layer_dim)))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n model.add(Dense(int(num_feat * layer_dims[-1])))\n model.add(Activation(act_fn))\n model.add(Dropout(drop_out))\n model.add(Dense(1))\n adam = Adam(lr=lr)\n model.compile(loss='logcosh', optimizer=adam)\n return model\n\n\n<mask token>\n\n\ndef generate_training_input(mol_file):\n \"\"\"\n\n\n :param mol_file: str\n :return: pd.DataFrame\n \"\"\"\n ifs = oechem.oemolistream(mol_file)\n training_data = []\n for mol in ifs.GetOEGraphMols():\n energy = float(oechem.OEGetSDData(mol, ENERGY_KEY))\n sf_elements = get_sf_elements(mol)\n dihe_inchi = get_dihedral_inchi_key(mol)\n data = [dihe_inchi, energy]\n data.extend(sf_elements)\n training_data.append(data)\n ifs.close()\n columns = [INCHI_KEY, ENERGY_KEY]\n num_sf_elements = len(training_data[0]) - 2\n sf_columns = [('sf_%d' % (i + 1)) for i in range(num_sf_elements)]\n columns.extend(sf_columns)\n df = pd.DataFrame(training_data, columns=columns)\n grouped = df.loc[:, [INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY)\n df2 = grouped.transform(lambda x: x - x.min())\n df[ENERGY_KEY] = df2[ENERGY_KEY]\n return df\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\n 'Train neural network model to predict torsional relative energy')\n parser.add_argument('--input', type=str, help=\n 'sd file containing MM structures alongwith sd properties with torsion atom indices and QM energy'\n )\n parser.add_argument('--num_epoch', default=5000, type=int, help=\n 'number of epoch (default = 2000)')\n parser.add_argument('--batch_size', default=256, type=int, help=\n 'batch size (default: 256)')\n parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str,\n help='layer dimensions')\n parser.add_argument('--lr', default=0.0001, type=float, help=\n 'learning rate (default: 1e-r)')\n parser.add_argument('--dropout', default=0.2, type=float, help=\n 'dropout (default: 0.2)')\n parser.add_argument('--val_split', default=0.1, type=float, help=\n 'validation split (default: 0.1)')\n parser.add_argument('--scalar', default='scaler.pkl', type=str, help=\n 'output file with standard scaler')\n parser.add_argument('--model', default='model.h5', type=str, help=\n 'output file with trained model')\n parser.add_argument('-v', '--verbose', action='count', default=0)\n args = parser.parse_args()\n input_file = args.input\n num_epoch = args.num_epoch\n batch_size = args.batch_size\n lr = args.lr\n dropout = args.dropout\n layer_dims = args.layer_dims\n df = generate_training_input(input_file)\n tmp_idx = df.ENERGY > 30\n df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx])\n dihe_inchis = df[INCHI_KEY].unique()\n print('Number of profiles: %d' % len(dihe_inchis))\n desc_bgn_idx = df.columns.get_loc('sf_1')\n Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:])\n ytrain = df.ENERGY\n scaler = StandardScaler().fit(Xtrain)\n Xtrain = scaler.transform(Xtrain)\n print('Xtrain.shape ', Xtrain.shape)\n with open(args.scalar, 'wb') as fptr:\n pickle.dump(scaler, fptr)\n _, num_feat = Xtrain.shape\n earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience\n =100, verbose=1, mode='auto')\n model_file = args.model\n model = get_model(num_feat, lr, dropout, layer_dims)\n print(model.summary())\n checkpointer = ModelCheckpoint(filepath=model_file, verbose=1,\n save_best_only=True)\n callbacks_list = [checkpointer]\n model.fit(Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size,\n validation_split=args.val_split, callbacks=callbacks_list, verbose=1)\n print('Training complete')\n print('Standard scalar is saved in %s' % args.scalar)\n print('Model is saved in %s' % args.model)\n", "step-3": "<mask token>\nseed = 7\nnp.random.seed(seed)\n\n\ndef get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''):\n model = Sequential()\n act_fn = 'relu'\n if len(layer_dims) == 0:\n layer_dims = [10, 5, 0.2]\n else:\n layer_dims = [float(d) for d in layer_dims.split('-')]\n model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat,\n kernel_initializer='normal'))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n for layer_dim in layer_dims[1:-1]:\n model.add(Dense(int(num_feat * layer_dim)))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n model.add(Dense(int(num_feat * layer_dims[-1])))\n model.add(Activation(act_fn))\n model.add(Dropout(drop_out))\n model.add(Dense(1))\n adam = Adam(lr=lr)\n model.compile(loss='logcosh', optimizer=adam)\n return model\n\n\nENERGY_KEY = 'ENERGY'\nINCHI_KEY = 'Inchi'\n\n\ndef generate_training_input(mol_file):\n \"\"\"\n\n\n :param mol_file: str\n :return: pd.DataFrame\n \"\"\"\n ifs = oechem.oemolistream(mol_file)\n training_data = []\n for mol in ifs.GetOEGraphMols():\n energy = float(oechem.OEGetSDData(mol, ENERGY_KEY))\n sf_elements = get_sf_elements(mol)\n dihe_inchi = get_dihedral_inchi_key(mol)\n data = [dihe_inchi, energy]\n data.extend(sf_elements)\n training_data.append(data)\n ifs.close()\n columns = [INCHI_KEY, ENERGY_KEY]\n num_sf_elements = len(training_data[0]) - 2\n sf_columns = [('sf_%d' % (i + 1)) for i in range(num_sf_elements)]\n columns.extend(sf_columns)\n df = pd.DataFrame(training_data, columns=columns)\n grouped = df.loc[:, [INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY)\n df2 = grouped.transform(lambda x: x - x.min())\n df[ENERGY_KEY] = df2[ENERGY_KEY]\n return df\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\n 'Train neural network model to predict torsional relative energy')\n parser.add_argument('--input', type=str, help=\n 'sd file containing MM structures alongwith sd properties with torsion atom indices and QM energy'\n )\n parser.add_argument('--num_epoch', default=5000, type=int, help=\n 'number of epoch (default = 2000)')\n parser.add_argument('--batch_size', default=256, type=int, help=\n 'batch size (default: 256)')\n parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str,\n help='layer dimensions')\n parser.add_argument('--lr', default=0.0001, type=float, help=\n 'learning rate (default: 1e-r)')\n parser.add_argument('--dropout', default=0.2, type=float, help=\n 'dropout (default: 0.2)')\n parser.add_argument('--val_split', default=0.1, type=float, help=\n 'validation split (default: 0.1)')\n parser.add_argument('--scalar', default='scaler.pkl', type=str, help=\n 'output file with standard scaler')\n parser.add_argument('--model', default='model.h5', type=str, help=\n 'output file with trained model')\n parser.add_argument('-v', '--verbose', action='count', default=0)\n args = parser.parse_args()\n input_file = args.input\n num_epoch = args.num_epoch\n batch_size = args.batch_size\n lr = args.lr\n dropout = args.dropout\n layer_dims = args.layer_dims\n df = generate_training_input(input_file)\n tmp_idx = df.ENERGY > 30\n df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx])\n dihe_inchis = df[INCHI_KEY].unique()\n print('Number of profiles: %d' % len(dihe_inchis))\n desc_bgn_idx = df.columns.get_loc('sf_1')\n Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:])\n ytrain = df.ENERGY\n scaler = StandardScaler().fit(Xtrain)\n Xtrain = scaler.transform(Xtrain)\n print('Xtrain.shape ', Xtrain.shape)\n with open(args.scalar, 'wb') as fptr:\n pickle.dump(scaler, fptr)\n _, num_feat = Xtrain.shape\n earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience\n =100, verbose=1, mode='auto')\n model_file = args.model\n model = get_model(num_feat, lr, dropout, layer_dims)\n print(model.summary())\n checkpointer = ModelCheckpoint(filepath=model_file, verbose=1,\n save_best_only=True)\n callbacks_list = [checkpointer]\n model.fit(Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size,\n validation_split=args.val_split, callbacks=callbacks_list, verbose=1)\n print('Training complete')\n print('Standard scalar is saved in %s' % args.scalar)\n print('Model is saved in %s' % args.model)\n", "step-4": "import os, sys\nimport math\nimport argparse\nimport shutil\nimport numpy as np\nimport pandas as pd\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.model_selection import KFold\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, LocallyConnected1D, Activation, GaussianNoise, GaussianDropout\nfrom keras.layers.normalization import BatchNormalization\nfrom keras.wrappers.scikit_learn import KerasRegressor\nfrom keras.utils import multi_gpu_model\nfrom keras.callbacks import EarlyStopping\nfrom keras.callbacks import ModelCheckpoint\nfrom keras.optimizers import Adam\nfrom keras.models import load_model\nfrom keras.callbacks import Callback\nimport timeit\nimport pickle\nfrom openeye import oechem\nfrom torsion.model import get_sf_elements\nfrom torsion.analysis import get_dihedral_inchi_key\nimport matplotlib.pyplot as plt\nseed = 7\nnp.random.seed(seed)\n\n\ndef get_model(num_feat=294, lr=0.001, drop_out=0.1, layer_dims=''):\n model = Sequential()\n act_fn = 'relu'\n if len(layer_dims) == 0:\n layer_dims = [10, 5, 0.2]\n else:\n layer_dims = [float(d) for d in layer_dims.split('-')]\n model.add(Dense(int(num_feat * layer_dims[0]), input_dim=num_feat,\n kernel_initializer='normal'))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n for layer_dim in layer_dims[1:-1]:\n model.add(Dense(int(num_feat * layer_dim)))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n model.add(Dense(int(num_feat * layer_dims[-1])))\n model.add(Activation(act_fn))\n model.add(Dropout(drop_out))\n model.add(Dense(1))\n adam = Adam(lr=lr)\n model.compile(loss='logcosh', optimizer=adam)\n return model\n\n\nENERGY_KEY = 'ENERGY'\nINCHI_KEY = 'Inchi'\n\n\ndef generate_training_input(mol_file):\n \"\"\"\n\n\n :param mol_file: str\n :return: pd.DataFrame\n \"\"\"\n ifs = oechem.oemolistream(mol_file)\n training_data = []\n for mol in ifs.GetOEGraphMols():\n energy = float(oechem.OEGetSDData(mol, ENERGY_KEY))\n sf_elements = get_sf_elements(mol)\n dihe_inchi = get_dihedral_inchi_key(mol)\n data = [dihe_inchi, energy]\n data.extend(sf_elements)\n training_data.append(data)\n ifs.close()\n columns = [INCHI_KEY, ENERGY_KEY]\n num_sf_elements = len(training_data[0]) - 2\n sf_columns = [('sf_%d' % (i + 1)) for i in range(num_sf_elements)]\n columns.extend(sf_columns)\n df = pd.DataFrame(training_data, columns=columns)\n grouped = df.loc[:, [INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY)\n df2 = grouped.transform(lambda x: x - x.min())\n df[ENERGY_KEY] = df2[ENERGY_KEY]\n return df\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\n 'Train neural network model to predict torsional relative energy')\n parser.add_argument('--input', type=str, help=\n 'sd file containing MM structures alongwith sd properties with torsion atom indices and QM energy'\n )\n parser.add_argument('--num_epoch', default=5000, type=int, help=\n 'number of epoch (default = 2000)')\n parser.add_argument('--batch_size', default=256, type=int, help=\n 'batch size (default: 256)')\n parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str,\n help='layer dimensions')\n parser.add_argument('--lr', default=0.0001, type=float, help=\n 'learning rate (default: 1e-r)')\n parser.add_argument('--dropout', default=0.2, type=float, help=\n 'dropout (default: 0.2)')\n parser.add_argument('--val_split', default=0.1, type=float, help=\n 'validation split (default: 0.1)')\n parser.add_argument('--scalar', default='scaler.pkl', type=str, help=\n 'output file with standard scaler')\n parser.add_argument('--model', default='model.h5', type=str, help=\n 'output file with trained model')\n parser.add_argument('-v', '--verbose', action='count', default=0)\n args = parser.parse_args()\n input_file = args.input\n num_epoch = args.num_epoch\n batch_size = args.batch_size\n lr = args.lr\n dropout = args.dropout\n layer_dims = args.layer_dims\n df = generate_training_input(input_file)\n tmp_idx = df.ENERGY > 30\n df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx])\n dihe_inchis = df[INCHI_KEY].unique()\n print('Number of profiles: %d' % len(dihe_inchis))\n desc_bgn_idx = df.columns.get_loc('sf_1')\n Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:])\n ytrain = df.ENERGY\n scaler = StandardScaler().fit(Xtrain)\n Xtrain = scaler.transform(Xtrain)\n print('Xtrain.shape ', Xtrain.shape)\n with open(args.scalar, 'wb') as fptr:\n pickle.dump(scaler, fptr)\n _, num_feat = Xtrain.shape\n earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience\n =100, verbose=1, mode='auto')\n model_file = args.model\n model = get_model(num_feat, lr, dropout, layer_dims)\n print(model.summary())\n checkpointer = ModelCheckpoint(filepath=model_file, verbose=1,\n save_best_only=True)\n callbacks_list = [checkpointer]\n model.fit(Xtrain, ytrain, epochs=num_epoch, batch_size=batch_size,\n validation_split=args.val_split, callbacks=callbacks_list, verbose=1)\n print('Training complete')\n print('Standard scalar is saved in %s' % args.scalar)\n print('Model is saved in %s' % args.model)\n", "step-5": "import os, sys\nimport math\nimport argparse\nimport shutil\n\nimport numpy as np\nimport pandas as pd\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.model_selection import KFold\n\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, LocallyConnected1D, Activation, \\\n GaussianNoise, GaussianDropout\nfrom keras.layers.normalization import BatchNormalization\nfrom keras.wrappers.scikit_learn import KerasRegressor\nfrom keras.utils import multi_gpu_model\nfrom keras.callbacks import EarlyStopping\nfrom keras.callbacks import ModelCheckpoint\nfrom keras.optimizers import Adam\nfrom keras.models import load_model\nfrom keras.callbacks import Callback\n\nimport timeit\nimport pickle\n\nfrom openeye import oechem\n\nfrom torsion.model import get_sf_elements\nfrom torsion.analysis import get_dihedral_inchi_key\n\nimport matplotlib.pyplot as plt\n\n# fix random seed for reproducibility\nseed = 7\nnp.random.seed(seed)\n\n\ndef get_model(num_feat=294, lr=1e-3, drop_out=0.1, layer_dims=''):\n model = Sequential()\n act_fn = 'relu'\n\n if len(layer_dims) == 0:\n layer_dims = [10, 5, 0.2]\n else:\n layer_dims = [float(d) for d in layer_dims.split('-')]\n\n model.add(\n Dense(\n int(num_feat * layer_dims[0]), input_dim=num_feat,\n kernel_initializer='normal'))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n\n for layer_dim in layer_dims[1:-1]:\n model.add(Dense(int(num_feat * layer_dim)))\n model.add(Activation(act_fn))\n model.add(BatchNormalization())\n model.add(Dropout(drop_out))\n\n model.add(Dense(int(num_feat * layer_dims[-1])))\n model.add(Activation(act_fn))\n model.add(Dropout(drop_out))\n\n model.add(Dense(1))\n\n adam = Adam(lr=lr)\n model.compile(loss='logcosh', optimizer=adam)\n\n return model\n\n\nENERGY_KEY = 'ENERGY'\nINCHI_KEY = 'Inchi'\n\ndef generate_training_input(mol_file):\n '''\n\n\n :param mol_file: str\n :return: pd.DataFrame\n '''\n ifs = oechem.oemolistream(mol_file)\n training_data = []\n for mol in ifs.GetOEGraphMols():\n energy = float(oechem.OEGetSDData(mol, ENERGY_KEY))\n sf_elements = get_sf_elements(mol)\n dihe_inchi = get_dihedral_inchi_key(mol)\n\n data = [dihe_inchi, energy]\n data.extend(sf_elements)\n training_data.append(data)\n\n ifs.close()\n\n columns = [INCHI_KEY, ENERGY_KEY]\n num_sf_elements = len(training_data[0]) - 2\n sf_columns = ['sf_%d'%(i+1) for i in range(num_sf_elements)]\n columns.extend(sf_columns)\n\n df = pd.DataFrame(training_data, columns=columns)\n\n # calculate relative energy for each profile\n grouped = df.loc[:,[INCHI_KEY, ENERGY_KEY]].groupby(INCHI_KEY)\n df2 = grouped.transform(lambda x: x - x.min())\n df[ENERGY_KEY] = df2[ENERGY_KEY]\n\n return df\n\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(\n description='Train neural network model to predict torsional relative energy')\n parser.add_argument('--input', type=str, help='sd file containing MM structures alongwith '\n 'sd properties with torsion atom indices and QM energy')\n parser.add_argument('--num_epoch', default=5000, type=int, help='number of epoch (default = 2000)')\n parser.add_argument('--batch_size', default=256, type=int, help='batch size (default: 256)')\n parser.add_argument('--layer_dims', default='10-5-1-0.2', type=str, help='layer dimensions')\n parser.add_argument('--lr', default=0.0001, type=float, help='learning rate (default: 1e-r)')\n parser.add_argument('--dropout', default=0.2, type=float, help='dropout (default: 0.2)')\n parser.add_argument('--val_split', default=0.1, type=float, help='validation split (default: 0.1)')\n\n parser.add_argument('--scalar', default='scaler.pkl', type=str, help='output file with standard scaler')\n parser.add_argument('--model', default='model.h5', type=str, help='output file with trained model')\n\n parser.add_argument('-v', '--verbose', action='count', default=0)\n args = parser.parse_args()\n\n input_file = args.input\n\n num_epoch = args.num_epoch\n batch_size = args.batch_size\n lr = args.lr\n dropout = args.dropout\n layer_dims = args.layer_dims\n\n # generate training data using the molecules in the input file\n # for each molecule in the input file, extract the QM energy from SD property \"ENERGY\"\n # and generate symmetry function elements around the specified torsion (SD property \"TORSION_ATOMS_FRAGMENT\")\n df = generate_training_input(input_file)\n\n # cap the relative energy\n tmp_idx = df.ENERGY > 30\n df.ENERGY[tmp_idx] = 30.0 + np.exp(30 - df.ENERGY[tmp_idx])\n\n dihe_inchis = df[INCHI_KEY].unique()\n print('Number of profiles: %d' % len(dihe_inchis))\n\n desc_bgn_idx = df.columns.get_loc('sf_1')\n\n Xtrain = df.as_matrix(columns=df.columns[desc_bgn_idx:])\n ytrain = df.ENERGY\n\n # feature transformation\n scaler = StandardScaler().fit(Xtrain)\n Xtrain = scaler.transform(Xtrain)\n\n print('Xtrain.shape ', Xtrain.shape)\n\n # save feature transformation\n with open(args.scalar, 'wb') as fptr:\n pickle.dump(scaler, fptr)\n\n _, num_feat = Xtrain.shape\n\n # early stopping criteria\n earlystop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=100, \\\n verbose=1, mode='auto')\n\n model_file = args.model\n # create DNN model\n model = get_model(num_feat, lr, dropout, layer_dims)\n\n print(model.summary())\n\n checkpointer = ModelCheckpoint(\n filepath=model_file, verbose=1, save_best_only=True)\n callbacks_list = [checkpointer]\n\n # train DNN model\n model.fit(\n Xtrain,\n ytrain,\n epochs=num_epoch,\n batch_size=batch_size,\n validation_split=args.val_split,\n callbacks=callbacks_list,\n verbose=1)\n\n print('Training complete')\n print('Standard scalar is saved in %s' % args.scalar)\n print('Model is saved in %s' % args.model)\n\n\n\n\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
import hashlib hash = 'yzbqklnj' int = 0 while not hashlib.md5("{}{}".format(hash, int).encode('utf-8')).hexdigest().startswith('000000'): print("Nope luck for {}{}".format(hash, int)) int += 1 print("Key: {}{}".format(hash, int)) print("Number: {}").format(int)
normal
{ "blob_id": "9ae9fd6da5c3d519d87af699dd4ea9b564a53d79", "index": 5481, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile not hashlib.md5('{}{}'.format(hash, int).encode('utf-8')).hexdigest(\n ).startswith('000000'):\n print('Nope luck for {}{}'.format(hash, int))\n int += 1\nprint('Key: {}{}'.format(hash, int))\nprint('Number: {}').format(int)\n", "step-3": "<mask token>\nhash = 'yzbqklnj'\nint = 0\nwhile not hashlib.md5('{}{}'.format(hash, int).encode('utf-8')).hexdigest(\n ).startswith('000000'):\n print('Nope luck for {}{}'.format(hash, int))\n int += 1\nprint('Key: {}{}'.format(hash, int))\nprint('Number: {}').format(int)\n", "step-4": "import hashlib\nhash = 'yzbqklnj'\nint = 0\nwhile not hashlib.md5('{}{}'.format(hash, int).encode('utf-8')).hexdigest(\n ).startswith('000000'):\n print('Nope luck for {}{}'.format(hash, int))\n int += 1\nprint('Key: {}{}'.format(hash, int))\nprint('Number: {}').format(int)\n", "step-5": "import hashlib\n\nhash = 'yzbqklnj'\n\nint = 0\n\nwhile not hashlib.md5(\"{}{}\".format(hash, int).encode('utf-8')).hexdigest().startswith('000000'):\n print(\"Nope luck for {}{}\".format(hash, int))\n int += 1\n\nprint(\"Key: {}{}\".format(hash, int))\nprint(\"Number: {}\").format(int)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def logged_menu(logged_user): print('Welcome you are logged in as: ' + logged_user.get_username()) while True: command = input('{}@hackabank# '.format(logged_user.get_username())) if command == 'info': print('You are: ' + logged_user.get_username()) print('Your id is: ' + str(logged_user.get_id())) print('Your balance is:' + str(logged_user.get_balance()) + '$') elif command == 'changepass': new_pass = input('Enter your new password: ') sql_manager.change_pass(new_pass, logged_user) elif command == 'change-message': new_message = input('Enter your new message: ') sql_manager.change_message(new_message, logged_user) elif command == 'show-message': print(logged_user.get_message()) elif command == 'help': print('info - for showing account info') print('changepass - for changing passowrd') print('change-message - for changing users message') print('show-message - for showing users message') elif command in EXIT_CMD: break else: print('Not such a command!') continue <|reserved_special_token_1|> <|reserved_special_token_0|> def main_menu(): print( """Welcome to our bank service. You are not logged in. Please register or login""" ) while True: command = input('guest@hackabank$ ') if command == 'register': username = input('Enter your username: ') password = getpass(prompt='Enter your password: ') sql_manager.register(username, password) print('Registration Successfull') elif command == 'login': username = input('Enter your username: ') password = getpass(prompt='Enter your password: ') logged_user = sql_manager.login(username, password) if logged_user: logged_menu(logged_user) else: print('Login failed') continue elif command == 'help': print( """login - for logging in! register - for creating new account! exit - for closing program!""" ) elif command == 'exit': break else: print('Not a valid command') continue def logged_menu(logged_user): print('Welcome you are logged in as: ' + logged_user.get_username()) while True: command = input('{}@hackabank# '.format(logged_user.get_username())) if command == 'info': print('You are: ' + logged_user.get_username()) print('Your id is: ' + str(logged_user.get_id())) print('Your balance is:' + str(logged_user.get_balance()) + '$') elif command == 'changepass': new_pass = input('Enter your new password: ') sql_manager.change_pass(new_pass, logged_user) elif command == 'change-message': new_message = input('Enter your new message: ') sql_manager.change_message(new_message, logged_user) elif command == 'show-message': print(logged_user.get_message()) elif command == 'help': print('info - for showing account info') print('changepass - for changing passowrd') print('change-message - for changing users message') print('show-message - for showing users message') elif command in EXIT_CMD: break else: print('Not such a command!') continue <|reserved_special_token_1|> import sql_manager import Client from getpass import getpass from settings import EXIT_CMD def main_menu(): print( """Welcome to our bank service. You are not logged in. Please register or login""" ) while True: command = input('guest@hackabank$ ') if command == 'register': username = input('Enter your username: ') password = getpass(prompt='Enter your password: ') sql_manager.register(username, password) print('Registration Successfull') elif command == 'login': username = input('Enter your username: ') password = getpass(prompt='Enter your password: ') logged_user = sql_manager.login(username, password) if logged_user: logged_menu(logged_user) else: print('Login failed') continue elif command == 'help': print( """login - for logging in! register - for creating new account! exit - for closing program!""" ) elif command == 'exit': break else: print('Not a valid command') continue def logged_menu(logged_user): print('Welcome you are logged in as: ' + logged_user.get_username()) while True: command = input('{}@hackabank# '.format(logged_user.get_username())) if command == 'info': print('You are: ' + logged_user.get_username()) print('Your id is: ' + str(logged_user.get_id())) print('Your balance is:' + str(logged_user.get_balance()) + '$') elif command == 'changepass': new_pass = input('Enter your new password: ') sql_manager.change_pass(new_pass, logged_user) elif command == 'change-message': new_message = input('Enter your new message: ') sql_manager.change_message(new_message, logged_user) elif command == 'show-message': print(logged_user.get_message()) elif command == 'help': print('info - for showing account info') print('changepass - for changing passowrd') print('change-message - for changing users message') print('show-message - for showing users message') elif command in EXIT_CMD: break else: print('Not such a command!') continue <|reserved_special_token_1|> #!/usr/bin/env python3 import sql_manager import Client from getpass import getpass from settings import EXIT_CMD def main_menu(): print("""Welcome to our bank service. You are not logged in. Please register or login""") while True: command = input("guest@hackabank$ ") if command == "register": username = input("Enter your username: ") password = getpass(prompt="Enter your password: ") sql_manager.register(username, password) print("Registration Successfull") elif command == "login": username = input("Enter your username: ") password = getpass(prompt="Enter your password: ") logged_user = sql_manager.login(username, password) if logged_user: logged_menu(logged_user) else: print("Login failed") continue elif command == "help": print("""login - for logging in! register - for creating new account! exit - for closing program!""") elif command == "exit": break else: print("Not a valid command") continue def logged_menu(logged_user): print("Welcome you are logged in as: " + logged_user.get_username()) while True: command = input("{}@hackabank# ".format(logged_user.get_username())) if command == "info": print("You are: " + logged_user.get_username()) print("Your id is: " + str(logged_user.get_id())) print("Your balance is:" + str(logged_user.get_balance()) + "$") elif command == "changepass": new_pass = input("Enter your new password: ") sql_manager.change_pass(new_pass, logged_user) elif command == "change-message": new_message = input("Enter your new message: ") sql_manager.change_message(new_message, logged_user) elif command == "show-message": print(logged_user.get_message()) elif command == "help": print("info - for showing account info") print("changepass - for changing passowrd") print("change-message - for changing users message") print("show-message - for showing users message") elif command in EXIT_CMD: break else: print("Not such a command!") continue
flexible
{ "blob_id": "ee4fd4aef7ecdfbc8ff53028fdedc558814f46a7", "index": 2383, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef logged_menu(logged_user):\n print('Welcome you are logged in as: ' + logged_user.get_username())\n while True:\n command = input('{}@hackabank# '.format(logged_user.get_username()))\n if command == 'info':\n print('You are: ' + logged_user.get_username())\n print('Your id is: ' + str(logged_user.get_id()))\n print('Your balance is:' + str(logged_user.get_balance()) + '$')\n elif command == 'changepass':\n new_pass = input('Enter your new password: ')\n sql_manager.change_pass(new_pass, logged_user)\n elif command == 'change-message':\n new_message = input('Enter your new message: ')\n sql_manager.change_message(new_message, logged_user)\n elif command == 'show-message':\n print(logged_user.get_message())\n elif command == 'help':\n print('info - for showing account info')\n print('changepass - for changing passowrd')\n print('change-message - for changing users message')\n print('show-message - for showing users message')\n elif command in EXIT_CMD:\n break\n else:\n print('Not such a command!')\n continue\n", "step-3": "<mask token>\n\n\ndef main_menu():\n print(\n \"\"\"Welcome to our bank service. You are not logged in.\n Please register or login\"\"\"\n )\n while True:\n command = input('guest@hackabank$ ')\n if command == 'register':\n username = input('Enter your username: ')\n password = getpass(prompt='Enter your password: ')\n sql_manager.register(username, password)\n print('Registration Successfull')\n elif command == 'login':\n username = input('Enter your username: ')\n password = getpass(prompt='Enter your password: ')\n logged_user = sql_manager.login(username, password)\n if logged_user:\n logged_menu(logged_user)\n else:\n print('Login failed')\n continue\n elif command == 'help':\n print(\n \"\"\"login - for logging in!\n register - for creating new account!\n exit - for closing program!\"\"\"\n )\n elif command == 'exit':\n break\n else:\n print('Not a valid command')\n continue\n\n\ndef logged_menu(logged_user):\n print('Welcome you are logged in as: ' + logged_user.get_username())\n while True:\n command = input('{}@hackabank# '.format(logged_user.get_username()))\n if command == 'info':\n print('You are: ' + logged_user.get_username())\n print('Your id is: ' + str(logged_user.get_id()))\n print('Your balance is:' + str(logged_user.get_balance()) + '$')\n elif command == 'changepass':\n new_pass = input('Enter your new password: ')\n sql_manager.change_pass(new_pass, logged_user)\n elif command == 'change-message':\n new_message = input('Enter your new message: ')\n sql_manager.change_message(new_message, logged_user)\n elif command == 'show-message':\n print(logged_user.get_message())\n elif command == 'help':\n print('info - for showing account info')\n print('changepass - for changing passowrd')\n print('change-message - for changing users message')\n print('show-message - for showing users message')\n elif command in EXIT_CMD:\n break\n else:\n print('Not such a command!')\n continue\n", "step-4": "import sql_manager\nimport Client\nfrom getpass import getpass\nfrom settings import EXIT_CMD\n\n\ndef main_menu():\n print(\n \"\"\"Welcome to our bank service. You are not logged in.\n Please register or login\"\"\"\n )\n while True:\n command = input('guest@hackabank$ ')\n if command == 'register':\n username = input('Enter your username: ')\n password = getpass(prompt='Enter your password: ')\n sql_manager.register(username, password)\n print('Registration Successfull')\n elif command == 'login':\n username = input('Enter your username: ')\n password = getpass(prompt='Enter your password: ')\n logged_user = sql_manager.login(username, password)\n if logged_user:\n logged_menu(logged_user)\n else:\n print('Login failed')\n continue\n elif command == 'help':\n print(\n \"\"\"login - for logging in!\n register - for creating new account!\n exit - for closing program!\"\"\"\n )\n elif command == 'exit':\n break\n else:\n print('Not a valid command')\n continue\n\n\ndef logged_menu(logged_user):\n print('Welcome you are logged in as: ' + logged_user.get_username())\n while True:\n command = input('{}@hackabank# '.format(logged_user.get_username()))\n if command == 'info':\n print('You are: ' + logged_user.get_username())\n print('Your id is: ' + str(logged_user.get_id()))\n print('Your balance is:' + str(logged_user.get_balance()) + '$')\n elif command == 'changepass':\n new_pass = input('Enter your new password: ')\n sql_manager.change_pass(new_pass, logged_user)\n elif command == 'change-message':\n new_message = input('Enter your new message: ')\n sql_manager.change_message(new_message, logged_user)\n elif command == 'show-message':\n print(logged_user.get_message())\n elif command == 'help':\n print('info - for showing account info')\n print('changepass - for changing passowrd')\n print('change-message - for changing users message')\n print('show-message - for showing users message')\n elif command in EXIT_CMD:\n break\n else:\n print('Not such a command!')\n continue\n", "step-5": "#!/usr/bin/env python3\nimport sql_manager\nimport Client\nfrom getpass import getpass\nfrom settings import EXIT_CMD\n\n\ndef main_menu():\n print(\"\"\"Welcome to our bank service. You are not logged in.\n Please register or login\"\"\")\n\n while True:\n command = input(\"guest@hackabank$ \")\n\n if command == \"register\":\n username = input(\"Enter your username: \")\n password = getpass(prompt=\"Enter your password: \")\n sql_manager.register(username, password)\n print(\"Registration Successfull\")\n elif command == \"login\":\n username = input(\"Enter your username: \")\n password = getpass(prompt=\"Enter your password: \")\n logged_user = sql_manager.login(username, password)\n\n if logged_user:\n logged_menu(logged_user)\n else:\n print(\"Login failed\")\n continue\n\n elif command == \"help\":\n print(\"\"\"login - for logging in!\n register - for creating new account!\n exit - for closing program!\"\"\")\n\n elif command == \"exit\":\n break\n\n else:\n print(\"Not a valid command\")\n continue\n\n\ndef logged_menu(logged_user):\n print(\"Welcome you are logged in as: \" + logged_user.get_username())\n while True:\n command = input(\"{}@hackabank# \".format(logged_user.get_username()))\n\n if command == \"info\":\n print(\"You are: \" + logged_user.get_username())\n print(\"Your id is: \" + str(logged_user.get_id()))\n print(\"Your balance is:\" + str(logged_user.get_balance()) + \"$\")\n\n elif command == \"changepass\":\n new_pass = input(\"Enter your new password: \")\n sql_manager.change_pass(new_pass, logged_user)\n\n elif command == \"change-message\":\n new_message = input(\"Enter your new message: \")\n sql_manager.change_message(new_message, logged_user)\n\n elif command == \"show-message\":\n print(logged_user.get_message())\n\n elif command == \"help\":\n print(\"info - for showing account info\")\n print(\"changepass - for changing passowrd\")\n print(\"change-message - for changing users message\")\n print(\"show-message - for showing users message\")\n elif command in EXIT_CMD:\n break\n else:\n print(\"Not such a command!\")\n continue\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the storage format CLI arguments helper.""" import argparse import unittest from plaso.cli import tools from plaso.cli.helpers import storage_format from plaso.lib import errors from tests.cli import test_lib as cli_test_lib class StorageFormatArgumentsHelperTest(cli_test_lib.CLIToolTestCase): """Tests for the storage format CLI arguments helper.""" # pylint: disable=no-member,protected-access _EXPECTED_OUTPUT = """\ usage: cli_helper.py [--storage_format FORMAT] [--task_storage_format FORMAT] Test argument parser. {0:s}: --storage_format FORMAT, --storage-format FORMAT Format of the storage file, the default is: sqlite. Supported options: sqlite --task_storage_format FORMAT, --task-storage-format FORMAT Format for task storage, the default is: sqlite. Supported options: redis, sqlite """.format(cli_test_lib.ARGPARSE_OPTIONS) def testAddArguments(self): """Tests the AddArguments function.""" argument_parser = argparse.ArgumentParser( prog='cli_helper.py', description='Test argument parser.', add_help=False, formatter_class=cli_test_lib.SortedArgumentsHelpFormatter) storage_format.StorageFormatArgumentsHelper.AddArguments(argument_parser) output = self._RunArgparseFormatHelp(argument_parser) self.assertEqual(output, self._EXPECTED_OUTPUT) def testParseOptions(self): """Tests the ParseOptions function.""" options = cli_test_lib.TestOptions() options.storage_format = 'sqlite' options.task_storage_format = 'sqlite' test_tool = tools.CLITool() storage_format.StorageFormatArgumentsHelper.ParseOptions(options, test_tool) self.assertEqual(test_tool._storage_format, options.storage_format) self.assertEqual( test_tool._task_storage_format, options.task_storage_format) with self.assertRaises(errors.BadConfigObject): storage_format.StorageFormatArgumentsHelper.ParseOptions(options, None) with self.assertRaises(errors.BadConfigOption): options.storage_format = 'bogus' storage_format.StorageFormatArgumentsHelper.ParseOptions( options, test_tool) if __name__ == '__main__': unittest.main()
normal
{ "blob_id": "2075e7e05882524c295c8542ca7aefae2cf3e0fc", "index": 5951, "step-1": "<mask token>\n\n\nclass StorageFormatArgumentsHelperTest(cli_test_lib.CLIToolTestCase):\n <mask token>\n <mask token>\n\n def testAddArguments(self):\n \"\"\"Tests the AddArguments function.\"\"\"\n argument_parser = argparse.ArgumentParser(prog='cli_helper.py',\n description='Test argument parser.', add_help=False,\n formatter_class=cli_test_lib.SortedArgumentsHelpFormatter)\n storage_format.StorageFormatArgumentsHelper.AddArguments(\n argument_parser)\n output = self._RunArgparseFormatHelp(argument_parser)\n self.assertEqual(output, self._EXPECTED_OUTPUT)\n\n def testParseOptions(self):\n \"\"\"Tests the ParseOptions function.\"\"\"\n options = cli_test_lib.TestOptions()\n options.storage_format = 'sqlite'\n options.task_storage_format = 'sqlite'\n test_tool = tools.CLITool()\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n self.assertEqual(test_tool._storage_format, options.storage_format)\n self.assertEqual(test_tool._task_storage_format, options.\n task_storage_format)\n with self.assertRaises(errors.BadConfigObject):\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n None)\n with self.assertRaises(errors.BadConfigOption):\n options.storage_format = 'bogus'\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass StorageFormatArgumentsHelperTest(cli_test_lib.CLIToolTestCase):\n \"\"\"Tests for the storage format CLI arguments helper.\"\"\"\n _EXPECTED_OUTPUT = (\n \"\"\"usage: cli_helper.py [--storage_format FORMAT] [--task_storage_format FORMAT]\n\nTest argument parser.\n\n{0:s}:\n --storage_format FORMAT, --storage-format FORMAT\n Format of the storage file, the default is: sqlite.\n Supported options: sqlite\n --task_storage_format FORMAT, --task-storage-format FORMAT\n Format for task storage, the default is: sqlite.\n Supported options: redis, sqlite\n\"\"\"\n .format(cli_test_lib.ARGPARSE_OPTIONS))\n\n def testAddArguments(self):\n \"\"\"Tests the AddArguments function.\"\"\"\n argument_parser = argparse.ArgumentParser(prog='cli_helper.py',\n description='Test argument parser.', add_help=False,\n formatter_class=cli_test_lib.SortedArgumentsHelpFormatter)\n storage_format.StorageFormatArgumentsHelper.AddArguments(\n argument_parser)\n output = self._RunArgparseFormatHelp(argument_parser)\n self.assertEqual(output, self._EXPECTED_OUTPUT)\n\n def testParseOptions(self):\n \"\"\"Tests the ParseOptions function.\"\"\"\n options = cli_test_lib.TestOptions()\n options.storage_format = 'sqlite'\n options.task_storage_format = 'sqlite'\n test_tool = tools.CLITool()\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n self.assertEqual(test_tool._storage_format, options.storage_format)\n self.assertEqual(test_tool._task_storage_format, options.\n task_storage_format)\n with self.assertRaises(errors.BadConfigObject):\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n None)\n with self.assertRaises(errors.BadConfigOption):\n options.storage_format = 'bogus'\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass StorageFormatArgumentsHelperTest(cli_test_lib.CLIToolTestCase):\n \"\"\"Tests for the storage format CLI arguments helper.\"\"\"\n _EXPECTED_OUTPUT = (\n \"\"\"usage: cli_helper.py [--storage_format FORMAT] [--task_storage_format FORMAT]\n\nTest argument parser.\n\n{0:s}:\n --storage_format FORMAT, --storage-format FORMAT\n Format of the storage file, the default is: sqlite.\n Supported options: sqlite\n --task_storage_format FORMAT, --task-storage-format FORMAT\n Format for task storage, the default is: sqlite.\n Supported options: redis, sqlite\n\"\"\"\n .format(cli_test_lib.ARGPARSE_OPTIONS))\n\n def testAddArguments(self):\n \"\"\"Tests the AddArguments function.\"\"\"\n argument_parser = argparse.ArgumentParser(prog='cli_helper.py',\n description='Test argument parser.', add_help=False,\n formatter_class=cli_test_lib.SortedArgumentsHelpFormatter)\n storage_format.StorageFormatArgumentsHelper.AddArguments(\n argument_parser)\n output = self._RunArgparseFormatHelp(argument_parser)\n self.assertEqual(output, self._EXPECTED_OUTPUT)\n\n def testParseOptions(self):\n \"\"\"Tests the ParseOptions function.\"\"\"\n options = cli_test_lib.TestOptions()\n options.storage_format = 'sqlite'\n options.task_storage_format = 'sqlite'\n test_tool = tools.CLITool()\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n self.assertEqual(test_tool._storage_format, options.storage_format)\n self.assertEqual(test_tool._task_storage_format, options.\n task_storage_format)\n with self.assertRaises(errors.BadConfigObject):\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n None)\n with self.assertRaises(errors.BadConfigOption):\n options.storage_format = 'bogus'\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "<mask token>\nimport argparse\nimport unittest\nfrom plaso.cli import tools\nfrom plaso.cli.helpers import storage_format\nfrom plaso.lib import errors\nfrom tests.cli import test_lib as cli_test_lib\n\n\nclass StorageFormatArgumentsHelperTest(cli_test_lib.CLIToolTestCase):\n \"\"\"Tests for the storage format CLI arguments helper.\"\"\"\n _EXPECTED_OUTPUT = (\n \"\"\"usage: cli_helper.py [--storage_format FORMAT] [--task_storage_format FORMAT]\n\nTest argument parser.\n\n{0:s}:\n --storage_format FORMAT, --storage-format FORMAT\n Format of the storage file, the default is: sqlite.\n Supported options: sqlite\n --task_storage_format FORMAT, --task-storage-format FORMAT\n Format for task storage, the default is: sqlite.\n Supported options: redis, sqlite\n\"\"\"\n .format(cli_test_lib.ARGPARSE_OPTIONS))\n\n def testAddArguments(self):\n \"\"\"Tests the AddArguments function.\"\"\"\n argument_parser = argparse.ArgumentParser(prog='cli_helper.py',\n description='Test argument parser.', add_help=False,\n formatter_class=cli_test_lib.SortedArgumentsHelpFormatter)\n storage_format.StorageFormatArgumentsHelper.AddArguments(\n argument_parser)\n output = self._RunArgparseFormatHelp(argument_parser)\n self.assertEqual(output, self._EXPECTED_OUTPUT)\n\n def testParseOptions(self):\n \"\"\"Tests the ParseOptions function.\"\"\"\n options = cli_test_lib.TestOptions()\n options.storage_format = 'sqlite'\n options.task_storage_format = 'sqlite'\n test_tool = tools.CLITool()\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n self.assertEqual(test_tool._storage_format, options.storage_format)\n self.assertEqual(test_tool._task_storage_format, options.\n task_storage_format)\n with self.assertRaises(errors.BadConfigObject):\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n None)\n with self.assertRaises(errors.BadConfigOption):\n options.storage_format = 'bogus'\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options,\n test_tool)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"Tests for the storage format CLI arguments helper.\"\"\"\n\nimport argparse\nimport unittest\n\nfrom plaso.cli import tools\nfrom plaso.cli.helpers import storage_format\nfrom plaso.lib import errors\n\nfrom tests.cli import test_lib as cli_test_lib\n\n\nclass StorageFormatArgumentsHelperTest(cli_test_lib.CLIToolTestCase):\n \"\"\"Tests for the storage format CLI arguments helper.\"\"\"\n\n # pylint: disable=no-member,protected-access\n\n _EXPECTED_OUTPUT = \"\"\"\\\nusage: cli_helper.py [--storage_format FORMAT] [--task_storage_format FORMAT]\n\nTest argument parser.\n\n{0:s}:\n --storage_format FORMAT, --storage-format FORMAT\n Format of the storage file, the default is: sqlite.\n Supported options: sqlite\n --task_storage_format FORMAT, --task-storage-format FORMAT\n Format for task storage, the default is: sqlite.\n Supported options: redis, sqlite\n\"\"\".format(cli_test_lib.ARGPARSE_OPTIONS)\n\n def testAddArguments(self):\n \"\"\"Tests the AddArguments function.\"\"\"\n argument_parser = argparse.ArgumentParser(\n prog='cli_helper.py', description='Test argument parser.',\n add_help=False,\n formatter_class=cli_test_lib.SortedArgumentsHelpFormatter)\n\n storage_format.StorageFormatArgumentsHelper.AddArguments(argument_parser)\n\n output = self._RunArgparseFormatHelp(argument_parser)\n self.assertEqual(output, self._EXPECTED_OUTPUT)\n\n def testParseOptions(self):\n \"\"\"Tests the ParseOptions function.\"\"\"\n options = cli_test_lib.TestOptions()\n options.storage_format = 'sqlite'\n options.task_storage_format = 'sqlite'\n\n test_tool = tools.CLITool()\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options, test_tool)\n\n self.assertEqual(test_tool._storage_format, options.storage_format)\n self.assertEqual(\n test_tool._task_storage_format, options.task_storage_format)\n\n with self.assertRaises(errors.BadConfigObject):\n storage_format.StorageFormatArgumentsHelper.ParseOptions(options, None)\n\n with self.assertRaises(errors.BadConfigOption):\n options.storage_format = 'bogus'\n storage_format.StorageFormatArgumentsHelper.ParseOptions(\n options, test_tool)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> Importex.atest() <|reserved_special_token_1|> import Importex Importex.atest() <|reserved_special_token_1|> # 同一目录下的引用调用还是随意导入使用的 # 跨包使用就需要使用TwoUsage里面的两种方式。 import Importex Importex.atest()
flexible
{ "blob_id": "1a66e7f59ada43deb8e28b9806dc4fb9be4ae247", "index": 5771, "step-1": "<mask token>\n", "step-2": "<mask token>\nImportex.atest()\n", "step-3": "import Importex\nImportex.atest()\n", "step-4": "# 同一目录下的引用调用还是随意导入使用的\n# 跨包使用就需要使用TwoUsage里面的两种方式。\n\nimport Importex\n\nImportex.atest()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
class Tool: def __init__(self, name, weight): self.name = name self.weight = weight def __repr__(self): return f'Tool({self.name!r},{self.weight})' tools = [ Tool('수준계', 3.5), Tool('해머', 1.25), Tool('스크류드라이버', .5), Tool('끌', .25) ] print(repr(tools)) tools.sort(reverse=True, key=lambda x: len(x.name)) print(tools)
normal
{ "blob_id": "173b8e66ead62e3aa70805e42e06ea05257d5ee2", "index": 2965, "step-1": "class Tool:\n <mask token>\n\n def __repr__(self):\n return f'Tool({self.name!r},{self.weight})'\n\n\n<mask token>\n", "step-2": "class Tool:\n\n def __init__(self, name, weight):\n self.name = name\n self.weight = weight\n\n def __repr__(self):\n return f'Tool({self.name!r},{self.weight})'\n\n\n<mask token>\n", "step-3": "class Tool:\n\n def __init__(self, name, weight):\n self.name = name\n self.weight = weight\n\n def __repr__(self):\n return f'Tool({self.name!r},{self.weight})'\n\n\n<mask token>\nprint(repr(tools))\ntools.sort(reverse=True, key=lambda x: len(x.name))\nprint(tools)\n", "step-4": "class Tool:\n\n def __init__(self, name, weight):\n self.name = name\n self.weight = weight\n\n def __repr__(self):\n return f'Tool({self.name!r},{self.weight})'\n\n\ntools = [Tool('수준계', 3.5), Tool('해머', 1.25), Tool('스크류드라이버', 0.5), Tool('끌',\n 0.25)]\nprint(repr(tools))\ntools.sort(reverse=True, key=lambda x: len(x.name))\nprint(tools)\n", "step-5": "class Tool:\n def __init__(self, name, weight):\n self.name = name\n self.weight = weight\n\n def __repr__(self):\n return f'Tool({self.name!r},{self.weight})'\n\n\ntools = [\n Tool('수준계', 3.5),\n Tool('해머', 1.25),\n Tool('스크류드라이버', .5),\n Tool('끌', .25)\n]\nprint(repr(tools))\ntools.sort(reverse=True, key=lambda x: len(x.name))\nprint(tools)", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# What is the 10 001st prime number? primes = [2] def is_prime(a, primes): b = a for x in primes: d, m = divmod(b, x) if m == 0: return False else: return True a = 3 while len(primes) <= 10001: # There's something faster than just checking all of them, but this # will do for now. if is_prime(a, primes): primes.append(a) print a a += 1 print primes[10000]
normal
{ "blob_id": "e5e516b6a39a6df03f1e5f80fe2d9e3978e856aa", "index": 2310, "step-1": "# What is the 10 001st prime number?\n\nprimes = [2]\n\n\ndef is_prime(a, primes):\n b = a\n for x in primes:\n d, m = divmod(b, x)\n if m == 0:\n return False\n else:\n return True\n\n\na = 3\nwhile len(primes) <= 10001:\n # There's something faster than just checking all of them, but this\n # will do for now.\n if is_prime(a, primes):\n primes.append(a)\n print a\n a += 1\n\n\nprint primes[10000]\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def filter_lines(in_filename, in_filename2,out_filename): """Read records from in_filename and write records to out_filename if the beginning of the line (taken up to the first comma at or after position 11) is found in keys (which must be a set of byte strings). """ proper_convert = 0 missing_convert = 0 fourteen_set = set() with open(in_filename, 'r') as in_f, open(in_filename2, 'r') as in_f2, open(out_filename, 'w') as out_f: for line in in_f: vals = line.strip().split(",") fips = vals[0] if(fips not in fourteen_set): fourteen_set.add(fips) for line in in_f2: vals = line.strip().split(",") fips = vals[0] count = vals[1] proper_convert += 1 if(fips not in fourteen_set): new_line = str(fips)+","+str(count)+"\n" out_f.write(new_line) missing_convert += 1 return (proper_convert, missing_convert) in_filename = "/Users/VamsiG/Music/2014_Data/FCC_Final_Output.csv" in_filename1 = "/Users/VamsiG/Music/2016_Data/FCC_Final_Output.csv" out_filename= "/Users/VamsiG/Music/FCC_Overlap_CompleteFips.csv" counter1, new_vals1 = filter_lines(in_filename,in_filename1,out_filename) print(counter1) print(new_vals1)
normal
{ "blob_id": "502e0f0c6376617dc094fcdd47bea9773d011864", "index": 900, "step-1": "<mask token>\n", "step-2": "def filter_lines(in_filename, in_filename2, out_filename):\n \"\"\"Read records from in_filename and write records to out_filename if\n the beginning of the line (taken up to the first comma at or after\n position 11) is found in keys (which must be a set of byte strings).\n\n \"\"\"\n proper_convert = 0\n missing_convert = 0\n fourteen_set = set()\n with open(in_filename, 'r') as in_f, open(in_filename2, 'r'\n ) as in_f2, open(out_filename, 'w') as out_f:\n for line in in_f:\n vals = line.strip().split(',')\n fips = vals[0]\n if fips not in fourteen_set:\n fourteen_set.add(fips)\n for line in in_f2:\n vals = line.strip().split(',')\n fips = vals[0]\n count = vals[1]\n proper_convert += 1\n if fips not in fourteen_set:\n new_line = str(fips) + ',' + str(count) + '\\n'\n out_f.write(new_line)\n missing_convert += 1\n return proper_convert, missing_convert\n\n\n<mask token>\n", "step-3": "def filter_lines(in_filename, in_filename2, out_filename):\n \"\"\"Read records from in_filename and write records to out_filename if\n the beginning of the line (taken up to the first comma at or after\n position 11) is found in keys (which must be a set of byte strings).\n\n \"\"\"\n proper_convert = 0\n missing_convert = 0\n fourteen_set = set()\n with open(in_filename, 'r') as in_f, open(in_filename2, 'r'\n ) as in_f2, open(out_filename, 'w') as out_f:\n for line in in_f:\n vals = line.strip().split(',')\n fips = vals[0]\n if fips not in fourteen_set:\n fourteen_set.add(fips)\n for line in in_f2:\n vals = line.strip().split(',')\n fips = vals[0]\n count = vals[1]\n proper_convert += 1\n if fips not in fourteen_set:\n new_line = str(fips) + ',' + str(count) + '\\n'\n out_f.write(new_line)\n missing_convert += 1\n return proper_convert, missing_convert\n\n\n<mask token>\nprint(counter1)\nprint(new_vals1)\n", "step-4": "def filter_lines(in_filename, in_filename2, out_filename):\n \"\"\"Read records from in_filename and write records to out_filename if\n the beginning of the line (taken up to the first comma at or after\n position 11) is found in keys (which must be a set of byte strings).\n\n \"\"\"\n proper_convert = 0\n missing_convert = 0\n fourteen_set = set()\n with open(in_filename, 'r') as in_f, open(in_filename2, 'r'\n ) as in_f2, open(out_filename, 'w') as out_f:\n for line in in_f:\n vals = line.strip().split(',')\n fips = vals[0]\n if fips not in fourteen_set:\n fourteen_set.add(fips)\n for line in in_f2:\n vals = line.strip().split(',')\n fips = vals[0]\n count = vals[1]\n proper_convert += 1\n if fips not in fourteen_set:\n new_line = str(fips) + ',' + str(count) + '\\n'\n out_f.write(new_line)\n missing_convert += 1\n return proper_convert, missing_convert\n\n\nin_filename = '/Users/VamsiG/Music/2014_Data/FCC_Final_Output.csv'\nin_filename1 = '/Users/VamsiG/Music/2016_Data/FCC_Final_Output.csv'\nout_filename = '/Users/VamsiG/Music/FCC_Overlap_CompleteFips.csv'\ncounter1, new_vals1 = filter_lines(in_filename, in_filename1, out_filename)\nprint(counter1)\nprint(new_vals1)\n", "step-5": "def filter_lines(in_filename, in_filename2,out_filename):\n \"\"\"Read records from in_filename and write records to out_filename if\n the beginning of the line (taken up to the first comma at or after\n position 11) is found in keys (which must be a set of byte strings).\n\n \"\"\"\n proper_convert = 0\n missing_convert = 0\n fourteen_set = set()\n with open(in_filename, 'r') as in_f, open(in_filename2, 'r') as in_f2, open(out_filename, 'w') as out_f:\n for line in in_f:\n vals = line.strip().split(\",\")\n fips = vals[0]\n if(fips not in fourteen_set):\n fourteen_set.add(fips)\n \n for line in in_f2:\n vals = line.strip().split(\",\")\n fips = vals[0]\n count = vals[1]\n proper_convert += 1\n if(fips not in fourteen_set):\n new_line = str(fips)+\",\"+str(count)+\"\\n\"\n out_f.write(new_line)\n missing_convert += 1\n\n return (proper_convert, missing_convert)\n\nin_filename = \"/Users/VamsiG/Music/2014_Data/FCC_Final_Output.csv\"\nin_filename1 = \"/Users/VamsiG/Music/2016_Data/FCC_Final_Output.csv\"\nout_filename= \"/Users/VamsiG/Music/FCC_Overlap_CompleteFips.csv\"\n\ncounter1, new_vals1 = filter_lines(in_filename,in_filename1,out_filename)\nprint(counter1)\nprint(new_vals1)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class interface(kernel.service.service): <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class interface(kernel.service.service): def __init__(self, name): self.name = name <|reserved_special_token_1|> import kernel.service class interface(kernel.service.service): def __init__(self, name): self.name = name <|reserved_special_token_1|> # Jarvis interface class definition import kernel.service class interface(kernel.service.service): def __init__(self, name): self.name = name
flexible
{ "blob_id": "237f1f72ac3ef381f115a88025518f387825ff79", "index": 9696, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass interface(kernel.service.service):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass interface(kernel.service.service):\n\n def __init__(self, name):\n self.name = name\n", "step-4": "import kernel.service\n\n\nclass interface(kernel.service.service):\n\n def __init__(self, name):\n self.name = name\n", "step-5": "# Jarvis interface class definition\nimport kernel.service\n\nclass interface(kernel.service.service):\n def __init__(self, name):\n self.name = name\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def Move(direction, delay=0.2): PressKey(dk[config[direction]]) time.sleep(delay) ReleaseKey(dk[config[direction]]) def Action(direction, pull=None): delay = 0.6 if pull: delay = 1 PressKey(dk[config[pull]]) ReleaseKey(dk[config[pull]]) PressKey(dk[config['Grab']]) PressKey(dk[config[direction]]) else: PressKey(dk[config[direction]]) PressKey(dk[config['Grab']]) time.sleep(delay) ReleaseKey(dk[config[direction]]) ReleaseKey(dk[config['Grab']]) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def Move(direction, delay=0.2): PressKey(dk[config[direction]]) time.sleep(delay) ReleaseKey(dk[config[direction]]) def Action(direction, pull=None): delay = 0.6 if pull: delay = 1 PressKey(dk[config[pull]]) ReleaseKey(dk[config[pull]]) PressKey(dk[config['Grab']]) PressKey(dk[config[direction]]) else: PressKey(dk[config[direction]]) PressKey(dk[config['Grab']]) time.sleep(delay) ReleaseKey(dk[config[direction]]) ReleaseKey(dk[config['Grab']]) <|reserved_special_token_0|> def init(filePath): data = json.load(open(filePath)) pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': False, 'Grab': False} if data['Style'] == 'Manual': for c in data['Main']: try: if c in moveKeys: Move(c) elif c in climbKeys: Move(c.split(' ')[1], delay=0.6) elif c in turnKeys: Move(c.split(' ')[1], delay=0.1) elif c in pullKeys: direction = c.split(' ')[1] Action(direction, pull=inverseDirections[direction]) elif c in pushKeys: Action(c.split(' ')[1]) else: print(c + ' is not recognized as a command') print(c) except Exception as e: print(e) elif data['Style'] == 'Recorded': print('Reading Recorded file') total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End'] start_time = round(time.time(), 2) print('length of recording: ' + str(total_time)) while time.time() < start_time + total_time: timer = round(time.time() - start_time, 2) for c in data['Main']: if timer > c['Start'] and timer < c['End'] and not pushed_keys[ c['State']]: print('pressing key ' + c['State']) PressKey(dk[config[c['State']]]) pushed_keys[c['State']] = True elif timer == c['End'] and pushed_keys[c['State']]: print('releasing ' + c['State']) ReleaseKey(dk[config[c['State']]]) pushed_keys[c['State']] = False <|reserved_special_token_1|> <|reserved_special_token_0|> config = {'Up': 'W', 'Down': 'S', 'Left': 'A', 'Right': 'D', 'Grab': 'LBRACKET', 'Drop': 'RBRACKET'} def Move(direction, delay=0.2): PressKey(dk[config[direction]]) time.sleep(delay) ReleaseKey(dk[config[direction]]) def Action(direction, pull=None): delay = 0.6 if pull: delay = 1 PressKey(dk[config[pull]]) ReleaseKey(dk[config[pull]]) PressKey(dk[config['Grab']]) PressKey(dk[config[direction]]) else: PressKey(dk[config[direction]]) PressKey(dk[config['Grab']]) time.sleep(delay) ReleaseKey(dk[config[direction]]) ReleaseKey(dk[config['Grab']]) moveKeys = ['Up', 'Down', 'Left', 'Right'] climbKeys = ['Climb Up', 'Climb Down', 'Climb Left', 'Climb Right'] turnKeys = ['Turn Up', 'Turn Down', 'Turn Left', 'Turn Right'] pullKeys = ['Pull Up', 'Pull Down', 'Pull Left', 'Pull Right'] pushKeys = ['Push Up', 'Push Down', 'Push Left', 'Push Right'] inverseDirections = {'Up': 'Down', 'Down': 'Up', 'Left': 'Right', 'Right': 'Left'} def init(filePath): data = json.load(open(filePath)) pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': False, 'Grab': False} if data['Style'] == 'Manual': for c in data['Main']: try: if c in moveKeys: Move(c) elif c in climbKeys: Move(c.split(' ')[1], delay=0.6) elif c in turnKeys: Move(c.split(' ')[1], delay=0.1) elif c in pullKeys: direction = c.split(' ')[1] Action(direction, pull=inverseDirections[direction]) elif c in pushKeys: Action(c.split(' ')[1]) else: print(c + ' is not recognized as a command') print(c) except Exception as e: print(e) elif data['Style'] == 'Recorded': print('Reading Recorded file') total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End'] start_time = round(time.time(), 2) print('length of recording: ' + str(total_time)) while time.time() < start_time + total_time: timer = round(time.time() - start_time, 2) for c in data['Main']: if timer > c['Start'] and timer < c['End'] and not pushed_keys[ c['State']]: print('pressing key ' + c['State']) PressKey(dk[config[c['State']]]) pushed_keys[c['State']] = True elif timer == c['End'] and pushed_keys[c['State']]: print('releasing ' + c['State']) ReleaseKey(dk[config[c['State']]]) pushed_keys[c['State']] = False <|reserved_special_token_1|> import json import time from keySender import PressKey, ReleaseKey, dk config = {'Up': 'W', 'Down': 'S', 'Left': 'A', 'Right': 'D', 'Grab': 'LBRACKET', 'Drop': 'RBRACKET'} def Move(direction, delay=0.2): PressKey(dk[config[direction]]) time.sleep(delay) ReleaseKey(dk[config[direction]]) def Action(direction, pull=None): delay = 0.6 if pull: delay = 1 PressKey(dk[config[pull]]) ReleaseKey(dk[config[pull]]) PressKey(dk[config['Grab']]) PressKey(dk[config[direction]]) else: PressKey(dk[config[direction]]) PressKey(dk[config['Grab']]) time.sleep(delay) ReleaseKey(dk[config[direction]]) ReleaseKey(dk[config['Grab']]) moveKeys = ['Up', 'Down', 'Left', 'Right'] climbKeys = ['Climb Up', 'Climb Down', 'Climb Left', 'Climb Right'] turnKeys = ['Turn Up', 'Turn Down', 'Turn Left', 'Turn Right'] pullKeys = ['Pull Up', 'Pull Down', 'Pull Left', 'Pull Right'] pushKeys = ['Push Up', 'Push Down', 'Push Left', 'Push Right'] inverseDirections = {'Up': 'Down', 'Down': 'Up', 'Left': 'Right', 'Right': 'Left'} def init(filePath): data = json.load(open(filePath)) pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': False, 'Grab': False} if data['Style'] == 'Manual': for c in data['Main']: try: if c in moveKeys: Move(c) elif c in climbKeys: Move(c.split(' ')[1], delay=0.6) elif c in turnKeys: Move(c.split(' ')[1], delay=0.1) elif c in pullKeys: direction = c.split(' ')[1] Action(direction, pull=inverseDirections[direction]) elif c in pushKeys: Action(c.split(' ')[1]) else: print(c + ' is not recognized as a command') print(c) except Exception as e: print(e) elif data['Style'] == 'Recorded': print('Reading Recorded file') total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End'] start_time = round(time.time(), 2) print('length of recording: ' + str(total_time)) while time.time() < start_time + total_time: timer = round(time.time() - start_time, 2) for c in data['Main']: if timer > c['Start'] and timer < c['End'] and not pushed_keys[ c['State']]: print('pressing key ' + c['State']) PressKey(dk[config[c['State']]]) pushed_keys[c['State']] = True elif timer == c['End'] and pushed_keys[c['State']]: print('releasing ' + c['State']) ReleaseKey(dk[config[c['State']]]) pushed_keys[c['State']] = False <|reserved_special_token_1|> import json import time from keySender import PressKey,ReleaseKey,dk config = { "Up": "W", "Down": "S", "Left": "A", "Right": "D", "Grab": "LBRACKET", "Drop": "RBRACKET" } ### Commands # Move def Move(direction,delay=.2): PressKey(dk[config[direction]]) time.sleep(delay) # Replace with a better condition ReleaseKey(dk[config[direction]]) # Push/Pull def Action(direction,pull=None): delay = .6 # If pulling - ensure you are grabbing the right block # I.e. 'Pull Right' needs to face left first if pull: delay = 1 PressKey(dk[config[pull]]) ReleaseKey(dk[config[pull]]) PressKey(dk[config["Grab"]]) PressKey(dk[config[direction]]) else: PressKey(dk[config[direction]]) PressKey(dk[config["Grab"]]) time.sleep(delay) ReleaseKey(dk[config[direction]]) ReleaseKey(dk[config["Grab"]]) # References for keywords in file moveKeys = ["Up","Down","Left","Right"] climbKeys = ["Climb Up", "Climb Down", "Climb Left", "Climb Right"] turnKeys = ["Turn Up", "Turn Down", "Turn Left", "Turn Right"] pullKeys = ["Pull Up", "Pull Down","Pull Left", "Pull Right"] pushKeys = ["Push Up", "Push Down", "Push Left", "Push Right"] # Simplify turning inverseDirections = { "Up": "Down", "Down": "Up", "Left": "Right", "Right": "Left", } ### Interpreter def init(filePath): data = json.load(open(filePath)) pushed_keys = {"Up": False, "Down": False, "Left": False, "Right": False, "Grab": False} if data['Style'] == "Manual": for c in data['Main']: try: if c in moveKeys: Move(c) elif c in climbKeys: Move(c.split(" ")[1],delay=.6) elif c in turnKeys: Move(c.split(" ")[1],delay=.1) elif c in pullKeys: direction = c.split(" ")[1] Action(direction,pull=inverseDirections[direction]) elif c in pushKeys: Action(c.split(" ")[1]) else: print(c+" is not recognized as a command") print(c) except Exception as e: print(e) elif data['Style'] == "Recorded": print("Reading Recorded file") total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End'] start_time = round(time.time(),2) print("length of recording: "+str(total_time)) while time.time() < start_time+total_time: timer = round(time.time() - start_time,2) for c in data['Main']: if timer > c['Start'] and timer < c['End'] and not pushed_keys[c['State']]: print("pressing key "+ c['State']) PressKey(dk[config[c['State']]]) pushed_keys[c['State']] = True elif timer == c['End'] and pushed_keys[c['State']]: print("releasing "+c['State']) ReleaseKey(dk[config[c['State']]]) pushed_keys[c['State']] = False
flexible
{ "blob_id": "1e7789b154271eb8407a027c6ddf6c941cc69a41", "index": 3070, "step-1": "<mask token>\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\n<mask token>\n\n\ndef init(filePath):\n data = json.load(open(filePath))\n pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': \n False, 'Grab': False}\n if data['Style'] == 'Manual':\n for c in data['Main']:\n try:\n if c in moveKeys:\n Move(c)\n elif c in climbKeys:\n Move(c.split(' ')[1], delay=0.6)\n elif c in turnKeys:\n Move(c.split(' ')[1], delay=0.1)\n elif c in pullKeys:\n direction = c.split(' ')[1]\n Action(direction, pull=inverseDirections[direction])\n elif c in pushKeys:\n Action(c.split(' ')[1])\n else:\n print(c + ' is not recognized as a command')\n print(c)\n except Exception as e:\n print(e)\n elif data['Style'] == 'Recorded':\n print('Reading Recorded file')\n total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n start_time = round(time.time(), 2)\n print('length of recording: ' + str(total_time))\n while time.time() < start_time + total_time:\n timer = round(time.time() - start_time, 2)\n for c in data['Main']:\n if timer > c['Start'] and timer < c['End'] and not pushed_keys[\n c['State']]:\n print('pressing key ' + c['State'])\n PressKey(dk[config[c['State']]])\n pushed_keys[c['State']] = True\n elif timer == c['End'] and pushed_keys[c['State']]:\n print('releasing ' + c['State'])\n ReleaseKey(dk[config[c['State']]])\n pushed_keys[c['State']] = False\n", "step-3": "<mask token>\nconfig = {'Up': 'W', 'Down': 'S', 'Left': 'A', 'Right': 'D', 'Grab':\n 'LBRACKET', 'Drop': 'RBRACKET'}\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\nmoveKeys = ['Up', 'Down', 'Left', 'Right']\nclimbKeys = ['Climb Up', 'Climb Down', 'Climb Left', 'Climb Right']\nturnKeys = ['Turn Up', 'Turn Down', 'Turn Left', 'Turn Right']\npullKeys = ['Pull Up', 'Pull Down', 'Pull Left', 'Pull Right']\npushKeys = ['Push Up', 'Push Down', 'Push Left', 'Push Right']\ninverseDirections = {'Up': 'Down', 'Down': 'Up', 'Left': 'Right', 'Right':\n 'Left'}\n\n\ndef init(filePath):\n data = json.load(open(filePath))\n pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': \n False, 'Grab': False}\n if data['Style'] == 'Manual':\n for c in data['Main']:\n try:\n if c in moveKeys:\n Move(c)\n elif c in climbKeys:\n Move(c.split(' ')[1], delay=0.6)\n elif c in turnKeys:\n Move(c.split(' ')[1], delay=0.1)\n elif c in pullKeys:\n direction = c.split(' ')[1]\n Action(direction, pull=inverseDirections[direction])\n elif c in pushKeys:\n Action(c.split(' ')[1])\n else:\n print(c + ' is not recognized as a command')\n print(c)\n except Exception as e:\n print(e)\n elif data['Style'] == 'Recorded':\n print('Reading Recorded file')\n total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n start_time = round(time.time(), 2)\n print('length of recording: ' + str(total_time))\n while time.time() < start_time + total_time:\n timer = round(time.time() - start_time, 2)\n for c in data['Main']:\n if timer > c['Start'] and timer < c['End'] and not pushed_keys[\n c['State']]:\n print('pressing key ' + c['State'])\n PressKey(dk[config[c['State']]])\n pushed_keys[c['State']] = True\n elif timer == c['End'] and pushed_keys[c['State']]:\n print('releasing ' + c['State'])\n ReleaseKey(dk[config[c['State']]])\n pushed_keys[c['State']] = False\n", "step-4": "import json\nimport time\nfrom keySender import PressKey, ReleaseKey, dk\nconfig = {'Up': 'W', 'Down': 'S', 'Left': 'A', 'Right': 'D', 'Grab':\n 'LBRACKET', 'Drop': 'RBRACKET'}\n\n\ndef Move(direction, delay=0.2):\n PressKey(dk[config[direction]])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n\n\ndef Action(direction, pull=None):\n delay = 0.6\n if pull:\n delay = 1\n PressKey(dk[config[pull]])\n ReleaseKey(dk[config[pull]])\n PressKey(dk[config['Grab']])\n PressKey(dk[config[direction]])\n else:\n PressKey(dk[config[direction]])\n PressKey(dk[config['Grab']])\n time.sleep(delay)\n ReleaseKey(dk[config[direction]])\n ReleaseKey(dk[config['Grab']])\n\n\nmoveKeys = ['Up', 'Down', 'Left', 'Right']\nclimbKeys = ['Climb Up', 'Climb Down', 'Climb Left', 'Climb Right']\nturnKeys = ['Turn Up', 'Turn Down', 'Turn Left', 'Turn Right']\npullKeys = ['Pull Up', 'Pull Down', 'Pull Left', 'Pull Right']\npushKeys = ['Push Up', 'Push Down', 'Push Left', 'Push Right']\ninverseDirections = {'Up': 'Down', 'Down': 'Up', 'Left': 'Right', 'Right':\n 'Left'}\n\n\ndef init(filePath):\n data = json.load(open(filePath))\n pushed_keys = {'Up': False, 'Down': False, 'Left': False, 'Right': \n False, 'Grab': False}\n if data['Style'] == 'Manual':\n for c in data['Main']:\n try:\n if c in moveKeys:\n Move(c)\n elif c in climbKeys:\n Move(c.split(' ')[1], delay=0.6)\n elif c in turnKeys:\n Move(c.split(' ')[1], delay=0.1)\n elif c in pullKeys:\n direction = c.split(' ')[1]\n Action(direction, pull=inverseDirections[direction])\n elif c in pushKeys:\n Action(c.split(' ')[1])\n else:\n print(c + ' is not recognized as a command')\n print(c)\n except Exception as e:\n print(e)\n elif data['Style'] == 'Recorded':\n print('Reading Recorded file')\n total_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n start_time = round(time.time(), 2)\n print('length of recording: ' + str(total_time))\n while time.time() < start_time + total_time:\n timer = round(time.time() - start_time, 2)\n for c in data['Main']:\n if timer > c['Start'] and timer < c['End'] and not pushed_keys[\n c['State']]:\n print('pressing key ' + c['State'])\n PressKey(dk[config[c['State']]])\n pushed_keys[c['State']] = True\n elif timer == c['End'] and pushed_keys[c['State']]:\n print('releasing ' + c['State'])\n ReleaseKey(dk[config[c['State']]])\n pushed_keys[c['State']] = False\n", "step-5": "import json\nimport time\nfrom keySender import PressKey,ReleaseKey,dk\nconfig = {\n\t\"Up\": \"W\",\n\t\"Down\": \"S\",\n\t\"Left\": \"A\",\n\t\"Right\": \"D\",\n\t\"Grab\": \"LBRACKET\",\n\t\"Drop\": \"RBRACKET\"\n}\n\n### Commands\n# Move\ndef Move(direction,delay=.2):\n\tPressKey(dk[config[direction]])\n\ttime.sleep(delay) # Replace with a better condition\n\tReleaseKey(dk[config[direction]])\n\n# Push/Pull\ndef Action(direction,pull=None):\n\tdelay = .6\n\t# If pulling - ensure you are grabbing the right block\n\t# I.e. 'Pull Right' needs to face left first\n\tif pull:\n\t\tdelay = 1\n\t\tPressKey(dk[config[pull]])\n\t\tReleaseKey(dk[config[pull]])\n\t\tPressKey(dk[config[\"Grab\"]])\n\t\tPressKey(dk[config[direction]])\n\telse:\n\t\tPressKey(dk[config[direction]])\n\t\tPressKey(dk[config[\"Grab\"]])\n\ttime.sleep(delay)\n\tReleaseKey(dk[config[direction]])\n\tReleaseKey(dk[config[\"Grab\"]])\n\n# References for keywords in file\nmoveKeys = [\"Up\",\"Down\",\"Left\",\"Right\"]\nclimbKeys = [\"Climb Up\", \"Climb Down\", \"Climb Left\", \"Climb Right\"]\nturnKeys = [\"Turn Up\", \"Turn Down\", \"Turn Left\", \"Turn Right\"]\npullKeys = [\"Pull Up\", \"Pull Down\",\"Pull Left\", \"Pull Right\"]\npushKeys = [\"Push Up\", \"Push Down\", \"Push Left\", \"Push Right\"]\n\n# Simplify turning\ninverseDirections = {\n\t\"Up\": \"Down\",\n\t\"Down\": \"Up\",\n\t\"Left\": \"Right\",\n\t\"Right\": \"Left\",\n}\n\n### Interpreter\ndef init(filePath):\n\tdata = json.load(open(filePath))\n\tpushed_keys = {\"Up\": False, \"Down\": False, \"Left\": False, \"Right\": False, \"Grab\": False}\n\tif data['Style'] == \"Manual\":\n\t\tfor c in data['Main']:\n\t\t\ttry:\n\t\t\t\tif c in moveKeys:\n\t\t\t\t\tMove(c)\n\t\t\t\telif c in climbKeys:\n\t\t\t\t\tMove(c.split(\" \")[1],delay=.6)\n\t\t\t\telif c in turnKeys:\n\t\t\t\t\tMove(c.split(\" \")[1],delay=.1)\n\t\t\t\telif c in pullKeys:\n\t\t\t\t\tdirection = c.split(\" \")[1]\n\t\t\t\t\tAction(direction,pull=inverseDirections[direction])\n\t\t\t\telif c in pushKeys:\n\t\t\t\t\tAction(c.split(\" \")[1])\n\t\t\t\telse:\n\t\t\t\t\tprint(c+\" is not recognized as a command\")\n\t\t\t\tprint(c)\n\t\t\texcept Exception as e:\n\t\t\t\tprint(e)\n\n\telif data['Style'] == \"Recorded\":\n\t\tprint(\"Reading Recorded file\")\n\t\ttotal_time = sorted(data['Main'], key=lambda k: k['End'])[-1]['End']\n\t\tstart_time = round(time.time(),2)\n\t\tprint(\"length of recording: \"+str(total_time))\n\t\twhile time.time() < start_time+total_time:\n\t\t\ttimer = round(time.time() - start_time,2)\n\t\t\tfor c in data['Main']:\n\t\t\t\tif timer > c['Start'] and timer < c['End'] and not pushed_keys[c['State']]:\n\t\t\t\t\tprint(\"pressing key \"+ c['State'])\n\t\t\t\t\tPressKey(dk[config[c['State']]])\n\t\t\t\t\tpushed_keys[c['State']] = True\n\t\t\t\telif timer == c['End'] and pushed_keys[c['State']]:\n\t\t\t\t\tprint(\"releasing \"+c['State'])\n\t\t\t\t\tReleaseKey(dk[config[c['State']]])\n\t\t\t\t\tpushed_keys[c['State']] = False", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import pandas as pd from greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df def get_runs_counts_by_match(): ipl_df = read_csv_data_to_df("data/ipl_dataset.csv") df1 = pd.DataFrame(ipl_df[['match_code','runs','venue']]) df2 = df1.groupby(['match_code','runs'], as_index=False).count() df = df2.pivot(index='match_code',columns='runs') df = df.fillna(0) df = df.astype('int') return df get_runs_counts_by_match()
normal
{ "blob_id": "4f06d87ec79c20206ff45ba72ab77844076be553", "index": 9707, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_runs_counts_by_match():\n ipl_df = read_csv_data_to_df('data/ipl_dataset.csv')\n df1 = pd.DataFrame(ipl_df[['match_code', 'runs', 'venue']])\n df2 = df1.groupby(['match_code', 'runs'], as_index=False).count()\n df = df2.pivot(index='match_code', columns='runs')\n df = df.fillna(0)\n df = df.astype('int')\n return df\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_runs_counts_by_match():\n ipl_df = read_csv_data_to_df('data/ipl_dataset.csv')\n df1 = pd.DataFrame(ipl_df[['match_code', 'runs', 'venue']])\n df2 = df1.groupby(['match_code', 'runs'], as_index=False).count()\n df = df2.pivot(index='match_code', columns='runs')\n df = df.fillna(0)\n df = df.astype('int')\n return df\n\n\nget_runs_counts_by_match()\n", "step-4": "import pandas as pd\nfrom greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df\n\n\ndef get_runs_counts_by_match():\n ipl_df = read_csv_data_to_df('data/ipl_dataset.csv')\n df1 = pd.DataFrame(ipl_df[['match_code', 'runs', 'venue']])\n df2 = df1.groupby(['match_code', 'runs'], as_index=False).count()\n df = df2.pivot(index='match_code', columns='runs')\n df = df.fillna(0)\n df = df.astype('int')\n return df\n\n\nget_runs_counts_by_match()\n", "step-5": "\nimport pandas as pd\nfrom greyatomlib.pandas_project.q01_read_csv_data_to_df.build import read_csv_data_to_df\n\ndef get_runs_counts_by_match():\n ipl_df = read_csv_data_to_df(\"data/ipl_dataset.csv\")\n df1 = pd.DataFrame(ipl_df[['match_code','runs','venue']])\n df2 = df1.groupby(['match_code','runs'], as_index=False).count()\n df = df2.pivot(index='match_code',columns='runs')\n df = df.fillna(0)\n df = df.astype('int')\n return df\n\nget_runs_counts_by_match()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#--------------------------------------------- # File name: phase2app.py # Description: Launches GUI for Twitter User Timeline Sentiment Analysis program # Author: Gilbert Yap ([email protected]) # Date: October 03, 2020 #--------------------------------------------- from PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout, QMessageBox from PySide2.QtCore import Qt, QFile, QRegExp from PySide2.QtGui import QRegExpValidator from phase2GUI import Ui_Dialog from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import configparser, csv, datetime, sys sys.path.insert(1, '..\\SharedFiles\\') import matplotlib.pyplot as plt import helper, phase2Functions SETTINGS_FILE = '..\\SharedFiles\\settings.ini' class Ui_Window(QDialog): def __init__(self): super(Ui_Window, self).__init__() self.ui = Ui_Dialog() self.ui.setupUi(self) # Set regex validator for the username regex = QRegExp("\w+") validator = QRegExpValidator(regex) self.ui.usernameLineEdit.setValidator(validator) # Set the end date to today by default self.ui.endMonthSpinBox.setValue(datetime.datetime.now().month) self.ui.endDaySpinBox.setValue(datetime.datetime.now().day) self.ui.endYearSpinBox.setValue(datetime.datetime.now().year) # Place a plot inside of plotDisplayGroupBox self.figure = plt.figure() self.canvas = FigureCanvas(self.figure) self.toolbar = NavigationToolbar(self.canvas, self) layout = QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.ui.plotDisplayGroupBox.setLayout(layout) # Set up signals self.ui.processDatesPushButton.clicked.connect(self.plotSentiment) self.ui.exportPushButton.clicked.connect(self.exportValues) # Init APIs settings = configparser.ConfigParser() settings.read(SETTINGS_FILE) helper.print_with_stars('Initializing APIs') (twitterApi, googleClient, errors) = phase2Functions.init_apis(settings['KEYS']['api_key'], settings['KEYS']['api_secret_key']) if(len(errors) > 0): self.printMessages(errors) sys.exit(1) else: self.twitterApi = twitterApi self.googleClient = googleClient self.show() ''' Plot the sentiment score Input - self:Ui_Window Output - None ''' def plotSentiment(self): QApplication.setOverrideCursor(Qt.WaitCursor) # Get the sentiment data startDate = self.get_start_date() endDate = self.get_end_date() if (startDate is None) or (endDate is None): return (dateList, scoreList, magnitudeList, tweetList, errors) = phase2Functions.generate_data_lists(self.twitterApi, self.googleClient, self.get_username(), startDate, endDate) QApplication.restoreOverrideCursor() # If there were any errors, print them out if(len(errors) > 0): self.printMessages(errors) else: # If there are no errors, format and plot out the data self.plotData = (dateList, scoreList, magnitudeList) self.tweetList = tweetList self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.88, bottom=0.255, left=0.17, right=0.9, hspace=0.2, wspace=0.2) ax.set_title("Sentiment Analysis of @{}'s tweets".format(self.get_username(),)) ax.set_xlabel("Date") ax.set_ylabel("Sentiment Value") ax.xaxis.set_major_locator(plt.MaxNLocator(10)) for tick in ax.get_xticklabels(): tick.set_rotation(45) ax.plot(self.plotData[0],self.plotData[1],"-bo",label='Sentiment Score') ax.plot(self.plotData[0],self.plotData[2], "-ro",label='Sentiment Magnitude') ax.legend(loc="lower right") self.canvas.draw() self.enableExport() ''' Gets username from text field Input - self:Ui_Window Output - string ''' def get_username(self): return (self.ui.usernameLineEdit.text()) ''' Gets start date from spin boxes Input - self:Ui_Window Output - datetime.datetime ''' def get_start_date(self): start_month = self.ui.startMonthSpinBox.value() start_day = self.ui.startDaySpinBox.value() start_year = self.ui.startYearSpinBox.value() try: startDate = datetime.datetime(start_year, start_month,start_day) except: self.printMessages(['Start date is improperly set. Check to see that the date is correct/exists.']) return None return startDate ''' Gets end date from spin boxes Input - self:Ui_Window Output - datetime.datetime ''' def get_end_date(self): end_month = self.ui.endMonthSpinBox.value() end_day = self.ui.endDaySpinBox.value() end_year = self.ui.endYearSpinBox.value() try: endDate = datetime.datetime(end_year, end_month,end_day) except: self.printMessages(['End date is improperly set. Check to see that the date is correct/exists.']) return None return endDate ''' Toggles the export button. Input - self:Ui_Window Output - None ''' def enableExport(self): self.ui.exportPushButton.setEnabled(True) ''' Exports date, score/magntitude, and tweet text to csv and pops up a window when done Input - self:Ui_Window Output - None ''' def exportValues(self): currentTimeDate = datetime.datetime.now() currentTimeDate = str(currentTimeDate.year)+'-'+str(currentTimeDate.month)+'-'+str(currentTimeDate.day)+'-'+str(currentTimeDate.hour)+'-'+str(currentTimeDate.minute)+'-'+str(currentTimeDate.second) with open(currentTimeDate+'_'+self.get_username()+'_score.csv', mode='w') as score_file: writer = csv.writer(score_file) for i in range(len(self.plotData[0])): writer.writerow( [ str(self.plotData[0][i]), self.plotData[1][i], self.tweetList[i].full_text.encode(encoding='UTF-8', errors='replace') ] ) with open(currentTimeDate+'_'+self.get_username()+'_magnitude.csv', mode='w') as magnitude_file: writer = csv.writer(magnitude_file) for i in range(len(self.plotData[0])): writer.writerow( [ str(self.plotData[0][i]), self.plotData[2][i], self.tweetList[i].full_text.encode(encoding='UTF-8', errors='replace') ] ) msgBox = QMessageBox() msgBox.setText('CSV files exported!') msgBox.exec() ''' Prints out messages in a pop up window Input - self:Ui_Window Output - None ''' def printMessages(self, messageList): msgBox = QMessageBox() msgBox.setIcon(QMessageBox.Critical) msgBox.setWindowTitle('Errors occured!') tempString = '' for message in messageList: tempString += (message + '\n') msgBox.setText(tempString) msgBox.exec() if __name__ == "__main__": app = QApplication(sys.argv) window = Ui_Window() window.show() sys.exit(app.exec_())
normal
{ "blob_id": "8cabacb64f3b193b957c61d6e1ca21f2046e52d1", "index": 8199, "step-1": "<mask token>\n\n\nclass Ui_Window(QDialog):\n\n def __init__(self):\n super(Ui_Window, self).__init__()\n self.ui = Ui_Dialog()\n self.ui.setupUi(self)\n regex = QRegExp('\\\\w+')\n validator = QRegExpValidator(regex)\n self.ui.usernameLineEdit.setValidator(validator)\n self.ui.endMonthSpinBox.setValue(datetime.datetime.now().month)\n self.ui.endDaySpinBox.setValue(datetime.datetime.now().day)\n self.ui.endYearSpinBox.setValue(datetime.datetime.now().year)\n self.figure = plt.figure()\n self.canvas = FigureCanvas(self.figure)\n self.toolbar = NavigationToolbar(self.canvas, self)\n layout = QVBoxLayout()\n layout.addWidget(self.toolbar)\n layout.addWidget(self.canvas)\n self.ui.plotDisplayGroupBox.setLayout(layout)\n self.ui.processDatesPushButton.clicked.connect(self.plotSentiment)\n self.ui.exportPushButton.clicked.connect(self.exportValues)\n settings = configparser.ConfigParser()\n settings.read(SETTINGS_FILE)\n helper.print_with_stars('Initializing APIs')\n twitterApi, googleClient, errors = phase2Functions.init_apis(settings\n ['KEYS']['api_key'], settings['KEYS']['api_secret_key'])\n if len(errors) > 0:\n self.printMessages(errors)\n sys.exit(1)\n else:\n self.twitterApi = twitterApi\n self.googleClient = googleClient\n self.show()\n <mask token>\n\n def plotSentiment(self):\n QApplication.setOverrideCursor(Qt.WaitCursor)\n startDate = self.get_start_date()\n endDate = self.get_end_date()\n if startDate is None or endDate is None:\n return\n dateList, scoreList, magnitudeList, tweetList, errors = (\n phase2Functions.generate_data_lists(self.twitterApi, self.\n googleClient, self.get_username(), startDate, endDate))\n QApplication.restoreOverrideCursor()\n if len(errors) > 0:\n self.printMessages(errors)\n else:\n self.plotData = dateList, scoreList, magnitudeList\n self.tweetList = tweetList\n self.figure.clear()\n ax = self.figure.add_subplot(111)\n self.figure.subplots_adjust(top=0.88, bottom=0.255, left=0.17,\n right=0.9, hspace=0.2, wspace=0.2)\n ax.set_title(\"Sentiment Analysis of @{}'s tweets\".format(self.\n get_username()))\n ax.set_xlabel('Date')\n ax.set_ylabel('Sentiment Value')\n ax.xaxis.set_major_locator(plt.MaxNLocator(10))\n for tick in ax.get_xticklabels():\n tick.set_rotation(45)\n ax.plot(self.plotData[0], self.plotData[1], '-bo', label=\n 'Sentiment Score')\n ax.plot(self.plotData[0], self.plotData[2], '-ro', label=\n 'Sentiment Magnitude')\n ax.legend(loc='lower right')\n self.canvas.draw()\n self.enableExport()\n <mask token>\n\n def get_username(self):\n return self.ui.usernameLineEdit.text()\n <mask token>\n\n def get_start_date(self):\n start_month = self.ui.startMonthSpinBox.value()\n start_day = self.ui.startDaySpinBox.value()\n start_year = self.ui.startYearSpinBox.value()\n try:\n startDate = datetime.datetime(start_year, start_month, start_day)\n except:\n self.printMessages([\n 'Start date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return startDate\n <mask token>\n\n def get_end_date(self):\n end_month = self.ui.endMonthSpinBox.value()\n end_day = self.ui.endDaySpinBox.value()\n end_year = self.ui.endYearSpinBox.value()\n try:\n endDate = datetime.datetime(end_year, end_month, end_day)\n except:\n self.printMessages([\n 'End date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return endDate\n <mask token>\n\n def enableExport(self):\n self.ui.exportPushButton.setEnabled(True)\n <mask token>\n\n def exportValues(self):\n currentTimeDate = datetime.datetime.now()\n currentTimeDate = str(currentTimeDate.year) + '-' + str(currentTimeDate\n .month) + '-' + str(currentTimeDate.day) + '-' + str(\n currentTimeDate.hour) + '-' + str(currentTimeDate.minute\n ) + '-' + str(currentTimeDate.second)\n with open(currentTimeDate + '_' + self.get_username() +\n '_score.csv', mode='w') as score_file:\n writer = csv.writer(score_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[1]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n with open(currentTimeDate + '_' + self.get_username() +\n '_magnitude.csv', mode='w') as magnitude_file:\n writer = csv.writer(magnitude_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[2]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n msgBox = QMessageBox()\n msgBox.setText('CSV files exported!')\n msgBox.exec()\n <mask token>\n\n def printMessages(self, messageList):\n msgBox = QMessageBox()\n msgBox.setIcon(QMessageBox.Critical)\n msgBox.setWindowTitle('Errors occured!')\n tempString = ''\n for message in messageList:\n tempString += message + '\\n'\n msgBox.setText(tempString)\n msgBox.exec()\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.insert(1, '..\\\\SharedFiles\\\\')\n<mask token>\n\n\nclass Ui_Window(QDialog):\n\n def __init__(self):\n super(Ui_Window, self).__init__()\n self.ui = Ui_Dialog()\n self.ui.setupUi(self)\n regex = QRegExp('\\\\w+')\n validator = QRegExpValidator(regex)\n self.ui.usernameLineEdit.setValidator(validator)\n self.ui.endMonthSpinBox.setValue(datetime.datetime.now().month)\n self.ui.endDaySpinBox.setValue(datetime.datetime.now().day)\n self.ui.endYearSpinBox.setValue(datetime.datetime.now().year)\n self.figure = plt.figure()\n self.canvas = FigureCanvas(self.figure)\n self.toolbar = NavigationToolbar(self.canvas, self)\n layout = QVBoxLayout()\n layout.addWidget(self.toolbar)\n layout.addWidget(self.canvas)\n self.ui.plotDisplayGroupBox.setLayout(layout)\n self.ui.processDatesPushButton.clicked.connect(self.plotSentiment)\n self.ui.exportPushButton.clicked.connect(self.exportValues)\n settings = configparser.ConfigParser()\n settings.read(SETTINGS_FILE)\n helper.print_with_stars('Initializing APIs')\n twitterApi, googleClient, errors = phase2Functions.init_apis(settings\n ['KEYS']['api_key'], settings['KEYS']['api_secret_key'])\n if len(errors) > 0:\n self.printMessages(errors)\n sys.exit(1)\n else:\n self.twitterApi = twitterApi\n self.googleClient = googleClient\n self.show()\n \"\"\"\n Plot the sentiment score\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def plotSentiment(self):\n QApplication.setOverrideCursor(Qt.WaitCursor)\n startDate = self.get_start_date()\n endDate = self.get_end_date()\n if startDate is None or endDate is None:\n return\n dateList, scoreList, magnitudeList, tweetList, errors = (\n phase2Functions.generate_data_lists(self.twitterApi, self.\n googleClient, self.get_username(), startDate, endDate))\n QApplication.restoreOverrideCursor()\n if len(errors) > 0:\n self.printMessages(errors)\n else:\n self.plotData = dateList, scoreList, magnitudeList\n self.tweetList = tweetList\n self.figure.clear()\n ax = self.figure.add_subplot(111)\n self.figure.subplots_adjust(top=0.88, bottom=0.255, left=0.17,\n right=0.9, hspace=0.2, wspace=0.2)\n ax.set_title(\"Sentiment Analysis of @{}'s tweets\".format(self.\n get_username()))\n ax.set_xlabel('Date')\n ax.set_ylabel('Sentiment Value')\n ax.xaxis.set_major_locator(plt.MaxNLocator(10))\n for tick in ax.get_xticklabels():\n tick.set_rotation(45)\n ax.plot(self.plotData[0], self.plotData[1], '-bo', label=\n 'Sentiment Score')\n ax.plot(self.plotData[0], self.plotData[2], '-ro', label=\n 'Sentiment Magnitude')\n ax.legend(loc='lower right')\n self.canvas.draw()\n self.enableExport()\n \"\"\"\n Gets username from text field\n Input - self:Ui_Window\n Output - string\n \"\"\"\n\n def get_username(self):\n return self.ui.usernameLineEdit.text()\n \"\"\"\n Gets start date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n \"\"\"\n\n def get_start_date(self):\n start_month = self.ui.startMonthSpinBox.value()\n start_day = self.ui.startDaySpinBox.value()\n start_year = self.ui.startYearSpinBox.value()\n try:\n startDate = datetime.datetime(start_year, start_month, start_day)\n except:\n self.printMessages([\n 'Start date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return startDate\n \"\"\"\n Gets end date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n \"\"\"\n\n def get_end_date(self):\n end_month = self.ui.endMonthSpinBox.value()\n end_day = self.ui.endDaySpinBox.value()\n end_year = self.ui.endYearSpinBox.value()\n try:\n endDate = datetime.datetime(end_year, end_month, end_day)\n except:\n self.printMessages([\n 'End date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return endDate\n \"\"\"\n Toggles the export button.\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def enableExport(self):\n self.ui.exportPushButton.setEnabled(True)\n \"\"\"\n Exports date, score/magntitude, and tweet text to csv and pops up a window when done\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def exportValues(self):\n currentTimeDate = datetime.datetime.now()\n currentTimeDate = str(currentTimeDate.year) + '-' + str(currentTimeDate\n .month) + '-' + str(currentTimeDate.day) + '-' + str(\n currentTimeDate.hour) + '-' + str(currentTimeDate.minute\n ) + '-' + str(currentTimeDate.second)\n with open(currentTimeDate + '_' + self.get_username() +\n '_score.csv', mode='w') as score_file:\n writer = csv.writer(score_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[1]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n with open(currentTimeDate + '_' + self.get_username() +\n '_magnitude.csv', mode='w') as magnitude_file:\n writer = csv.writer(magnitude_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[2]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n msgBox = QMessageBox()\n msgBox.setText('CSV files exported!')\n msgBox.exec()\n \"\"\"\n Prints out messages in a pop up window\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def printMessages(self, messageList):\n msgBox = QMessageBox()\n msgBox.setIcon(QMessageBox.Critical)\n msgBox.setWindowTitle('Errors occured!')\n tempString = ''\n for message in messageList:\n tempString += message + '\\n'\n msgBox.setText(tempString)\n msgBox.exec()\n\n\nif __name__ == '__main__':\n app = QApplication(sys.argv)\n window = Ui_Window()\n window.show()\n sys.exit(app.exec_())\n", "step-3": "<mask token>\nsys.path.insert(1, '..\\\\SharedFiles\\\\')\n<mask token>\nSETTINGS_FILE = '..\\\\SharedFiles\\\\settings.ini'\n\n\nclass Ui_Window(QDialog):\n\n def __init__(self):\n super(Ui_Window, self).__init__()\n self.ui = Ui_Dialog()\n self.ui.setupUi(self)\n regex = QRegExp('\\\\w+')\n validator = QRegExpValidator(regex)\n self.ui.usernameLineEdit.setValidator(validator)\n self.ui.endMonthSpinBox.setValue(datetime.datetime.now().month)\n self.ui.endDaySpinBox.setValue(datetime.datetime.now().day)\n self.ui.endYearSpinBox.setValue(datetime.datetime.now().year)\n self.figure = plt.figure()\n self.canvas = FigureCanvas(self.figure)\n self.toolbar = NavigationToolbar(self.canvas, self)\n layout = QVBoxLayout()\n layout.addWidget(self.toolbar)\n layout.addWidget(self.canvas)\n self.ui.plotDisplayGroupBox.setLayout(layout)\n self.ui.processDatesPushButton.clicked.connect(self.plotSentiment)\n self.ui.exportPushButton.clicked.connect(self.exportValues)\n settings = configparser.ConfigParser()\n settings.read(SETTINGS_FILE)\n helper.print_with_stars('Initializing APIs')\n twitterApi, googleClient, errors = phase2Functions.init_apis(settings\n ['KEYS']['api_key'], settings['KEYS']['api_secret_key'])\n if len(errors) > 0:\n self.printMessages(errors)\n sys.exit(1)\n else:\n self.twitterApi = twitterApi\n self.googleClient = googleClient\n self.show()\n \"\"\"\n Plot the sentiment score\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def plotSentiment(self):\n QApplication.setOverrideCursor(Qt.WaitCursor)\n startDate = self.get_start_date()\n endDate = self.get_end_date()\n if startDate is None or endDate is None:\n return\n dateList, scoreList, magnitudeList, tweetList, errors = (\n phase2Functions.generate_data_lists(self.twitterApi, self.\n googleClient, self.get_username(), startDate, endDate))\n QApplication.restoreOverrideCursor()\n if len(errors) > 0:\n self.printMessages(errors)\n else:\n self.plotData = dateList, scoreList, magnitudeList\n self.tweetList = tweetList\n self.figure.clear()\n ax = self.figure.add_subplot(111)\n self.figure.subplots_adjust(top=0.88, bottom=0.255, left=0.17,\n right=0.9, hspace=0.2, wspace=0.2)\n ax.set_title(\"Sentiment Analysis of @{}'s tweets\".format(self.\n get_username()))\n ax.set_xlabel('Date')\n ax.set_ylabel('Sentiment Value')\n ax.xaxis.set_major_locator(plt.MaxNLocator(10))\n for tick in ax.get_xticklabels():\n tick.set_rotation(45)\n ax.plot(self.plotData[0], self.plotData[1], '-bo', label=\n 'Sentiment Score')\n ax.plot(self.plotData[0], self.plotData[2], '-ro', label=\n 'Sentiment Magnitude')\n ax.legend(loc='lower right')\n self.canvas.draw()\n self.enableExport()\n \"\"\"\n Gets username from text field\n Input - self:Ui_Window\n Output - string\n \"\"\"\n\n def get_username(self):\n return self.ui.usernameLineEdit.text()\n \"\"\"\n Gets start date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n \"\"\"\n\n def get_start_date(self):\n start_month = self.ui.startMonthSpinBox.value()\n start_day = self.ui.startDaySpinBox.value()\n start_year = self.ui.startYearSpinBox.value()\n try:\n startDate = datetime.datetime(start_year, start_month, start_day)\n except:\n self.printMessages([\n 'Start date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return startDate\n \"\"\"\n Gets end date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n \"\"\"\n\n def get_end_date(self):\n end_month = self.ui.endMonthSpinBox.value()\n end_day = self.ui.endDaySpinBox.value()\n end_year = self.ui.endYearSpinBox.value()\n try:\n endDate = datetime.datetime(end_year, end_month, end_day)\n except:\n self.printMessages([\n 'End date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return endDate\n \"\"\"\n Toggles the export button.\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def enableExport(self):\n self.ui.exportPushButton.setEnabled(True)\n \"\"\"\n Exports date, score/magntitude, and tweet text to csv and pops up a window when done\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def exportValues(self):\n currentTimeDate = datetime.datetime.now()\n currentTimeDate = str(currentTimeDate.year) + '-' + str(currentTimeDate\n .month) + '-' + str(currentTimeDate.day) + '-' + str(\n currentTimeDate.hour) + '-' + str(currentTimeDate.minute\n ) + '-' + str(currentTimeDate.second)\n with open(currentTimeDate + '_' + self.get_username() +\n '_score.csv', mode='w') as score_file:\n writer = csv.writer(score_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[1]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n with open(currentTimeDate + '_' + self.get_username() +\n '_magnitude.csv', mode='w') as magnitude_file:\n writer = csv.writer(magnitude_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[2]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n msgBox = QMessageBox()\n msgBox.setText('CSV files exported!')\n msgBox.exec()\n \"\"\"\n Prints out messages in a pop up window\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def printMessages(self, messageList):\n msgBox = QMessageBox()\n msgBox.setIcon(QMessageBox.Critical)\n msgBox.setWindowTitle('Errors occured!')\n tempString = ''\n for message in messageList:\n tempString += message + '\\n'\n msgBox.setText(tempString)\n msgBox.exec()\n\n\nif __name__ == '__main__':\n app = QApplication(sys.argv)\n window = Ui_Window()\n window.show()\n sys.exit(app.exec_())\n", "step-4": "from PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout, QMessageBox\nfrom PySide2.QtCore import Qt, QFile, QRegExp\nfrom PySide2.QtGui import QRegExpValidator\nfrom phase2GUI import Ui_Dialog\nfrom matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\nfrom matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar\nimport configparser, csv, datetime, sys\nsys.path.insert(1, '..\\\\SharedFiles\\\\')\nimport matplotlib.pyplot as plt\nimport helper, phase2Functions\nSETTINGS_FILE = '..\\\\SharedFiles\\\\settings.ini'\n\n\nclass Ui_Window(QDialog):\n\n def __init__(self):\n super(Ui_Window, self).__init__()\n self.ui = Ui_Dialog()\n self.ui.setupUi(self)\n regex = QRegExp('\\\\w+')\n validator = QRegExpValidator(regex)\n self.ui.usernameLineEdit.setValidator(validator)\n self.ui.endMonthSpinBox.setValue(datetime.datetime.now().month)\n self.ui.endDaySpinBox.setValue(datetime.datetime.now().day)\n self.ui.endYearSpinBox.setValue(datetime.datetime.now().year)\n self.figure = plt.figure()\n self.canvas = FigureCanvas(self.figure)\n self.toolbar = NavigationToolbar(self.canvas, self)\n layout = QVBoxLayout()\n layout.addWidget(self.toolbar)\n layout.addWidget(self.canvas)\n self.ui.plotDisplayGroupBox.setLayout(layout)\n self.ui.processDatesPushButton.clicked.connect(self.plotSentiment)\n self.ui.exportPushButton.clicked.connect(self.exportValues)\n settings = configparser.ConfigParser()\n settings.read(SETTINGS_FILE)\n helper.print_with_stars('Initializing APIs')\n twitterApi, googleClient, errors = phase2Functions.init_apis(settings\n ['KEYS']['api_key'], settings['KEYS']['api_secret_key'])\n if len(errors) > 0:\n self.printMessages(errors)\n sys.exit(1)\n else:\n self.twitterApi = twitterApi\n self.googleClient = googleClient\n self.show()\n \"\"\"\n Plot the sentiment score\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def plotSentiment(self):\n QApplication.setOverrideCursor(Qt.WaitCursor)\n startDate = self.get_start_date()\n endDate = self.get_end_date()\n if startDate is None or endDate is None:\n return\n dateList, scoreList, magnitudeList, tweetList, errors = (\n phase2Functions.generate_data_lists(self.twitterApi, self.\n googleClient, self.get_username(), startDate, endDate))\n QApplication.restoreOverrideCursor()\n if len(errors) > 0:\n self.printMessages(errors)\n else:\n self.plotData = dateList, scoreList, magnitudeList\n self.tweetList = tweetList\n self.figure.clear()\n ax = self.figure.add_subplot(111)\n self.figure.subplots_adjust(top=0.88, bottom=0.255, left=0.17,\n right=0.9, hspace=0.2, wspace=0.2)\n ax.set_title(\"Sentiment Analysis of @{}'s tweets\".format(self.\n get_username()))\n ax.set_xlabel('Date')\n ax.set_ylabel('Sentiment Value')\n ax.xaxis.set_major_locator(plt.MaxNLocator(10))\n for tick in ax.get_xticklabels():\n tick.set_rotation(45)\n ax.plot(self.plotData[0], self.plotData[1], '-bo', label=\n 'Sentiment Score')\n ax.plot(self.plotData[0], self.plotData[2], '-ro', label=\n 'Sentiment Magnitude')\n ax.legend(loc='lower right')\n self.canvas.draw()\n self.enableExport()\n \"\"\"\n Gets username from text field\n Input - self:Ui_Window\n Output - string\n \"\"\"\n\n def get_username(self):\n return self.ui.usernameLineEdit.text()\n \"\"\"\n Gets start date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n \"\"\"\n\n def get_start_date(self):\n start_month = self.ui.startMonthSpinBox.value()\n start_day = self.ui.startDaySpinBox.value()\n start_year = self.ui.startYearSpinBox.value()\n try:\n startDate = datetime.datetime(start_year, start_month, start_day)\n except:\n self.printMessages([\n 'Start date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return startDate\n \"\"\"\n Gets end date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n \"\"\"\n\n def get_end_date(self):\n end_month = self.ui.endMonthSpinBox.value()\n end_day = self.ui.endDaySpinBox.value()\n end_year = self.ui.endYearSpinBox.value()\n try:\n endDate = datetime.datetime(end_year, end_month, end_day)\n except:\n self.printMessages([\n 'End date is improperly set. Check to see that the date is correct/exists.'\n ])\n return None\n return endDate\n \"\"\"\n Toggles the export button.\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def enableExport(self):\n self.ui.exportPushButton.setEnabled(True)\n \"\"\"\n Exports date, score/magntitude, and tweet text to csv and pops up a window when done\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def exportValues(self):\n currentTimeDate = datetime.datetime.now()\n currentTimeDate = str(currentTimeDate.year) + '-' + str(currentTimeDate\n .month) + '-' + str(currentTimeDate.day) + '-' + str(\n currentTimeDate.hour) + '-' + str(currentTimeDate.minute\n ) + '-' + str(currentTimeDate.second)\n with open(currentTimeDate + '_' + self.get_username() +\n '_score.csv', mode='w') as score_file:\n writer = csv.writer(score_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[1]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n with open(currentTimeDate + '_' + self.get_username() +\n '_magnitude.csv', mode='w') as magnitude_file:\n writer = csv.writer(magnitude_file)\n for i in range(len(self.plotData[0])):\n writer.writerow([str(self.plotData[0][i]), self.plotData[2]\n [i], self.tweetList[i].full_text.encode(encoding=\n 'UTF-8', errors='replace')])\n msgBox = QMessageBox()\n msgBox.setText('CSV files exported!')\n msgBox.exec()\n \"\"\"\n Prints out messages in a pop up window\n Input - self:Ui_Window\n Output - None\n \"\"\"\n\n def printMessages(self, messageList):\n msgBox = QMessageBox()\n msgBox.setIcon(QMessageBox.Critical)\n msgBox.setWindowTitle('Errors occured!')\n tempString = ''\n for message in messageList:\n tempString += message + '\\n'\n msgBox.setText(tempString)\n msgBox.exec()\n\n\nif __name__ == '__main__':\n app = QApplication(sys.argv)\n window = Ui_Window()\n window.show()\n sys.exit(app.exec_())\n", "step-5": "#---------------------------------------------\n# File name: phase2app.py\n# Description: Launches GUI for Twitter User Timeline Sentiment Analysis program\n# Author: Gilbert Yap ([email protected])\n# Date: October 03, 2020\n#---------------------------------------------\n\nfrom PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout, QMessageBox\nfrom PySide2.QtCore import Qt, QFile, QRegExp\nfrom PySide2.QtGui import QRegExpValidator\nfrom phase2GUI import Ui_Dialog\n\nfrom matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas\nfrom matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar\n\nimport configparser, csv, datetime, sys\nsys.path.insert(1, '..\\\\SharedFiles\\\\')\nimport matplotlib.pyplot as plt\nimport helper, phase2Functions\n\nSETTINGS_FILE = '..\\\\SharedFiles\\\\settings.ini'\n\nclass Ui_Window(QDialog):\n def __init__(self):\n super(Ui_Window, self).__init__()\n self.ui = Ui_Dialog()\n self.ui.setupUi(self)\n\n # Set regex validator for the username\n regex = QRegExp(\"\\w+\")\n validator = QRegExpValidator(regex)\n self.ui.usernameLineEdit.setValidator(validator)\n\n # Set the end date to today by default\n self.ui.endMonthSpinBox.setValue(datetime.datetime.now().month)\n self.ui.endDaySpinBox.setValue(datetime.datetime.now().day)\n self.ui.endYearSpinBox.setValue(datetime.datetime.now().year)\n \n # Place a plot inside of plotDisplayGroupBox\n self.figure = plt.figure()\n self.canvas = FigureCanvas(self.figure)\n self.toolbar = NavigationToolbar(self.canvas, self)\n layout = QVBoxLayout()\n layout.addWidget(self.toolbar)\n layout.addWidget(self.canvas)\n self.ui.plotDisplayGroupBox.setLayout(layout)\n\n # Set up signals\n self.ui.processDatesPushButton.clicked.connect(self.plotSentiment)\n self.ui.exportPushButton.clicked.connect(self.exportValues)\n\n # Init APIs\n settings = configparser.ConfigParser()\n settings.read(SETTINGS_FILE)\n\n helper.print_with_stars('Initializing APIs')\n (twitterApi, googleClient, errors) = phase2Functions.init_apis(settings['KEYS']['api_key'], settings['KEYS']['api_secret_key'])\n\n if(len(errors) > 0):\n self.printMessages(errors)\n sys.exit(1)\n else:\n self.twitterApi = twitterApi\n self.googleClient = googleClient\n self.show()\n\n '''\n Plot the sentiment score\n Input - self:Ui_Window\n Output - None\n '''\n def plotSentiment(self):\n QApplication.setOverrideCursor(Qt.WaitCursor)\n # Get the sentiment data\n startDate = self.get_start_date()\n endDate = self.get_end_date()\n \n if (startDate is None) or (endDate is None):\n return\n \n (dateList, scoreList, magnitudeList, tweetList, errors) = phase2Functions.generate_data_lists(self.twitterApi, self.googleClient, self.get_username(), startDate, endDate)\n QApplication.restoreOverrideCursor()\n \n # If there were any errors, print them out\n if(len(errors) > 0):\n self.printMessages(errors)\n else:\n # If there are no errors, format and plot out the data\n self.plotData = (dateList, scoreList, magnitudeList)\n self.tweetList = tweetList\n self.figure.clear()\n ax = self.figure.add_subplot(111)\n self.figure.subplots_adjust(top=0.88,\n bottom=0.255,\n left=0.17,\n right=0.9,\n hspace=0.2,\n wspace=0.2)\n\n ax.set_title(\"Sentiment Analysis of @{}'s tweets\".format(self.get_username(),)) \n ax.set_xlabel(\"Date\") \n ax.set_ylabel(\"Sentiment Value\") \n ax.xaxis.set_major_locator(plt.MaxNLocator(10))\n \n for tick in ax.get_xticklabels():\n tick.set_rotation(45)\n\n ax.plot(self.plotData[0],self.plotData[1],\"-bo\",label='Sentiment Score') \n ax.plot(self.plotData[0],self.plotData[2], \"-ro\",label='Sentiment Magnitude')\n ax.legend(loc=\"lower right\")\n self.canvas.draw()\n self.enableExport()\n\n\n '''\n Gets username from text field\n Input - self:Ui_Window\n Output - string\n '''\n def get_username(self):\n return (self.ui.usernameLineEdit.text())\n\n '''\n Gets start date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n '''\n def get_start_date(self):\n start_month = self.ui.startMonthSpinBox.value()\n start_day = self.ui.startDaySpinBox.value()\n start_year = self.ui.startYearSpinBox.value()\n \n try:\n startDate = datetime.datetime(start_year, start_month,start_day)\n except:\n self.printMessages(['Start date is improperly set. Check to see that the date is correct/exists.'])\n return None\n \n return startDate\n\n '''\n Gets end date from spin boxes\n Input - self:Ui_Window\n Output - datetime.datetime\n '''\n def get_end_date(self):\n end_month = self.ui.endMonthSpinBox.value()\n end_day = self.ui.endDaySpinBox.value()\n end_year = self.ui.endYearSpinBox.value()\n \n try:\n endDate = datetime.datetime(end_year, end_month,end_day)\n except:\n self.printMessages(['End date is improperly set. Check to see that the date is correct/exists.'])\n return None\n \n return endDate\n\n '''\n Toggles the export button.\n Input - self:Ui_Window\n Output - None\n '''\n def enableExport(self):\n self.ui.exportPushButton.setEnabled(True)\n\n '''\n Exports date, score/magntitude, and tweet text to csv and pops up a window when done\n Input - self:Ui_Window\n Output - None\n '''\n def exportValues(self):\n currentTimeDate = datetime.datetime.now()\n currentTimeDate = str(currentTimeDate.year)+'-'+str(currentTimeDate.month)+'-'+str(currentTimeDate.day)+'-'+str(currentTimeDate.hour)+'-'+str(currentTimeDate.minute)+'-'+str(currentTimeDate.second)\n\n with open(currentTimeDate+'_'+self.get_username()+'_score.csv', mode='w') as score_file:\n writer = csv.writer(score_file)\n for i in range(len(self.plotData[0])):\n writer.writerow( [ str(self.plotData[0][i]), self.plotData[1][i], \n self.tweetList[i].full_text.encode(encoding='UTF-8', errors='replace') ] )\n\n with open(currentTimeDate+'_'+self.get_username()+'_magnitude.csv', mode='w') as magnitude_file:\n writer = csv.writer(magnitude_file)\n for i in range(len(self.plotData[0])):\n writer.writerow( [ str(self.plotData[0][i]), self.plotData[2][i], \n self.tweetList[i].full_text.encode(encoding='UTF-8', errors='replace') ] )\n\n msgBox = QMessageBox()\n msgBox.setText('CSV files exported!')\n msgBox.exec()\n\n '''\n Prints out messages in a pop up window\n Input - self:Ui_Window\n Output - None\n '''\n def printMessages(self, messageList):\n msgBox = QMessageBox()\n msgBox.setIcon(QMessageBox.Critical)\n msgBox.setWindowTitle('Errors occured!')\n tempString = ''\n\n for message in messageList:\n tempString += (message + '\\n')\n msgBox.setText(tempString)\n msgBox.exec()\n\nif __name__ == \"__main__\":\n app = QApplication(sys.argv)\n\n window = Ui_Window()\n window.show()\n\n sys.exit(app.exec_())", "step-ids": [ 9, 11, 12, 13, 14 ] }
[ 9, 11, 12, 13, 14 ]
import pygame from evolution import Darwin from Sensor import Robot, obstacleArray # Game Settings pygame.init() background_colour = (0, 0, 0) (width, height) = (1000, 600) target_location = (800, 300) screen = pygame.display.set_mode((width, height)) pygame.display.set_caption("Omar's Simulation") screen.fill(background_colour) # GA Hyper parameters population_size = 50 elitism = 4 # Agent Initialisation robots = [] for i in range(population_size): robots.append(Robot(175, 300, 10, 360, 9, all, set_weights=None)) darwin = Darwin(robot_array=robots, population_size=population_size, elitism=4, mutation_rate=0.1) if __name__ == '__main__': running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False screen.fill(background_colour) pygame.draw.rect(screen, (255, 255, 255), (10, 10, width - 20, height - 20), 1) pygame.draw.circle(screen, (255, 10, 0), target_location, 10, 0) # pygame.draw.line(screen, (255, 0, 0), (800, 10), (800, 590)) for obstacle in obstacleArray: obstacle.drawShape() # obstacle.move_y() # pygame.draw.circle(screen, (0, 0, 255), (500, 300), 100, 0) # pygame.draw.circle(screen, (0, 255, 20), (200, 300), 75, 0) # pygame.draw.polygon(screen, (255, 255, 255), new_list, 1) # for pedestrian in all.start_pedestrians: # pedestrian.move() # pedestrian.update() # all.introduce() for robot in darwin.robot_array: robot.move() robot.update() robot.collide() robot.evaluate_fitness() if darwin.check_if_all_dead(): darwin.get_stats() darwin.make_next_generation() pygame.display.update()
normal
{ "blob_id": "cbcbc0d01c32693ebbdbcf285efdc8e521c447ee", "index": 3998, "step-1": "<mask token>\n", "step-2": "<mask token>\npygame.init()\n<mask token>\npygame.display.set_caption(\"Omar's Simulation\")\nscreen.fill(background_colour)\n<mask token>\nfor i in range(population_size):\n robots.append(Robot(175, 300, 10, 360, 9, all, set_weights=None))\n<mask token>\nif __name__ == '__main__':\n running = True\n while running:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n screen.fill(background_colour)\n pygame.draw.rect(screen, (255, 255, 255), (10, 10, width - 20, \n height - 20), 1)\n pygame.draw.circle(screen, (255, 10, 0), target_location, 10, 0)\n for obstacle in obstacleArray:\n obstacle.drawShape()\n for robot in darwin.robot_array:\n robot.move()\n robot.update()\n robot.collide()\n robot.evaluate_fitness()\n if darwin.check_if_all_dead():\n darwin.get_stats()\n darwin.make_next_generation()\n pygame.display.update()\n", "step-3": "<mask token>\npygame.init()\nbackground_colour = 0, 0, 0\nwidth, height = 1000, 600\ntarget_location = 800, 300\nscreen = pygame.display.set_mode((width, height))\npygame.display.set_caption(\"Omar's Simulation\")\nscreen.fill(background_colour)\npopulation_size = 50\nelitism = 4\nrobots = []\nfor i in range(population_size):\n robots.append(Robot(175, 300, 10, 360, 9, all, set_weights=None))\ndarwin = Darwin(robot_array=robots, population_size=population_size,\n elitism=4, mutation_rate=0.1)\nif __name__ == '__main__':\n running = True\n while running:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n screen.fill(background_colour)\n pygame.draw.rect(screen, (255, 255, 255), (10, 10, width - 20, \n height - 20), 1)\n pygame.draw.circle(screen, (255, 10, 0), target_location, 10, 0)\n for obstacle in obstacleArray:\n obstacle.drawShape()\n for robot in darwin.robot_array:\n robot.move()\n robot.update()\n robot.collide()\n robot.evaluate_fitness()\n if darwin.check_if_all_dead():\n darwin.get_stats()\n darwin.make_next_generation()\n pygame.display.update()\n", "step-4": "import pygame\nfrom evolution import Darwin\nfrom Sensor import Robot, obstacleArray\npygame.init()\nbackground_colour = 0, 0, 0\nwidth, height = 1000, 600\ntarget_location = 800, 300\nscreen = pygame.display.set_mode((width, height))\npygame.display.set_caption(\"Omar's Simulation\")\nscreen.fill(background_colour)\npopulation_size = 50\nelitism = 4\nrobots = []\nfor i in range(population_size):\n robots.append(Robot(175, 300, 10, 360, 9, all, set_weights=None))\ndarwin = Darwin(robot_array=robots, population_size=population_size,\n elitism=4, mutation_rate=0.1)\nif __name__ == '__main__':\n running = True\n while running:\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n screen.fill(background_colour)\n pygame.draw.rect(screen, (255, 255, 255), (10, 10, width - 20, \n height - 20), 1)\n pygame.draw.circle(screen, (255, 10, 0), target_location, 10, 0)\n for obstacle in obstacleArray:\n obstacle.drawShape()\n for robot in darwin.robot_array:\n robot.move()\n robot.update()\n robot.collide()\n robot.evaluate_fitness()\n if darwin.check_if_all_dead():\n darwin.get_stats()\n darwin.make_next_generation()\n pygame.display.update()\n", "step-5": "import pygame\nfrom evolution import Darwin\nfrom Sensor import Robot, obstacleArray\n\n\n# Game Settings\npygame.init()\nbackground_colour = (0, 0, 0)\n(width, height) = (1000, 600)\ntarget_location = (800, 300)\nscreen = pygame.display.set_mode((width, height))\npygame.display.set_caption(\"Omar's Simulation\")\nscreen.fill(background_colour)\n\n\n# GA Hyper parameters\npopulation_size = 50\nelitism = 4\n\n# Agent Initialisation\nrobots = []\nfor i in range(population_size):\n\trobots.append(Robot(175, 300, 10, 360, 9, all, set_weights=None))\ndarwin = Darwin(robot_array=robots, population_size=population_size, elitism=4, mutation_rate=0.1)\n\n\n\nif __name__ == '__main__':\n\trunning = True\n\twhile running:\n\t\tfor event in pygame.event.get():\n\t\t\tif event.type == pygame.QUIT:\n\t\t\t\trunning = False\n\t\tscreen.fill(background_colour)\n\t\tpygame.draw.rect(screen, (255, 255, 255), (10, 10, width - 20, height - 20), 1)\n\t\tpygame.draw.circle(screen, (255, 10, 0), target_location, 10, 0)\n\t\t# pygame.draw.line(screen, (255, 0, 0), (800, 10), (800, 590))\n\t\tfor obstacle in obstacleArray:\n\t\t\tobstacle.drawShape()\n\t\t# obstacle.move_y()\n\t\t# pygame.draw.circle(screen, (0, 0, 255), (500, 300), 100, 0)\n\t\t# pygame.draw.circle(screen, (0, 255, 20), (200, 300), 75, 0)\n\t\t# pygame.draw.polygon(screen, (255, 255, 255), new_list, 1)\n\t\t# for pedestrian in all.start_pedestrians:\n\t\t# \t\tpedestrian.move()\n\t\t# \t\tpedestrian.update()\n\t\t# \t\tall.introduce()\n\t\tfor robot in darwin.robot_array:\n\t\t\trobot.move()\n\t\t\trobot.update()\n\t\t\trobot.collide()\n\t\t\trobot.evaluate_fitness()\n\t\tif darwin.check_if_all_dead():\n\t\t\tdarwin.get_stats()\n\t\t\tdarwin.make_next_generation()\n\t\tpygame.display.update()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def exec(bucket_id, project_id, reverse_opt): client = storage.Client() bucket = client.bucket(bucket_id, user_project=project_id) blobs = bucket.list_blobs() blob_list = [] try: for blob in blobs: this_blob = {'name': blob.name, 'owner': blob.owner, 'class': blob.storage_class, 'size': blob.size, 'date': str(blob. updated).split('.')[0].split('+')[0]} blob_list.append(this_blob) except Exception as e: print(e) exit(1) sorted_list = sorted(blob_list, key=lambda k: blob.name, reverse= reverse_opt) report_table = PrettyTable() report_table.field_names = ['NAME', 'OWNER', 'CLASS', 'SIZE', 'DATE'] report_table.align['NAME'] = 'l' report_table.align['SIZE'] = 'r' report_table.align['DATE'] = 'r' for blob in sorted_list: report_table.add_row([blob['name'], blob['owner'], blob['class'], str(byte.convert_size(blob['size'])), blob['date']]) print(report_table) <|reserved_special_token_1|> from lib import byte from google.cloud import storage from prettytable import PrettyTable def exec(bucket_id, project_id, reverse_opt): client = storage.Client() bucket = client.bucket(bucket_id, user_project=project_id) blobs = bucket.list_blobs() blob_list = [] try: for blob in blobs: this_blob = {'name': blob.name, 'owner': blob.owner, 'class': blob.storage_class, 'size': blob.size, 'date': str(blob. updated).split('.')[0].split('+')[0]} blob_list.append(this_blob) except Exception as e: print(e) exit(1) sorted_list = sorted(blob_list, key=lambda k: blob.name, reverse= reverse_opt) report_table = PrettyTable() report_table.field_names = ['NAME', 'OWNER', 'CLASS', 'SIZE', 'DATE'] report_table.align['NAME'] = 'l' report_table.align['SIZE'] = 'r' report_table.align['DATE'] = 'r' for blob in sorted_list: report_table.add_row([blob['name'], blob['owner'], blob['class'], str(byte.convert_size(blob['size'])), blob['date']]) print(report_table) <|reserved_special_token_1|> ## Filename: name.py # Author: Marcelo Feitoza Parisi # # Description: Report the objects # on the bucket sorted by name. # # ########################### # # DISCLAIMER - IMPORTANT! # # ########################### # # Stuff found here was built as a # Proof-Of-Concept or Study material # and should not be considered # production ready! # # USE WITH CARE! ## from lib import byte from google.cloud import storage from prettytable import PrettyTable def exec(bucket_id, project_id, reverse_opt): # Google Cloud Storage Client client = storage.Client() bucket = client.bucket(bucket_id, user_project=project_id) blobs = bucket.list_blobs() # Will hold our local list of objects blob_list = [] try: for blob in blobs: # For each object we'll save name, owner, class, size and date this_blob = { 'name': blob.name, 'owner': blob.owner, 'class': blob.storage_class, 'size' : blob.size, 'date' : str(blob.updated).split('.')[0].split('+')[0] } # Append object to our list blob_list.append(this_blob) except Exception as e: print(e) exit(1) # Sort our object list by name using our reverse_opt sorted_list = sorted(blob_list, key=lambda k: blob.name, reverse=reverse_opt) # Generating our PrettyTable report_table = PrettyTable() report_table.field_names = ["NAME", "OWNER", "CLASS", "SIZE", "DATE"] report_table.align["NAME"] = "l" report_table.align["SIZE"] = "r" report_table.align["DATE"] = "r" for blob in sorted_list: report_table.add_row([blob['name'], blob['owner'], blob['class'], str(byte.convert_size(blob['size'])), blob['date']]) print(report_table)
flexible
{ "blob_id": "562b2c3567e42699cfd0804a5780af7ede142e13", "index": 1056, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef exec(bucket_id, project_id, reverse_opt):\n client = storage.Client()\n bucket = client.bucket(bucket_id, user_project=project_id)\n blobs = bucket.list_blobs()\n blob_list = []\n try:\n for blob in blobs:\n this_blob = {'name': blob.name, 'owner': blob.owner, 'class':\n blob.storage_class, 'size': blob.size, 'date': str(blob.\n updated).split('.')[0].split('+')[0]}\n blob_list.append(this_blob)\n except Exception as e:\n print(e)\n exit(1)\n sorted_list = sorted(blob_list, key=lambda k: blob.name, reverse=\n reverse_opt)\n report_table = PrettyTable()\n report_table.field_names = ['NAME', 'OWNER', 'CLASS', 'SIZE', 'DATE']\n report_table.align['NAME'] = 'l'\n report_table.align['SIZE'] = 'r'\n report_table.align['DATE'] = 'r'\n for blob in sorted_list:\n report_table.add_row([blob['name'], blob['owner'], blob['class'],\n str(byte.convert_size(blob['size'])), blob['date']])\n print(report_table)\n", "step-3": "from lib import byte\nfrom google.cloud import storage\nfrom prettytable import PrettyTable\n\n\ndef exec(bucket_id, project_id, reverse_opt):\n client = storage.Client()\n bucket = client.bucket(bucket_id, user_project=project_id)\n blobs = bucket.list_blobs()\n blob_list = []\n try:\n for blob in blobs:\n this_blob = {'name': blob.name, 'owner': blob.owner, 'class':\n blob.storage_class, 'size': blob.size, 'date': str(blob.\n updated).split('.')[0].split('+')[0]}\n blob_list.append(this_blob)\n except Exception as e:\n print(e)\n exit(1)\n sorted_list = sorted(blob_list, key=lambda k: blob.name, reverse=\n reverse_opt)\n report_table = PrettyTable()\n report_table.field_names = ['NAME', 'OWNER', 'CLASS', 'SIZE', 'DATE']\n report_table.align['NAME'] = 'l'\n report_table.align['SIZE'] = 'r'\n report_table.align['DATE'] = 'r'\n for blob in sorted_list:\n report_table.add_row([blob['name'], blob['owner'], blob['class'],\n str(byte.convert_size(blob['size'])), blob['date']])\n print(report_table)\n", "step-4": "## Filename: name.py\n # Author: Marcelo Feitoza Parisi\n # \n # Description: Report the objects\n # on the bucket sorted by name.\n # \n # ###########################\n # # DISCLAIMER - IMPORTANT! #\n # ###########################\n # \n # Stuff found here was built as a\n # Proof-Of-Concept or Study material\n # and should not be considered\n # production ready!\n # \n # USE WITH CARE!\n##\nfrom lib import byte\nfrom google.cloud import storage\nfrom prettytable import PrettyTable\n\ndef exec(bucket_id, project_id, reverse_opt):\n\n # Google Cloud Storage Client\n client = storage.Client()\n bucket = client.bucket(bucket_id, user_project=project_id)\n blobs = bucket.list_blobs()\n\n # Will hold our local list of objects\n blob_list = []\n\n try: \n for blob in blobs:\n # For each object we'll save name, owner, class, size and date\n this_blob = { 'name': blob.name,\n 'owner': blob.owner,\n 'class': blob.storage_class,\n 'size' : blob.size,\n 'date' : str(blob.updated).split('.')[0].split('+')[0]\n }\n # Append object to our list\n blob_list.append(this_blob)\n except Exception as e:\n print(e)\n exit(1)\n\n # Sort our object list by name using our reverse_opt\n sorted_list = sorted(blob_list, key=lambda k: blob.name, reverse=reverse_opt)\n\n # Generating our PrettyTable\n report_table = PrettyTable()\n report_table.field_names = [\"NAME\", \"OWNER\", \"CLASS\", \"SIZE\", \"DATE\"]\n report_table.align[\"NAME\"] = \"l\"\n report_table.align[\"SIZE\"] = \"r\"\n report_table.align[\"DATE\"] = \"r\"\n for blob in sorted_list:\n report_table.add_row([blob['name'], blob['owner'], blob['class'], str(byte.convert_size(blob['size'])), blob['date']])\n\n print(report_table)\n\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 16 20:47:28 2019 @author: jaco """
flexible
{ "blob_id": "d806d1b31712e3d8d60f4bfbc60c6939dfeeb357", "index": 9579, "step-1": "<mask token>\n", "step-2": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Dec 16 20:47:28 2019\n\n@author: jaco\n\"\"\"\n\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> @plugin_runner.register(chain='scrooge') def ralph3_profit_center(**kwargs): new_pc = total = 0 for pc in get_from_ralph('profit-centers', logger): created = update_profit_center(pc) if created: new_pc += 1 total += 1 return True, '{} new profit center(s), {} updated, {} total'.format(new_pc, total - new_pc, total) <|reserved_special_token_1|> <|reserved_special_token_0|> @transaction.atomic def update_profit_center(pc): profit_center, created = ProfitCenter.objects.get_or_create(ralph3_id= pc['id'], defaults=dict(name=pc['name'])) profit_center.name = pc['name'] profit_center.description = pc['description'] profit_center.save() return created @plugin_runner.register(chain='scrooge') def ralph3_profit_center(**kwargs): new_pc = total = 0 for pc in get_from_ralph('profit-centers', logger): created = update_profit_center(pc) if created: new_pc += 1 total += 1 return True, '{} new profit center(s), {} updated, {} total'.format(new_pc, total - new_pc, total) <|reserved_special_token_1|> <|reserved_special_token_0|> logger = logging.getLogger(__name__) @transaction.atomic def update_profit_center(pc): profit_center, created = ProfitCenter.objects.get_or_create(ralph3_id= pc['id'], defaults=dict(name=pc['name'])) profit_center.name = pc['name'] profit_center.description = pc['description'] profit_center.save() return created @plugin_runner.register(chain='scrooge') def ralph3_profit_center(**kwargs): new_pc = total = 0 for pc in get_from_ralph('profit-centers', logger): created = update_profit_center(pc) if created: new_pc += 1 total += 1 return True, '{} new profit center(s), {} updated, {} total'.format(new_pc, total - new_pc, total) <|reserved_special_token_1|> from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from django.db import transaction from ralph_scrooge.models import ProfitCenter from ralph_scrooge.plugins import plugin_runner from ralph_scrooge.plugins.collect.utils import get_from_ralph logger = logging.getLogger(__name__) @transaction.atomic def update_profit_center(pc): profit_center, created = ProfitCenter.objects.get_or_create(ralph3_id= pc['id'], defaults=dict(name=pc['name'])) profit_center.name = pc['name'] profit_center.description = pc['description'] profit_center.save() return created @plugin_runner.register(chain='scrooge') def ralph3_profit_center(**kwargs): new_pc = total = 0 for pc in get_from_ralph('profit-centers', logger): created = update_profit_center(pc) if created: new_pc += 1 total += 1 return True, '{} new profit center(s), {} updated, {} total'.format(new_pc, total - new_pc, total) <|reserved_special_token_1|> # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from django.db import transaction from ralph_scrooge.models import ProfitCenter from ralph_scrooge.plugins import plugin_runner from ralph_scrooge.plugins.collect.utils import get_from_ralph logger = logging.getLogger(__name__) @transaction.atomic def update_profit_center(pc): profit_center, created = ProfitCenter.objects.get_or_create( ralph3_id=pc['id'], defaults=dict( name=pc['name'], ) ) profit_center.name = pc['name'] profit_center.description = pc['description'] profit_center.save() return created @plugin_runner.register(chain='scrooge') def ralph3_profit_center(**kwargs): new_pc = total = 0 for pc in get_from_ralph("profit-centers", logger): created = update_profit_center(pc) if created: new_pc += 1 total += 1 return True, '{} new profit center(s), {} updated, {} total'.format( new_pc, total - new_pc, total, )
flexible
{ "blob_id": "d3f52d4713ba4b7b4cd736b26809968e259be63c", "index": 6883, "step-1": "<mask token>\n\n\n@plugin_runner.register(chain='scrooge')\ndef ralph3_profit_center(**kwargs):\n new_pc = total = 0\n for pc in get_from_ralph('profit-centers', logger):\n created = update_profit_center(pc)\n if created:\n new_pc += 1\n total += 1\n return True, '{} new profit center(s), {} updated, {} total'.format(new_pc,\n total - new_pc, total)\n", "step-2": "<mask token>\n\n\[email protected]\ndef update_profit_center(pc):\n profit_center, created = ProfitCenter.objects.get_or_create(ralph3_id=\n pc['id'], defaults=dict(name=pc['name']))\n profit_center.name = pc['name']\n profit_center.description = pc['description']\n profit_center.save()\n return created\n\n\n@plugin_runner.register(chain='scrooge')\ndef ralph3_profit_center(**kwargs):\n new_pc = total = 0\n for pc in get_from_ralph('profit-centers', logger):\n created = update_profit_center(pc)\n if created:\n new_pc += 1\n total += 1\n return True, '{} new profit center(s), {} updated, {} total'.format(new_pc,\n total - new_pc, total)\n", "step-3": "<mask token>\nlogger = logging.getLogger(__name__)\n\n\[email protected]\ndef update_profit_center(pc):\n profit_center, created = ProfitCenter.objects.get_or_create(ralph3_id=\n pc['id'], defaults=dict(name=pc['name']))\n profit_center.name = pc['name']\n profit_center.description = pc['description']\n profit_center.save()\n return created\n\n\n@plugin_runner.register(chain='scrooge')\ndef ralph3_profit_center(**kwargs):\n new_pc = total = 0\n for pc in get_from_ralph('profit-centers', logger):\n created = update_profit_center(pc)\n if created:\n new_pc += 1\n total += 1\n return True, '{} new profit center(s), {} updated, {} total'.format(new_pc,\n total - new_pc, total)\n", "step-4": "from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\nfrom __future__ import unicode_literals\nimport logging\nfrom django.db import transaction\nfrom ralph_scrooge.models import ProfitCenter\nfrom ralph_scrooge.plugins import plugin_runner\nfrom ralph_scrooge.plugins.collect.utils import get_from_ralph\nlogger = logging.getLogger(__name__)\n\n\[email protected]\ndef update_profit_center(pc):\n profit_center, created = ProfitCenter.objects.get_or_create(ralph3_id=\n pc['id'], defaults=dict(name=pc['name']))\n profit_center.name = pc['name']\n profit_center.description = pc['description']\n profit_center.save()\n return created\n\n\n@plugin_runner.register(chain='scrooge')\ndef ralph3_profit_center(**kwargs):\n new_pc = total = 0\n for pc in get_from_ralph('profit-centers', logger):\n created = update_profit_center(pc)\n if created:\n new_pc += 1\n total += 1\n return True, '{} new profit center(s), {} updated, {} total'.format(new_pc,\n total - new_pc, total)\n", "step-5": "# -*- coding: utf-8 -*-\n\nfrom __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\nfrom __future__ import unicode_literals\n\nimport logging\n\nfrom django.db import transaction\n\nfrom ralph_scrooge.models import ProfitCenter\nfrom ralph_scrooge.plugins import plugin_runner\nfrom ralph_scrooge.plugins.collect.utils import get_from_ralph\n\n\nlogger = logging.getLogger(__name__)\n\n\[email protected]\ndef update_profit_center(pc):\n profit_center, created = ProfitCenter.objects.get_or_create(\n ralph3_id=pc['id'],\n defaults=dict(\n name=pc['name'],\n )\n )\n profit_center.name = pc['name']\n profit_center.description = pc['description']\n profit_center.save()\n return created\n\n\n@plugin_runner.register(chain='scrooge')\ndef ralph3_profit_center(**kwargs):\n new_pc = total = 0\n for pc in get_from_ralph(\"profit-centers\", logger):\n created = update_profit_center(pc)\n if created:\n new_pc += 1\n total += 1\n return True, '{} new profit center(s), {} updated, {} total'.format(\n new_pc,\n total - new_pc,\n total,\n )\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if len(sys.argv) < 2: print('Syntax : python %s <port>') % str(sys.argv[0]) else: print('-' * 55) print('HTB WEB-CHALLENGE coded by ZyperX [Freelance]') print('-' * 55) r = requests.session() port = str(sys.argv[1]) url = 'http://docker.hackthebox.eu:' url = url + port uri = '/portfolio.php?id=1' url = url + uri print('[*]SQLi Affected URI : %s') % uri print('[*]Counting Columns') for x in range(1, 20): payload = ' order by %i --+' % x nurl = url + payload op = r.get(nurl) soup = BeautifulSoup(op.text, 'html.parser') soup = soup.find('p') soup = str(soup) size = len(soup.split()) print('[*]Page size at order by %s : %s') % (x, size) if size < 36: col = x - 1 break print('-' * 55) print('[*]Number of Columns : %d') % col print('[*]Web App Vulnerable with FILE PRIVILEGE SQLI') print("[*]Trying to read content of '/var/www/html/administrat/panel.php'") upayload = ' union all select 1' for x in range(2, col + 1): x = str(x) upayload = upayload + ',' + x <|reserved_special_token_0|> print('[*]Executing. : %s') % url <|reserved_special_token_0|> if op.find('2'): print('[*]Column 2 is reflected') print('[*]Injecting payloads in column 2....') <|reserved_special_token_0|> print('[*]Excecuting : %s') % url <|reserved_special_token_0|> print('-' * 55) print('[*]Flag : %s') % op <|reserved_special_token_1|> <|reserved_special_token_0|> if len(sys.argv) < 2: print('Syntax : python %s <port>') % str(sys.argv[0]) else: print('-' * 55) print('HTB WEB-CHALLENGE coded by ZyperX [Freelance]') print('-' * 55) r = requests.session() port = str(sys.argv[1]) url = 'http://docker.hackthebox.eu:' url = url + port uri = '/portfolio.php?id=1' url = url + uri print('[*]SQLi Affected URI : %s') % uri print('[*]Counting Columns') for x in range(1, 20): payload = ' order by %i --+' % x nurl = url + payload op = r.get(nurl) soup = BeautifulSoup(op.text, 'html.parser') soup = soup.find('p') soup = str(soup) size = len(soup.split()) print('[*]Page size at order by %s : %s') % (x, size) if size < 36: col = x - 1 break print('-' * 55) print('[*]Number of Columns : %d') % col print('[*]Web App Vulnerable with FILE PRIVILEGE SQLI') print("[*]Trying to read content of '/var/www/html/administrat/panel.php'") upayload = ' union all select 1' for x in range(2, col + 1): x = str(x) upayload = upayload + ',' + x upayload = upayload + ' --+' url = url + upayload print('[*]Executing. : %s') % url op = r.get(url) op = str(op.text) if op.find('2'): print('[*]Column 2 is reflected') print('[*]Injecting payloads in column 2....') upayload = upayload.replace('2', "load_file('/var/www/html/administrat/panel.php')") url = 'http://docker.hackthebox.eu:' + port + uri + upayload print('[*]Excecuting : %s') % url op = r.get(url) op = str(op.text) op = re.search('HTB.*?<', op) op = str(op.group()) op = op.replace('<', '') print('-' * 55) print('[*]Flag : %s') % op <|reserved_special_token_1|> import requests from bs4 import BeautifulSoup import sys import re if len(sys.argv) < 2: print('Syntax : python %s <port>') % str(sys.argv[0]) else: print('-' * 55) print('HTB WEB-CHALLENGE coded by ZyperX [Freelance]') print('-' * 55) r = requests.session() port = str(sys.argv[1]) url = 'http://docker.hackthebox.eu:' url = url + port uri = '/portfolio.php?id=1' url = url + uri print('[*]SQLi Affected URI : %s') % uri print('[*]Counting Columns') for x in range(1, 20): payload = ' order by %i --+' % x nurl = url + payload op = r.get(nurl) soup = BeautifulSoup(op.text, 'html.parser') soup = soup.find('p') soup = str(soup) size = len(soup.split()) print('[*]Page size at order by %s : %s') % (x, size) if size < 36: col = x - 1 break print('-' * 55) print('[*]Number of Columns : %d') % col print('[*]Web App Vulnerable with FILE PRIVILEGE SQLI') print("[*]Trying to read content of '/var/www/html/administrat/panel.php'") upayload = ' union all select 1' for x in range(2, col + 1): x = str(x) upayload = upayload + ',' + x upayload = upayload + ' --+' url = url + upayload print('[*]Executing. : %s') % url op = r.get(url) op = str(op.text) if op.find('2'): print('[*]Column 2 is reflected') print('[*]Injecting payloads in column 2....') upayload = upayload.replace('2', "load_file('/var/www/html/administrat/panel.php')") url = 'http://docker.hackthebox.eu:' + port + uri + upayload print('[*]Excecuting : %s') % url op = r.get(url) op = str(op.text) op = re.search('HTB.*?<', op) op = str(op.group()) op = op.replace('<', '') print('-' * 55) print('[*]Flag : %s') % op <|reserved_special_token_1|> import requests from bs4 import BeautifulSoup import sys import re if len(sys.argv)<2: print("Syntax : python %s <port>")%(str(sys.argv[0])) else: print('-'*55) print("HTB WEB-CHALLENGE coded by ZyperX [Freelance]") print('-'*55) r=requests.session() port=str(sys.argv[1]) url="http://docker.hackthebox.eu:" url=url+port uri="/portfolio.php?id=1" url=url+uri print("[*]SQLi Affected URI : %s")%(uri) print("[*]Counting Columns") for x in range(1,20): payload=(" order by %i --+")%(x) nurl=url+payload op=r.get(nurl) soup=BeautifulSoup(op.text,'html.parser') soup=soup.find('p') soup=str(soup) size=len(soup.split()) print("[*]Page size at order by %s : %s")%(x,size) if size < 36 : col= x-1 break print("-"*55) print("[*]Number of Columns : %d")%(col) print("[*]Web App Vulnerable with FILE PRIVILEGE SQLI") print("[*]Trying to read content of \'/var/www/html/administrat/panel.php\'") upayload=" union all select 1" for x in range(2,col+1): x=str(x) upayload=upayload+","+x upayload=upayload+" --+" url=url+upayload print("[*]Executing. : %s")%(url) op=r.get(url) op=str(op.text) if op.find("2"): print("[*]Column 2 is reflected"); print("[*]Injecting payloads in column 2...."); upayload=upayload.replace('2','load_file(\'/var/www/html/administrat/panel.php\')') url="http://docker.hackthebox.eu:"+port+uri+upayload print("[*]Excecuting : %s")%(url) op=r.get(url) op=str(op.text) op=re.search("HTB.*?<",op) op=str(op.group()) op=op.replace('<','') print("-"*55) print("[*]Flag : %s")%(op)
flexible
{ "blob_id": "88ec9484e934ce27b13734ca26f79df71b7677e6", "index": 82, "step-1": "<mask token>\n", "step-2": "<mask token>\nif len(sys.argv) < 2:\n print('Syntax : python %s <port>') % str(sys.argv[0])\nelse:\n print('-' * 55)\n print('HTB WEB-CHALLENGE coded by ZyperX [Freelance]')\n print('-' * 55)\n r = requests.session()\n port = str(sys.argv[1])\n url = 'http://docker.hackthebox.eu:'\n url = url + port\n uri = '/portfolio.php?id=1'\n url = url + uri\n print('[*]SQLi Affected URI : %s') % uri\n print('[*]Counting Columns')\n for x in range(1, 20):\n payload = ' order by %i --+' % x\n nurl = url + payload\n op = r.get(nurl)\n soup = BeautifulSoup(op.text, 'html.parser')\n soup = soup.find('p')\n soup = str(soup)\n size = len(soup.split())\n print('[*]Page size at order by %s : %s') % (x, size)\n if size < 36:\n col = x - 1\n break\n print('-' * 55)\n print('[*]Number of Columns : %d') % col\n print('[*]Web App Vulnerable with FILE PRIVILEGE SQLI')\n print(\"[*]Trying to read content of '/var/www/html/administrat/panel.php'\")\n upayload = ' union all select 1'\n for x in range(2, col + 1):\n x = str(x)\n upayload = upayload + ',' + x\n<mask token>\nprint('[*]Executing. : %s') % url\n<mask token>\nif op.find('2'):\n print('[*]Column 2 is reflected')\n print('[*]Injecting payloads in column 2....')\n<mask token>\nprint('[*]Excecuting : %s') % url\n<mask token>\nprint('-' * 55)\nprint('[*]Flag : %s') % op\n", "step-3": "<mask token>\nif len(sys.argv) < 2:\n print('Syntax : python %s <port>') % str(sys.argv[0])\nelse:\n print('-' * 55)\n print('HTB WEB-CHALLENGE coded by ZyperX [Freelance]')\n print('-' * 55)\n r = requests.session()\n port = str(sys.argv[1])\n url = 'http://docker.hackthebox.eu:'\n url = url + port\n uri = '/portfolio.php?id=1'\n url = url + uri\n print('[*]SQLi Affected URI : %s') % uri\n print('[*]Counting Columns')\n for x in range(1, 20):\n payload = ' order by %i --+' % x\n nurl = url + payload\n op = r.get(nurl)\n soup = BeautifulSoup(op.text, 'html.parser')\n soup = soup.find('p')\n soup = str(soup)\n size = len(soup.split())\n print('[*]Page size at order by %s : %s') % (x, size)\n if size < 36:\n col = x - 1\n break\n print('-' * 55)\n print('[*]Number of Columns : %d') % col\n print('[*]Web App Vulnerable with FILE PRIVILEGE SQLI')\n print(\"[*]Trying to read content of '/var/www/html/administrat/panel.php'\")\n upayload = ' union all select 1'\n for x in range(2, col + 1):\n x = str(x)\n upayload = upayload + ',' + x\nupayload = upayload + ' --+'\nurl = url + upayload\nprint('[*]Executing. : %s') % url\nop = r.get(url)\nop = str(op.text)\nif op.find('2'):\n print('[*]Column 2 is reflected')\n print('[*]Injecting payloads in column 2....')\nupayload = upayload.replace('2',\n \"load_file('/var/www/html/administrat/panel.php')\")\nurl = 'http://docker.hackthebox.eu:' + port + uri + upayload\nprint('[*]Excecuting : %s') % url\nop = r.get(url)\nop = str(op.text)\nop = re.search('HTB.*?<', op)\nop = str(op.group())\nop = op.replace('<', '')\nprint('-' * 55)\nprint('[*]Flag : %s') % op\n", "step-4": "import requests\nfrom bs4 import BeautifulSoup\nimport sys\nimport re\nif len(sys.argv) < 2:\n print('Syntax : python %s <port>') % str(sys.argv[0])\nelse:\n print('-' * 55)\n print('HTB WEB-CHALLENGE coded by ZyperX [Freelance]')\n print('-' * 55)\n r = requests.session()\n port = str(sys.argv[1])\n url = 'http://docker.hackthebox.eu:'\n url = url + port\n uri = '/portfolio.php?id=1'\n url = url + uri\n print('[*]SQLi Affected URI : %s') % uri\n print('[*]Counting Columns')\n for x in range(1, 20):\n payload = ' order by %i --+' % x\n nurl = url + payload\n op = r.get(nurl)\n soup = BeautifulSoup(op.text, 'html.parser')\n soup = soup.find('p')\n soup = str(soup)\n size = len(soup.split())\n print('[*]Page size at order by %s : %s') % (x, size)\n if size < 36:\n col = x - 1\n break\n print('-' * 55)\n print('[*]Number of Columns : %d') % col\n print('[*]Web App Vulnerable with FILE PRIVILEGE SQLI')\n print(\"[*]Trying to read content of '/var/www/html/administrat/panel.php'\")\n upayload = ' union all select 1'\n for x in range(2, col + 1):\n x = str(x)\n upayload = upayload + ',' + x\nupayload = upayload + ' --+'\nurl = url + upayload\nprint('[*]Executing. : %s') % url\nop = r.get(url)\nop = str(op.text)\nif op.find('2'):\n print('[*]Column 2 is reflected')\n print('[*]Injecting payloads in column 2....')\nupayload = upayload.replace('2',\n \"load_file('/var/www/html/administrat/panel.php')\")\nurl = 'http://docker.hackthebox.eu:' + port + uri + upayload\nprint('[*]Excecuting : %s') % url\nop = r.get(url)\nop = str(op.text)\nop = re.search('HTB.*?<', op)\nop = str(op.group())\nop = op.replace('<', '')\nprint('-' * 55)\nprint('[*]Flag : %s') % op\n", "step-5": "import requests\nfrom bs4 import BeautifulSoup\nimport sys\nimport re\nif len(sys.argv)<2:\n print(\"Syntax : python %s <port>\")%(str(sys.argv[0]))\nelse:\n print('-'*55)\n print(\"HTB WEB-CHALLENGE coded by ZyperX [Freelance]\")\n print('-'*55)\n r=requests.session()\n port=str(sys.argv[1])\n url=\"http://docker.hackthebox.eu:\"\n url=url+port\n uri=\"/portfolio.php?id=1\"\n url=url+uri\n print(\"[*]SQLi Affected URI : %s\")%(uri)\n print(\"[*]Counting Columns\")\n for x in range(1,20):\n payload=(\" order by %i --+\")%(x)\n nurl=url+payload\n op=r.get(nurl)\n soup=BeautifulSoup(op.text,'html.parser')\n soup=soup.find('p')\n soup=str(soup)\n size=len(soup.split())\n print(\"[*]Page size at order by %s : %s\")%(x,size)\n if size < 36 :\n col= x-1\n break \n print(\"-\"*55)\n print(\"[*]Number of Columns : %d\")%(col)\n print(\"[*]Web App Vulnerable with FILE PRIVILEGE SQLI\")\n print(\"[*]Trying to read content of \\'/var/www/html/administrat/panel.php\\'\")\n upayload=\" union all select 1\"\n for x in range(2,col+1):\n x=str(x)\n upayload=upayload+\",\"+x\nupayload=upayload+\" --+\"\nurl=url+upayload\nprint(\"[*]Executing. : %s\")%(url)\nop=r.get(url)\nop=str(op.text)\nif op.find(\"2\"):\n print(\"[*]Column 2 is reflected\");\n print(\"[*]Injecting payloads in column 2....\");\nupayload=upayload.replace('2','load_file(\\'/var/www/html/administrat/panel.php\\')')\nurl=\"http://docker.hackthebox.eu:\"+port+uri+upayload\nprint(\"[*]Excecuting : %s\")%(url)\nop=r.get(url)\nop=str(op.text)\nop=re.search(\"HTB.*?<\",op)\nop=str(op.group())\nop=op.replace('<','')\nprint(\"-\"*55)\nprint(\"[*]Flag : %s\")%(op)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> stock_in = By.XPATH, "//android.widget.TextView[contains(@text,'门店入库')]" transfer_in = By.XPATH, "//android.widget.TextView[contains(@text,'调拨入库')]" take_receive = By.ID, '%s:id/take_receive' % basePage.package_name details_text = By.ID, '%s:id/details_text' % basePage.package_name transfer_confirm_state = By.ID, '%s:id/state' transfer_diff_wizard = By.ID, '%s:id/multiple_dialog_container' text_confirm_button = By.ID, '%s:id/text_confirm' diff_confirm_button = (By.XPATH, "//android.widget.TextView[contains(@text,'差异收货')]") state_num = random.randint(1, 4) order_of_state = By.XPATH, '//android.widget.TextView[%s]' % state_num title = By.ID, '%s:id/title' % basePage.package_name fold_image = By.ID, '%s:id/fold_image' % basePage.package_name order_search = By.ID, '%s:id/order_search' % basePage.package_name search_query = By.ID, '%s:id/search_query' % basePage.package_name search_order_no = By.ID, '%s:id/search_order_no' % basePage.package_name search_order_sku = By.ID, '%s:id/search_order_sku' % basePage.package_name search_order_org = By.ID, '%s:id/search_order_org' % basePage.package_name type_edit = By.ID, '%s:id/type_edit' % basePage.package_name transfer_options1 = By.ID, '%s:id/options1' % basePage.package_name transfer_options_submit = By.ID, '%s:id/btnSubmit' % basePage.package_name all_check = By.ID, '%s:id/all_check' % basePage.package_name out_check = By.ID, '%s:id/out_check' % basePage.package_name in_check = By.ID, '%s:id/in_check' % basePage.package_name operate_edit = By.ID, '%s:id/operate_edit' % basePage.package_name search_clear = By.ID, '%s:id/search_clear' % basePage.package_name search_up_cancel = By.ID, '%s:id/search_up_cancel' % basePage.package_name order_state = By.XPATH, "//android.widget.TextView[contains(@text,'已完成')]" allocate_name = By.ID, '%s:id/allocate_name' % basePage.package_name start_at = By.ID, '%s:id/start_at' % basePage.package_name end_at = By.ID, '%s:id/end_at' % basePage.package_name day = By.ID, '%s:id/day' % basePage.package_name btn_view_diff = By.CLASS_NAME, 'btn-view-diff' searchIcon = By.ID, 'searchIcon' input_item = By.CLASS_NAME, 'input-item' icon_delete = (By.XPATH, "//div[@class='keyboard']/div[1]/img[@class='icon-delete']") back_btn = By.XPATH, "//div[@class='icon-back']/img[@alt='<']" btn_save = By.CLASS_NAME, 'btn-save' add_handle = By.XPATH, "//div[@class='before-focus']/div[1]" add_border_node = By.XPATH, "//div[@class='before-focus']/div[2]" loggingimport = By.XPATH, "//div[@class='before-focus']/div[3]" btn_more = By.CLASS_NAME, 'btn-more' btn_close_native = By.CLASS_NAME, 'btn-close-native' icon_edit = (By.XPATH, "//table[@class='el-table__body']/tbody[1]/tr[1]/td[3]/div[1]/div[1]/div[2]" ) div_num = random.randint(1, 9) num_key = By.XPATH, "//div[@class='keyboard']/div[2]/div[%s]" % div_num num_keys = By.XPATH, "//div[@class='keyboard']/div[2]" key_confirm = By.XPATH, "//div[@class='keyboard']/div[2]/div[12]" result_item = By.CLASS_NAME, 'result-item' <|reserved_special_token_1|> from selenium.webdriver.common.by import By import random import basePage stock_in = By.XPATH, "//android.widget.TextView[contains(@text,'门店入库')]" transfer_in = By.XPATH, "//android.widget.TextView[contains(@text,'调拨入库')]" take_receive = By.ID, '%s:id/take_receive' % basePage.package_name details_text = By.ID, '%s:id/details_text' % basePage.package_name transfer_confirm_state = By.ID, '%s:id/state' transfer_diff_wizard = By.ID, '%s:id/multiple_dialog_container' text_confirm_button = By.ID, '%s:id/text_confirm' diff_confirm_button = (By.XPATH, "//android.widget.TextView[contains(@text,'差异收货')]") state_num = random.randint(1, 4) order_of_state = By.XPATH, '//android.widget.TextView[%s]' % state_num title = By.ID, '%s:id/title' % basePage.package_name fold_image = By.ID, '%s:id/fold_image' % basePage.package_name order_search = By.ID, '%s:id/order_search' % basePage.package_name search_query = By.ID, '%s:id/search_query' % basePage.package_name search_order_no = By.ID, '%s:id/search_order_no' % basePage.package_name search_order_sku = By.ID, '%s:id/search_order_sku' % basePage.package_name search_order_org = By.ID, '%s:id/search_order_org' % basePage.package_name type_edit = By.ID, '%s:id/type_edit' % basePage.package_name transfer_options1 = By.ID, '%s:id/options1' % basePage.package_name transfer_options_submit = By.ID, '%s:id/btnSubmit' % basePage.package_name all_check = By.ID, '%s:id/all_check' % basePage.package_name out_check = By.ID, '%s:id/out_check' % basePage.package_name in_check = By.ID, '%s:id/in_check' % basePage.package_name operate_edit = By.ID, '%s:id/operate_edit' % basePage.package_name search_clear = By.ID, '%s:id/search_clear' % basePage.package_name search_up_cancel = By.ID, '%s:id/search_up_cancel' % basePage.package_name order_state = By.XPATH, "//android.widget.TextView[contains(@text,'已完成')]" allocate_name = By.ID, '%s:id/allocate_name' % basePage.package_name start_at = By.ID, '%s:id/start_at' % basePage.package_name end_at = By.ID, '%s:id/end_at' % basePage.package_name day = By.ID, '%s:id/day' % basePage.package_name btn_view_diff = By.CLASS_NAME, 'btn-view-diff' searchIcon = By.ID, 'searchIcon' input_item = By.CLASS_NAME, 'input-item' icon_delete = (By.XPATH, "//div[@class='keyboard']/div[1]/img[@class='icon-delete']") back_btn = By.XPATH, "//div[@class='icon-back']/img[@alt='<']" btn_save = By.CLASS_NAME, 'btn-save' add_handle = By.XPATH, "//div[@class='before-focus']/div[1]" add_border_node = By.XPATH, "//div[@class='before-focus']/div[2]" loggingimport = By.XPATH, "//div[@class='before-focus']/div[3]" btn_more = By.CLASS_NAME, 'btn-more' btn_close_native = By.CLASS_NAME, 'btn-close-native' icon_edit = (By.XPATH, "//table[@class='el-table__body']/tbody[1]/tr[1]/td[3]/div[1]/div[1]/div[2]" ) div_num = random.randint(1, 9) num_key = By.XPATH, "//div[@class='keyboard']/div[2]/div[%s]" % div_num num_keys = By.XPATH, "//div[@class='keyboard']/div[2]" key_confirm = By.XPATH, "//div[@class='keyboard']/div[2]/div[12]" result_item = By.CLASS_NAME, 'result-item' <|reserved_special_token_1|> #!/usr/bin/python # encoding:utf-8 from selenium.webdriver.common.by import By import random import basePage # 门店入库button stock_in = (By.XPATH, "//android.widget.TextView[contains(@text,'门店入库')]") # 调拨入库button transfer_in = (By.XPATH, "//android.widget.TextView[contains(@text,'调拨入库')]") # 确认签收button take_receive = (By.ID, '%s:id/take_receive'%basePage.package_name) # 查看详情 details_text = (By.ID, '%s:id/details_text'%basePage.package_name) # 调拨单代签收状态 transfer_confirm_state = (By.ID, "%s:id/state") # 差异签收弹出框 transfer_diff_wizard = (By.ID, "%s:id/multiple_dialog_container") # 确认签收按钮 text_confirm_button = (By.ID, "%s:id/text_confirm") # 差异收货button diff_confirm_button = (By.XPATH, "//android.widget.TextView[contains(@text,'差异收货')]") # 订单状态 state_num = random.randint(1, 4) order_of_state = (By.XPATH, "//android.widget.TextView[%s]" % state_num) # 订单状态下拉 title = (By.ID, '%s:id/title'%basePage.package_name) # 展开订单详情 fold_image = (By.ID, '%s:id/fold_image'%basePage.package_name) # 高级搜索button order_search = (By.ID, '%s:id/order_search'%basePage.package_name) # 查询 search_query = (By.ID, '%s:id/search_query'%basePage.package_name) # 调拨单号输入框 search_order_no = (By.ID, '%s:id/search_order_no'%basePage.package_name) # 商品编码输入框 search_order_sku = (By.ID, '%s:id/search_order_sku'%basePage.package_name) # 发货店仓输入框 search_order_org = (By.ID, '%s:id/search_order_org'%basePage.package_name) # 调拨类型 type_edit = (By.ID, '%s:id/type_edit'%basePage.package_name) # 调拨类型option transfer_options1 = (By.ID, '%s:id/options1'%basePage.package_name) transfer_options_submit = (By.ID, '%s:id/btnSubmit'%basePage.package_name) # 日期范围 all_check = (By.ID, '%s:id/all_check'%basePage.package_name) out_check = (By.ID, '%s:id/out_check'%basePage.package_name) in_check = (By.ID, '%s:id/in_check'%basePage.package_name) # 操作人输入框 operate_edit = (By.ID, '%s:id/operate_edit'%basePage.package_name) # 重置 search_clear = (By.ID, '%s:id/search_clear'%basePage.package_name) # 取消 search_up_cancel = (By.ID, '%s:id/search_up_cancel'%basePage.package_name) # 调拨单状态 order_state = (By.XPATH, "//android.widget.TextView[contains(@text,'已完成')]") # 调拨单号 allocate_name = (By.ID, '%s:id/allocate_name'%basePage.package_name) # 高级搜索,选择开始日期 start_at = (By.ID, '%s:id/start_at'%basePage.package_name) # 高级搜索,选择结束日期 end_at = (By.ID, '%s:id/end_at'%basePage.package_name) # 高级搜索,选择日 day = (By.ID, '%s:id/day'%basePage.package_name) # H5定位 # 只看差异 btn_view_diff = (By.CLASS_NAME, 'btn-view-diff') # 搜索button searchIcon = (By.ID, 'searchIcon') # 搜索条件 input_item = (By.CLASS_NAME, 'input-item') # 清空搜索内容 icon_delete = (By.XPATH, "//div[@class='keyboard']/div[1]/img[@class='icon-delete']") # 返回 back_btn = (By.XPATH, "//div[@class='icon-back']/img[@alt='<']") # 保存 btn_save = (By.CLASS_NAME, 'btn-save') # 手工添加 add_handle = (By.XPATH, "//div[@class='before-focus']/div[1]") # 扫码添加 add_border_node = (By.XPATH, "//div[@class='before-focus']/div[2]") # 导入采集 loggingimport = (By.XPATH, "//div[@class='before-focus']/div[3]") # 更多 btn_more = (By.CLASS_NAME, 'btn-more') # 清空列表 btn_close_native = (By.CLASS_NAME, 'btn-close-native') # 点击修改收货数量 icon_edit = (By.XPATH, "//table[@class='el-table__body']/tbody[1]/tr[1]/td[3]/div[1]/div[1]/div[2]") # 填写收货数量 div_num = random.randint(1,9) num_key = (By.XPATH, "//div[@class='keyboard']/div[2]/div[%s]"%div_num) num_keys = (By.XPATH, "//div[@class='keyboard']/div[2]") # 确认修改收货数量 key_confirm = (By.XPATH, "//div[@class='keyboard']/div[2]/div[12]") # 订单内容 result_item = (By.CLASS_NAME, 'result-item')
flexible
{ "blob_id": "d1b025ddbf7d0ad48ff92a098d074820a3eb35ed", "index": 6723, "step-1": "<mask token>\n", "step-2": "<mask token>\nstock_in = By.XPATH, \"//android.widget.TextView[contains(@text,'门店入库')]\"\ntransfer_in = By.XPATH, \"//android.widget.TextView[contains(@text,'调拨入库')]\"\ntake_receive = By.ID, '%s:id/take_receive' % basePage.package_name\ndetails_text = By.ID, '%s:id/details_text' % basePage.package_name\ntransfer_confirm_state = By.ID, '%s:id/state'\ntransfer_diff_wizard = By.ID, '%s:id/multiple_dialog_container'\ntext_confirm_button = By.ID, '%s:id/text_confirm'\ndiff_confirm_button = (By.XPATH,\n \"//android.widget.TextView[contains(@text,'差异收货')]\")\nstate_num = random.randint(1, 4)\norder_of_state = By.XPATH, '//android.widget.TextView[%s]' % state_num\ntitle = By.ID, '%s:id/title' % basePage.package_name\nfold_image = By.ID, '%s:id/fold_image' % basePage.package_name\norder_search = By.ID, '%s:id/order_search' % basePage.package_name\nsearch_query = By.ID, '%s:id/search_query' % basePage.package_name\nsearch_order_no = By.ID, '%s:id/search_order_no' % basePage.package_name\nsearch_order_sku = By.ID, '%s:id/search_order_sku' % basePage.package_name\nsearch_order_org = By.ID, '%s:id/search_order_org' % basePage.package_name\ntype_edit = By.ID, '%s:id/type_edit' % basePage.package_name\ntransfer_options1 = By.ID, '%s:id/options1' % basePage.package_name\ntransfer_options_submit = By.ID, '%s:id/btnSubmit' % basePage.package_name\nall_check = By.ID, '%s:id/all_check' % basePage.package_name\nout_check = By.ID, '%s:id/out_check' % basePage.package_name\nin_check = By.ID, '%s:id/in_check' % basePage.package_name\noperate_edit = By.ID, '%s:id/operate_edit' % basePage.package_name\nsearch_clear = By.ID, '%s:id/search_clear' % basePage.package_name\nsearch_up_cancel = By.ID, '%s:id/search_up_cancel' % basePage.package_name\norder_state = By.XPATH, \"//android.widget.TextView[contains(@text,'已完成')]\"\nallocate_name = By.ID, '%s:id/allocate_name' % basePage.package_name\nstart_at = By.ID, '%s:id/start_at' % basePage.package_name\nend_at = By.ID, '%s:id/end_at' % basePage.package_name\nday = By.ID, '%s:id/day' % basePage.package_name\nbtn_view_diff = By.CLASS_NAME, 'btn-view-diff'\nsearchIcon = By.ID, 'searchIcon'\ninput_item = By.CLASS_NAME, 'input-item'\nicon_delete = (By.XPATH,\n \"//div[@class='keyboard']/div[1]/img[@class='icon-delete']\")\nback_btn = By.XPATH, \"//div[@class='icon-back']/img[@alt='<']\"\nbtn_save = By.CLASS_NAME, 'btn-save'\nadd_handle = By.XPATH, \"//div[@class='before-focus']/div[1]\"\nadd_border_node = By.XPATH, \"//div[@class='before-focus']/div[2]\"\nloggingimport = By.XPATH, \"//div[@class='before-focus']/div[3]\"\nbtn_more = By.CLASS_NAME, 'btn-more'\nbtn_close_native = By.CLASS_NAME, 'btn-close-native'\nicon_edit = (By.XPATH,\n \"//table[@class='el-table__body']/tbody[1]/tr[1]/td[3]/div[1]/div[1]/div[2]\"\n )\ndiv_num = random.randint(1, 9)\nnum_key = By.XPATH, \"//div[@class='keyboard']/div[2]/div[%s]\" % div_num\nnum_keys = By.XPATH, \"//div[@class='keyboard']/div[2]\"\nkey_confirm = By.XPATH, \"//div[@class='keyboard']/div[2]/div[12]\"\nresult_item = By.CLASS_NAME, 'result-item'\n", "step-3": "from selenium.webdriver.common.by import By\nimport random\nimport basePage\nstock_in = By.XPATH, \"//android.widget.TextView[contains(@text,'门店入库')]\"\ntransfer_in = By.XPATH, \"//android.widget.TextView[contains(@text,'调拨入库')]\"\ntake_receive = By.ID, '%s:id/take_receive' % basePage.package_name\ndetails_text = By.ID, '%s:id/details_text' % basePage.package_name\ntransfer_confirm_state = By.ID, '%s:id/state'\ntransfer_diff_wizard = By.ID, '%s:id/multiple_dialog_container'\ntext_confirm_button = By.ID, '%s:id/text_confirm'\ndiff_confirm_button = (By.XPATH,\n \"//android.widget.TextView[contains(@text,'差异收货')]\")\nstate_num = random.randint(1, 4)\norder_of_state = By.XPATH, '//android.widget.TextView[%s]' % state_num\ntitle = By.ID, '%s:id/title' % basePage.package_name\nfold_image = By.ID, '%s:id/fold_image' % basePage.package_name\norder_search = By.ID, '%s:id/order_search' % basePage.package_name\nsearch_query = By.ID, '%s:id/search_query' % basePage.package_name\nsearch_order_no = By.ID, '%s:id/search_order_no' % basePage.package_name\nsearch_order_sku = By.ID, '%s:id/search_order_sku' % basePage.package_name\nsearch_order_org = By.ID, '%s:id/search_order_org' % basePage.package_name\ntype_edit = By.ID, '%s:id/type_edit' % basePage.package_name\ntransfer_options1 = By.ID, '%s:id/options1' % basePage.package_name\ntransfer_options_submit = By.ID, '%s:id/btnSubmit' % basePage.package_name\nall_check = By.ID, '%s:id/all_check' % basePage.package_name\nout_check = By.ID, '%s:id/out_check' % basePage.package_name\nin_check = By.ID, '%s:id/in_check' % basePage.package_name\noperate_edit = By.ID, '%s:id/operate_edit' % basePage.package_name\nsearch_clear = By.ID, '%s:id/search_clear' % basePage.package_name\nsearch_up_cancel = By.ID, '%s:id/search_up_cancel' % basePage.package_name\norder_state = By.XPATH, \"//android.widget.TextView[contains(@text,'已完成')]\"\nallocate_name = By.ID, '%s:id/allocate_name' % basePage.package_name\nstart_at = By.ID, '%s:id/start_at' % basePage.package_name\nend_at = By.ID, '%s:id/end_at' % basePage.package_name\nday = By.ID, '%s:id/day' % basePage.package_name\nbtn_view_diff = By.CLASS_NAME, 'btn-view-diff'\nsearchIcon = By.ID, 'searchIcon'\ninput_item = By.CLASS_NAME, 'input-item'\nicon_delete = (By.XPATH,\n \"//div[@class='keyboard']/div[1]/img[@class='icon-delete']\")\nback_btn = By.XPATH, \"//div[@class='icon-back']/img[@alt='<']\"\nbtn_save = By.CLASS_NAME, 'btn-save'\nadd_handle = By.XPATH, \"//div[@class='before-focus']/div[1]\"\nadd_border_node = By.XPATH, \"//div[@class='before-focus']/div[2]\"\nloggingimport = By.XPATH, \"//div[@class='before-focus']/div[3]\"\nbtn_more = By.CLASS_NAME, 'btn-more'\nbtn_close_native = By.CLASS_NAME, 'btn-close-native'\nicon_edit = (By.XPATH,\n \"//table[@class='el-table__body']/tbody[1]/tr[1]/td[3]/div[1]/div[1]/div[2]\"\n )\ndiv_num = random.randint(1, 9)\nnum_key = By.XPATH, \"//div[@class='keyboard']/div[2]/div[%s]\" % div_num\nnum_keys = By.XPATH, \"//div[@class='keyboard']/div[2]\"\nkey_confirm = By.XPATH, \"//div[@class='keyboard']/div[2]/div[12]\"\nresult_item = By.CLASS_NAME, 'result-item'\n", "step-4": "#!/usr/bin/python\n# encoding:utf-8\nfrom selenium.webdriver.common.by import By\nimport random\nimport basePage\n\n# 门店入库button\nstock_in = (By.XPATH, \"//android.widget.TextView[contains(@text,'门店入库')]\")\n# 调拨入库button\ntransfer_in = (By.XPATH, \"//android.widget.TextView[contains(@text,'调拨入库')]\")\n# 确认签收button\ntake_receive = (By.ID, '%s:id/take_receive'%basePage.package_name)\n# 查看详情\ndetails_text = (By.ID, '%s:id/details_text'%basePage.package_name)\n\n# 调拨单代签收状态\ntransfer_confirm_state = (By.ID, \"%s:id/state\")\n\n# 差异签收弹出框\ntransfer_diff_wizard = (By.ID, \"%s:id/multiple_dialog_container\")\n# 确认签收按钮\ntext_confirm_button = (By.ID, \"%s:id/text_confirm\")\n# 差异收货button\ndiff_confirm_button = (By.XPATH, \"//android.widget.TextView[contains(@text,'差异收货')]\")\n\n# 订单状态\nstate_num = random.randint(1, 4)\norder_of_state = (By.XPATH, \"//android.widget.TextView[%s]\" % state_num)\n# 订单状态下拉\ntitle = (By.ID, '%s:id/title'%basePage.package_name)\n# 展开订单详情\nfold_image = (By.ID, '%s:id/fold_image'%basePage.package_name)\n\n# 高级搜索button\norder_search = (By.ID, '%s:id/order_search'%basePage.package_name)\n# 查询\nsearch_query = (By.ID, '%s:id/search_query'%basePage.package_name)\n# 调拨单号输入框\nsearch_order_no = (By.ID, '%s:id/search_order_no'%basePage.package_name)\n# 商品编码输入框\nsearch_order_sku = (By.ID, '%s:id/search_order_sku'%basePage.package_name)\n# 发货店仓输入框\nsearch_order_org = (By.ID, '%s:id/search_order_org'%basePage.package_name)\n# 调拨类型\ntype_edit = (By.ID, '%s:id/type_edit'%basePage.package_name)\n# 调拨类型option\ntransfer_options1 = (By.ID, '%s:id/options1'%basePage.package_name)\ntransfer_options_submit = (By.ID, '%s:id/btnSubmit'%basePage.package_name)\n\n# 日期范围\nall_check = (By.ID, '%s:id/all_check'%basePage.package_name)\nout_check = (By.ID, '%s:id/out_check'%basePage.package_name)\nin_check = (By.ID, '%s:id/in_check'%basePage.package_name)\n# 操作人输入框\noperate_edit = (By.ID, '%s:id/operate_edit'%basePage.package_name)\n# 重置\nsearch_clear = (By.ID, '%s:id/search_clear'%basePage.package_name)\n# 取消\nsearch_up_cancel = (By.ID, '%s:id/search_up_cancel'%basePage.package_name)\n# 调拨单状态\norder_state = (By.XPATH, \"//android.widget.TextView[contains(@text,'已完成')]\")\n# 调拨单号\nallocate_name = (By.ID, '%s:id/allocate_name'%basePage.package_name)\n# 高级搜索,选择开始日期\nstart_at = (By.ID, '%s:id/start_at'%basePage.package_name)\n# 高级搜索,选择结束日期\nend_at = (By.ID, '%s:id/end_at'%basePage.package_name)\n# 高级搜索,选择日\nday = (By.ID, '%s:id/day'%basePage.package_name)\n\n# H5定位\n# 只看差异\nbtn_view_diff = (By.CLASS_NAME, 'btn-view-diff')\n# 搜索button\nsearchIcon = (By.ID, 'searchIcon')\n# 搜索条件\ninput_item = (By.CLASS_NAME, 'input-item')\n# 清空搜索内容\nicon_delete = (By.XPATH, \"//div[@class='keyboard']/div[1]/img[@class='icon-delete']\")\n# 返回\nback_btn = (By.XPATH, \"//div[@class='icon-back']/img[@alt='<']\")\n# 保存\nbtn_save = (By.CLASS_NAME, 'btn-save')\n# 手工添加\nadd_handle = (By.XPATH, \"//div[@class='before-focus']/div[1]\")\n# 扫码添加\nadd_border_node = (By.XPATH, \"//div[@class='before-focus']/div[2]\")\n# 导入采集\nloggingimport = (By.XPATH, \"//div[@class='before-focus']/div[3]\")\n# 更多\nbtn_more = (By.CLASS_NAME, 'btn-more')\n# 清空列表\nbtn_close_native = (By.CLASS_NAME, 'btn-close-native')\n# 点击修改收货数量\nicon_edit = (By.XPATH, \"//table[@class='el-table__body']/tbody[1]/tr[1]/td[3]/div[1]/div[1]/div[2]\")\n# 填写收货数量\ndiv_num = random.randint(1,9)\nnum_key = (By.XPATH, \"//div[@class='keyboard']/div[2]/div[%s]\"%div_num)\nnum_keys = (By.XPATH, \"//div[@class='keyboard']/div[2]\")\n# 确认修改收货数量\nkey_confirm = (By.XPATH, \"//div[@class='keyboard']/div[2]/div[12]\")\n# 订单内容\nresult_item = (By.CLASS_NAME, 'result-item')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 31 14:35:49 2019 @author: devinpowers """ # Lab 1 in CSE 231 #Quadratic Formula # Find the roots in the Quadratic Formula import math a = float(input("Enter the coeddicient a: ")) b = float(input("Enter the coeddicient b: ")) c = float(input("Enter the coeddicient c: ")) print (" Coefficients:") print( " Coefficient of a = ", a) print( " Coefficient of b = ", b) print( " Coefficient of c = ", c) root_1 = (-b+(b**2-4*a*c)**(0.5))/(2*a) root_2 = (-b-(b**2-4*a*c)**(0.5))/(2*a) print("The roots of the equation:") print( " Root 1 =", root_1) print( " Root 2 =", root_2)
normal
{ "blob_id": "2acfd0bbad68bb9d55aeb39b180f4326a225f6d5", "index": 1218, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(' Coefficients:')\nprint(' Coefficient of a = ', a)\nprint(' Coefficient of b = ', b)\nprint(' Coefficient of c = ', c)\n<mask token>\nprint('The roots of the equation:')\nprint(' Root 1 =', root_1)\nprint(' Root 2 =', root_2)\n", "step-3": "<mask token>\na = float(input('Enter the coeddicient a: '))\nb = float(input('Enter the coeddicient b: '))\nc = float(input('Enter the coeddicient c: '))\nprint(' Coefficients:')\nprint(' Coefficient of a = ', a)\nprint(' Coefficient of b = ', b)\nprint(' Coefficient of c = ', c)\nroot_1 = (-b + (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)\nroot_2 = (-b - (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)\nprint('The roots of the equation:')\nprint(' Root 1 =', root_1)\nprint(' Root 2 =', root_2)\n", "step-4": "<mask token>\nimport math\na = float(input('Enter the coeddicient a: '))\nb = float(input('Enter the coeddicient b: '))\nc = float(input('Enter the coeddicient c: '))\nprint(' Coefficients:')\nprint(' Coefficient of a = ', a)\nprint(' Coefficient of b = ', b)\nprint(' Coefficient of c = ', c)\nroot_1 = (-b + (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)\nroot_2 = (-b - (b ** 2 - 4 * a * c) ** 0.5) / (2 * a)\nprint('The roots of the equation:')\nprint(' Root 1 =', root_1)\nprint(' Root 2 =', root_2)\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Sat Aug 31 14:35:49 2019\n\n@author: devinpowers\n\"\"\"\n\n# Lab 1 in CSE 231\n#Quadratic Formula\n# Find the roots in the Quadratic Formula\n \nimport math\n\na = float(input(\"Enter the coeddicient a: \"))\nb = float(input(\"Enter the coeddicient b: \"))\nc = float(input(\"Enter the coeddicient c: \"))\n\nprint (\" Coefficients:\")\nprint( \" Coefficient of a = \", a)\nprint( \" Coefficient of b = \", b)\nprint( \" Coefficient of c = \", c)\n\nroot_1 = (-b+(b**2-4*a*c)**(0.5))/(2*a)\nroot_2 = (-b-(b**2-4*a*c)**(0.5))/(2*a)\n\nprint(\"The roots of the equation:\")\nprint( \" Root 1 =\", root_1)\nprint( \" Root 2 =\", root_2)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def ortoolsSolverRange(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-100, 1000, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] <|reserved_special_token_0|> def ortoolsSolverComb(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def ortoolsSolverReduceVar(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverRange(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-100, 1000, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverNeg(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverComb(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def ortoolsSolverReduceVar(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverRange(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-100, 1000, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverNeg(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverComb(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] if __name__ == '__main__': file = sys.argv[1] f = open(file) for i in range(5): exec(f.readline()) f.close() [sat, token, play, total_fun, time] = ortoolsSolverComb(num, cap, refill, fun, goal) print('Status:', sat) if sat == 'OPTIMAL': print('Maximum total fun:', total_fun) <|reserved_special_token_1|> from ortools.sat.python import cp_model import os import math import csv import sys def ortoolsSolverReduceVar(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverRange(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-100, 1000, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverNeg(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun') model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverComb(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = sum([(fun[i] * play[i]) for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare [i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill ).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] if __name__ == '__main__': file = sys.argv[1] f = open(file) for i in range(5): exec(f.readline()) f.close() [sat, token, play, total_fun, time] = ortoolsSolverComb(num, cap, refill, fun, goal) print('Status:', sat) if sat == 'OPTIMAL': print('Maximum total fun:', total_fun) <|reserved_special_token_1|> from ortools.sat.python import cp_model import os import math import csv import sys def ortoolsSolverReduceVar(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = sum([fun[i] * play[i] for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare[i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverRange(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-100, 1000, 'total_fun') model.Add(total_fun == sum([fun[i] * play[i] for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare[i].Not()) model.Add(play[i] >= 1) model.Add(play[i] <= token[i]) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverNeg(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun') model.Add(total_fun == sum([fun[i] * play[i] for i in range(num)])) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare[i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] def ortoolsSolverComb(num, cap, refill, fun, goal): model = cp_model.CpModel() token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)] play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)] compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)] neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)] total_fun = sum([fun[i] * play[i] for i in range(num)]) model.Add(total_fun >= goal) model.Add(token[0] == cap) for i in range(num): model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i]) model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare[i].Not()) model.Add(fun[i] < 0).OnlyEnforceIf(neg[i]) model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not()) model.Add(play[i] <= token[i]) model.Add(play[i] == 1).OnlyEnforceIf(neg[i]) model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not()) for i in range(1, num): model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1]) model.Add(token[i] == token[i - 1] - play[i - 1] + refill).OnlyEnforceIf(compare[i - 1].Not()) model.Maximize(total_fun) solver = cp_model.CpSolver() status = solver.Solve(model) sat = solver.StatusName() time = solver.UserTime() if status == cp_model.INFEASIBLE: token = None play = None total_fun = None else: token = [solver.Value(token[i]) for i in range(num)] play = [solver.Value(play[i]) for i in range(num)] total_fun = solver.Value(total_fun) return [sat, token, play, total_fun, time] if __name__ == '__main__': file = sys.argv[1] f = open(file) for i in range(5): exec(f.readline()) f.close() [sat, token, play, total_fun, time] = ortoolsSolverComb( num, cap, refill, fun, goal) print('Status:', sat) if sat == 'OPTIMAL': print('Maximum total fun:', total_fun)
flexible
{ "blob_id": "da98835e48a759cbe7bd29ddba1fac20c006827d", "index": 4996, "step-1": "<mask token>\n\n\ndef ortoolsSolverRange(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-100, 1000, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\n<mask token>\n\n\ndef ortoolsSolverComb(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef ortoolsSolverReduceVar(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in\n range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in\n range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverRange(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-100, 1000, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverNeg(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in\n range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in\n range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverComb(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef ortoolsSolverReduceVar(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in\n range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in\n range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverRange(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-100, 1000, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverNeg(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in\n range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in\n range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverComb(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\nif __name__ == '__main__':\n file = sys.argv[1]\n f = open(file)\n for i in range(5):\n exec(f.readline())\n f.close()\n [sat, token, play, total_fun, time] = ortoolsSolverComb(num, cap,\n refill, fun, goal)\n print('Status:', sat)\n if sat == 'OPTIMAL':\n print('Maximum total fun:', total_fun)\n", "step-4": "from ortools.sat.python import cp_model\nimport os\nimport math\nimport csv\nimport sys\n\n\ndef ortoolsSolverReduceVar(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in\n range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in\n range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverRange(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-100, 1000, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverNeg(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i) for i in\n range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i) for i in\n range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun')\n model.Add(total_fun == sum([(fun[i] * play[i]) for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverComb(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i) for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i) for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i) for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i) for i in range(1, num + 1)]\n total_fun = sum([(fun[i] * play[i]) for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <= cap).OnlyEnforceIf(compare\n [i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] + refill\n ).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\nif __name__ == '__main__':\n file = sys.argv[1]\n f = open(file)\n for i in range(5):\n exec(f.readline())\n f.close()\n [sat, token, play, total_fun, time] = ortoolsSolverComb(num, cap,\n refill, fun, goal)\n print('Status:', sat)\n if sat == 'OPTIMAL':\n print('Maximum total fun:', total_fun)\n", "step-5": "from ortools.sat.python import cp_model\nimport os\nimport math\nimport csv\nimport sys\n\ndef ortoolsSolverReduceVar(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i)\n for i in range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i)\n for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i)\n for i in range(1, num + 1)]\n total_fun = sum([fun[i] * play[i] for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <=\n cap).OnlyEnforceIf(compare[i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] +\n refill).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\ndef ortoolsSolverRange(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i)\n for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i)\n for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i)\n for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-100, 1000, 'total_fun')\n model.Add(total_fun == sum([fun[i] * play[i] for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <=\n cap).OnlyEnforceIf(compare[i].Not())\n model.Add(play[i] >= 1)\n model.Add(play[i] <= token[i])\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] +\n refill).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\n\ndef ortoolsSolverNeg(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(-2147483648, 2147483647, 't%i' % i)\n for i in range(1, num + 1)]\n play = [model.NewIntVar(-2147483648, 2147483647, 'q%i' % i)\n for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i)\n for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i)\n for i in range(1, num + 1)]\n total_fun = model.NewIntVar(-2147483648, 2147483647, 'total_fun')\n model.Add(total_fun == sum([fun[i] * play[i] for i in range(num)]))\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <=\n cap).OnlyEnforceIf(compare[i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] +\n refill).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\ndef ortoolsSolverComb(num, cap, refill, fun, goal):\n model = cp_model.CpModel()\n token = [model.NewIntVar(1, cap, 't%i' % i)\n for i in range(1, num + 1)]\n play = [model.NewIntVar(1, cap, 'q%i' % i)\n for i in range(1, num + 1)]\n compare = [model.NewBoolVar('c%i' % i)\n for i in range(1, num + 1)]\n neg = [model.NewBoolVar('n%i' % i)\n for i in range(1, num + 1)]\n total_fun = sum([fun[i] * play[i] for i in range(num)])\n model.Add(total_fun >= goal)\n model.Add(token[0] == cap)\n for i in range(num):\n model.Add(token[i] - play[i] + refill > cap).OnlyEnforceIf(compare[i])\n model.Add(token[i] - play[i] + refill <=\n cap).OnlyEnforceIf(compare[i].Not())\n model.Add(fun[i] < 0).OnlyEnforceIf(neg[i])\n model.Add(fun[i] >= 0).OnlyEnforceIf(neg[i].Not())\n model.Add(play[i] <= token[i])\n model.Add(play[i] == 1).OnlyEnforceIf(neg[i])\n model.Add(play[i] >= 1).OnlyEnforceIf(neg[i].Not())\n for i in range(1, num):\n model.Add(token[i] == cap).OnlyEnforceIf(compare[i - 1])\n model.Add(token[i] == token[i - 1] - play[i - 1] +\n refill).OnlyEnforceIf(compare[i - 1].Not())\n model.Maximize(total_fun)\n solver = cp_model.CpSolver()\n status = solver.Solve(model)\n sat = solver.StatusName()\n time = solver.UserTime()\n if status == cp_model.INFEASIBLE:\n token = None\n play = None\n total_fun = None\n else:\n token = [solver.Value(token[i]) for i in range(num)]\n play = [solver.Value(play[i]) for i in range(num)]\n total_fun = solver.Value(total_fun)\n return [sat, token, play, total_fun, time]\n\nif __name__ == '__main__':\n file = sys.argv[1]\n f = open(file)\n for i in range(5):\n exec(f.readline())\n f.close()\n [sat, token, play, total_fun, time] = ortoolsSolverComb(\n num, cap, refill, fun, goal)\n print('Status:', sat)\n if sat == 'OPTIMAL':\n print('Maximum total fun:', total_fun)\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
<|reserved_special_token_0|> def report_error(error_text): """Logs error to Stackdriver. :param error_text: The text to log to Stackdriver :type error_text: string """ client = google.cloud.logging.Client() logger = client.logger('automated_error_catch') logger.log_text(error_text) <|reserved_special_token_0|> def format_requisites(text, requisites): """If any item requisites specified, adds them to response text data for more holistic response. :param text: The response text data to be formatted :type text: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits_text = '' allergens_text = '' req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': { 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts', 'wheat_barley_rye': 'wheat or barley or rye'}} for i, trait in enumerate(requisites['trait']): if traits_text: traits_text += ', ' traits_text += req_map['trait'].get(trait, trait) traits_text = format_plural(traits_text.rstrip(', ')) for i, allergen in enumerate(requisites['allergens']): if allergens_text: allergens_text += ', ' allergens_text += req_map['allergens'].get(allergen, allergen) allergens_text = format_plural(allergens_text.rstrip(', ')) allergens_text = allergens_text.replace('and', 'or') if allergens_text: allergens_text = ' without ' + allergens_text if traits_text: traits_text = ' that is ' + traits_text if (allergens_text or traits_text ) and 'Sorry, that is not available' in text: traits_text = traits_text.replace(' that is ', '') text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ') text = text.replace('that is not available', '[meal]') return text + allergens_text + ' is not available' else: return text + traits_text + allergens_text def format_plural(text): """Adds 'and' before last item in list of items. :param text: The string to be manipulated :type text: string """ if ',' in text: index = text.rfind(',') + 2 text = text[:index] + 'and ' + text[index:] return text def remove_spaces(url_block): """Removes spaces in url string to create valid url string. :param url_block: The url string to be manipulated :type search: string """ temp = '' for i in range(len(url_block)): if url_block[i] == ' ': temp += '+' else: temp += url_block[i] return temp def check_meal_available(data, meal): """Searches response data to check if meal is available at specified location/date. :param data: MDining API HTTP response data :type data: dict :param meal: Name of meal :type meal: string """ for key in data['menu']['meal']: if data['menu']['meal']['name'].upper() == meal.upper(): if 'course' in data['menu']['meal']: return True return False return False def check_course_available(data, course): """Searches response data to check if course is available in specified meal. :param data: MDining API HTTP response data :type data: dict :param course: Name of course :type course: string """ for i in range(len(data['menu']['meal']['course'])): for key, value in data['menu']['meal']['course'][i].items(): if key == 'name': if value.upper() == course.upper(): return True return False def check_item_specifications(item, traits, allergens): """Returns true if food item is satisfactory with specified traits and allergens. :param item: Data of specific food item :type item: dict :param traits: List of specified traits item must have, can be empty :type traits: list :param allergens: List of allergens item cannot have, can be empty :type allergens: list """ if allergens and 'allergens' in item: for allergen in allergens: if allergen in item['allergens']: return False if not traits: return True if 'trait' in item: for trait in traits: if trait not in item['trait']: return False return True else: return False def get_items(data, requisites, formatted): """Returns string of food items of each course in response data for fulfillmentText in response to Dialogflow. :param data: MDining API HTTP response data :type data: dict :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict :param formatted: True/False - formats response string if true :type formatted: boolean """ returndata = '' traits = requisites['trait'] allergens = requisites['allergens'] if formatted: prefix = '\t' suffix = '\n' else: prefix = '' suffix = ', ' for course in data['menu']['meal']['course']: item_data = [] datatype = type(course['menuitem']) if datatype is list: item_data += course['menuitem'] else: item_data.append(course['menuitem']) for item in item_data: if check_item_specifications(item, traits, allergens ) and 'No Service at this Time' not in item['name']: returndata += prefix + item['name'].rstrip(', ') + suffix return returndata <|reserved_special_token_0|> def find_matches(course_data, possible_matches, item_in, meal_name, requisites ): """Appends matches of specified food item in data of an individual course to list of possible matches. :param course_data: Chosen course subsection of MDining API HTTP response data :type course_data: dict :param possible_matches: List of food items in data that matched user input :type possible_matches: list :param item_in: User input food item :type item_in: string :param meal_name: Name of meal :type meal_name: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits = requisites['trait'] allergens = requisites['allergens'] item_data = [] datatype = type(course_data) if datatype is list: item_data += course_data else: item_data.append(course_data) for item in item_data: if check_item_specifications(item, traits, allergens) == False: continue if item_in.upper() in item['name'].upper(): if item['name'][-1] == ' ': item['name'] = item['name'][:-1] possible_matches.append(item['name'] + ' during ' + meal_name) return possible_matches def request_location_and_meal(date_in, loc_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and meal entities from ``findLocationAndMeal`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param meal_in: Input meal :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ url = ( 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json' ) location = '&location=' date = '&date=' meal = '&meal=' location += loc_in meal += meal_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) data = requests.get(url).json() if check_meal_available(data, meal_in): returnstring = get_items(data, requisites, False).rstrip(', ') return format_plural(returnstring) else: return 'No meal is available' <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def report_error(error_text): """Logs error to Stackdriver. :param error_text: The text to log to Stackdriver :type error_text: string """ client = google.cloud.logging.Client() logger = client.logger('automated_error_catch') logger.log_text(error_text) <|reserved_special_token_0|> def format_requisites(text, requisites): """If any item requisites specified, adds them to response text data for more holistic response. :param text: The response text data to be formatted :type text: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits_text = '' allergens_text = '' req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': { 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts', 'wheat_barley_rye': 'wheat or barley or rye'}} for i, trait in enumerate(requisites['trait']): if traits_text: traits_text += ', ' traits_text += req_map['trait'].get(trait, trait) traits_text = format_plural(traits_text.rstrip(', ')) for i, allergen in enumerate(requisites['allergens']): if allergens_text: allergens_text += ', ' allergens_text += req_map['allergens'].get(allergen, allergen) allergens_text = format_plural(allergens_text.rstrip(', ')) allergens_text = allergens_text.replace('and', 'or') if allergens_text: allergens_text = ' without ' + allergens_text if traits_text: traits_text = ' that is ' + traits_text if (allergens_text or traits_text ) and 'Sorry, that is not available' in text: traits_text = traits_text.replace(' that is ', '') text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ') text = text.replace('that is not available', '[meal]') return text + allergens_text + ' is not available' else: return text + traits_text + allergens_text def format_plural(text): """Adds 'and' before last item in list of items. :param text: The string to be manipulated :type text: string """ if ',' in text: index = text.rfind(',') + 2 text = text[:index] + 'and ' + text[index:] return text def remove_spaces(url_block): """Removes spaces in url string to create valid url string. :param url_block: The url string to be manipulated :type search: string """ temp = '' for i in range(len(url_block)): if url_block[i] == ' ': temp += '+' else: temp += url_block[i] return temp def check_meal_available(data, meal): """Searches response data to check if meal is available at specified location/date. :param data: MDining API HTTP response data :type data: dict :param meal: Name of meal :type meal: string """ for key in data['menu']['meal']: if data['menu']['meal']['name'].upper() == meal.upper(): if 'course' in data['menu']['meal']: return True return False return False def check_course_available(data, course): """Searches response data to check if course is available in specified meal. :param data: MDining API HTTP response data :type data: dict :param course: Name of course :type course: string """ for i in range(len(data['menu']['meal']['course'])): for key, value in data['menu']['meal']['course'][i].items(): if key == 'name': if value.upper() == course.upper(): return True return False def check_item_specifications(item, traits, allergens): """Returns true if food item is satisfactory with specified traits and allergens. :param item: Data of specific food item :type item: dict :param traits: List of specified traits item must have, can be empty :type traits: list :param allergens: List of allergens item cannot have, can be empty :type allergens: list """ if allergens and 'allergens' in item: for allergen in allergens: if allergen in item['allergens']: return False if not traits: return True if 'trait' in item: for trait in traits: if trait not in item['trait']: return False return True else: return False def get_items(data, requisites, formatted): """Returns string of food items of each course in response data for fulfillmentText in response to Dialogflow. :param data: MDining API HTTP response data :type data: dict :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict :param formatted: True/False - formats response string if true :type formatted: boolean """ returndata = '' traits = requisites['trait'] allergens = requisites['allergens'] if formatted: prefix = '\t' suffix = '\n' else: prefix = '' suffix = ', ' for course in data['menu']['meal']['course']: item_data = [] datatype = type(course['menuitem']) if datatype is list: item_data += course['menuitem'] else: item_data.append(course['menuitem']) for item in item_data: if check_item_specifications(item, traits, allergens ) and 'No Service at this Time' not in item['name']: returndata += prefix + item['name'].rstrip(', ') + suffix return returndata def find_item_formatting(possible_matches): """Formatting list of possible matches into more natural sentence structure by removing redundancy: [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] -> [Chicken, chicken wings during lunch, and chicken patty during dinner] :param possible_matches: List of food items in data that matched user input :type possible_matches: list """ for i in range(len(possible_matches)): if i == 0: continue words = possible_matches[i].split() if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[ -1]: length = len(possible_matches[i].split()[-1]) + 8 possible_matches[i - 1] = possible_matches[i - 1][:length * -1] return possible_matches def find_matches(course_data, possible_matches, item_in, meal_name, requisites ): """Appends matches of specified food item in data of an individual course to list of possible matches. :param course_data: Chosen course subsection of MDining API HTTP response data :type course_data: dict :param possible_matches: List of food items in data that matched user input :type possible_matches: list :param item_in: User input food item :type item_in: string :param meal_name: Name of meal :type meal_name: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits = requisites['trait'] allergens = requisites['allergens'] item_data = [] datatype = type(course_data) if datatype is list: item_data += course_data else: item_data.append(course_data) for item in item_data: if check_item_specifications(item, traits, allergens) == False: continue if item_in.upper() in item['name'].upper(): if item['name'][-1] == ' ': item['name'] = item['name'][:-1] possible_matches.append(item['name'] + ' during ' + meal_name) return possible_matches def request_location_and_meal(date_in, loc_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and meal entities from ``findLocationAndMeal`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param meal_in: Input meal :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ url = ( 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json' ) location = '&location=' date = '&date=' meal = '&meal=' location += loc_in meal += meal_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) data = requests.get(url).json() if check_meal_available(data, meal_in): returnstring = get_items(data, requisites, False).rstrip(', ') return format_plural(returnstring) else: return 'No meal is available' def request_item(date_in, loc_in, item_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and food item entities (and meal entity if included) from ``findItem`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param item_in: Input food item :type item_in: string :param meal_in: Input meal, can be empty string if not specified :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ secrets = get_secrets() url = secrets.get('m_dining_api_main') location = '&location=' date = '&date=' meal = '&meal=' location += loc_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) if meal_in == '': meal_entered = False else: meal_entered = True data = requests.get(url).json() possible_matches = [] for i in data['menu']['meal']: if meal_entered and i['name'].upper() != meal_in.upper(): continue if 'course' not in i: continue for j in i['course']: for key, value in j.items(): if key == 'name': course_data = j['menuitem'] meal_name = i['name'] possible_matches = find_matches(course_data, possible_matches, item_in, meal_name, requisites) if possible_matches: possible_matches = find_item_formatting(possible_matches) text = 'Yes, there is ' for i in range(len(possible_matches)): if len(possible_matches) > 1 and i == len(possible_matches) - 1: text += ' and' text += ' ' + possible_matches[i] if i != len(possible_matches) - 1: text += ',' else: text = 'Sorry, that is not available' return {'fulfillmentText': text} <|reserved_special_token_1|> <|reserved_special_token_0|> def report_error(error_text): """Logs error to Stackdriver. :param error_text: The text to log to Stackdriver :type error_text: string """ client = google.cloud.logging.Client() logger = client.logger('automated_error_catch') logger.log_text(error_text) def get_secrets(): """Fetches secrets from Datastore and returns them as a list. """ client = datastore.Client() query = client.query(kind='env_vars') entity = query.fetch() secrets = list(entity)[0] return secrets def format_requisites(text, requisites): """If any item requisites specified, adds them to response text data for more holistic response. :param text: The response text data to be formatted :type text: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits_text = '' allergens_text = '' req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': { 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts', 'wheat_barley_rye': 'wheat or barley or rye'}} for i, trait in enumerate(requisites['trait']): if traits_text: traits_text += ', ' traits_text += req_map['trait'].get(trait, trait) traits_text = format_plural(traits_text.rstrip(', ')) for i, allergen in enumerate(requisites['allergens']): if allergens_text: allergens_text += ', ' allergens_text += req_map['allergens'].get(allergen, allergen) allergens_text = format_plural(allergens_text.rstrip(', ')) allergens_text = allergens_text.replace('and', 'or') if allergens_text: allergens_text = ' without ' + allergens_text if traits_text: traits_text = ' that is ' + traits_text if (allergens_text or traits_text ) and 'Sorry, that is not available' in text: traits_text = traits_text.replace(' that is ', '') text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ') text = text.replace('that is not available', '[meal]') return text + allergens_text + ' is not available' else: return text + traits_text + allergens_text def format_plural(text): """Adds 'and' before last item in list of items. :param text: The string to be manipulated :type text: string """ if ',' in text: index = text.rfind(',') + 2 text = text[:index] + 'and ' + text[index:] return text def remove_spaces(url_block): """Removes spaces in url string to create valid url string. :param url_block: The url string to be manipulated :type search: string """ temp = '' for i in range(len(url_block)): if url_block[i] == ' ': temp += '+' else: temp += url_block[i] return temp def check_meal_available(data, meal): """Searches response data to check if meal is available at specified location/date. :param data: MDining API HTTP response data :type data: dict :param meal: Name of meal :type meal: string """ for key in data['menu']['meal']: if data['menu']['meal']['name'].upper() == meal.upper(): if 'course' in data['menu']['meal']: return True return False return False def check_course_available(data, course): """Searches response data to check if course is available in specified meal. :param data: MDining API HTTP response data :type data: dict :param course: Name of course :type course: string """ for i in range(len(data['menu']['meal']['course'])): for key, value in data['menu']['meal']['course'][i].items(): if key == 'name': if value.upper() == course.upper(): return True return False def check_item_specifications(item, traits, allergens): """Returns true if food item is satisfactory with specified traits and allergens. :param item: Data of specific food item :type item: dict :param traits: List of specified traits item must have, can be empty :type traits: list :param allergens: List of allergens item cannot have, can be empty :type allergens: list """ if allergens and 'allergens' in item: for allergen in allergens: if allergen in item['allergens']: return False if not traits: return True if 'trait' in item: for trait in traits: if trait not in item['trait']: return False return True else: return False def get_items(data, requisites, formatted): """Returns string of food items of each course in response data for fulfillmentText in response to Dialogflow. :param data: MDining API HTTP response data :type data: dict :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict :param formatted: True/False - formats response string if true :type formatted: boolean """ returndata = '' traits = requisites['trait'] allergens = requisites['allergens'] if formatted: prefix = '\t' suffix = '\n' else: prefix = '' suffix = ', ' for course in data['menu']['meal']['course']: item_data = [] datatype = type(course['menuitem']) if datatype is list: item_data += course['menuitem'] else: item_data.append(course['menuitem']) for item in item_data: if check_item_specifications(item, traits, allergens ) and 'No Service at this Time' not in item['name']: returndata += prefix + item['name'].rstrip(', ') + suffix return returndata def find_item_formatting(possible_matches): """Formatting list of possible matches into more natural sentence structure by removing redundancy: [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] -> [Chicken, chicken wings during lunch, and chicken patty during dinner] :param possible_matches: List of food items in data that matched user input :type possible_matches: list """ for i in range(len(possible_matches)): if i == 0: continue words = possible_matches[i].split() if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[ -1]: length = len(possible_matches[i].split()[-1]) + 8 possible_matches[i - 1] = possible_matches[i - 1][:length * -1] return possible_matches def find_matches(course_data, possible_matches, item_in, meal_name, requisites ): """Appends matches of specified food item in data of an individual course to list of possible matches. :param course_data: Chosen course subsection of MDining API HTTP response data :type course_data: dict :param possible_matches: List of food items in data that matched user input :type possible_matches: list :param item_in: User input food item :type item_in: string :param meal_name: Name of meal :type meal_name: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits = requisites['trait'] allergens = requisites['allergens'] item_data = [] datatype = type(course_data) if datatype is list: item_data += course_data else: item_data.append(course_data) for item in item_data: if check_item_specifications(item, traits, allergens) == False: continue if item_in.upper() in item['name'].upper(): if item['name'][-1] == ' ': item['name'] = item['name'][:-1] possible_matches.append(item['name'] + ' during ' + meal_name) return possible_matches def request_location_and_meal(date_in, loc_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and meal entities from ``findLocationAndMeal`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param meal_in: Input meal :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ url = ( 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json' ) location = '&location=' date = '&date=' meal = '&meal=' location += loc_in meal += meal_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) data = requests.get(url).json() if check_meal_available(data, meal_in): returnstring = get_items(data, requisites, False).rstrip(', ') return format_plural(returnstring) else: return 'No meal is available' def request_item(date_in, loc_in, item_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and food item entities (and meal entity if included) from ``findItem`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param item_in: Input food item :type item_in: string :param meal_in: Input meal, can be empty string if not specified :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ secrets = get_secrets() url = secrets.get('m_dining_api_main') location = '&location=' date = '&date=' meal = '&meal=' location += loc_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) if meal_in == '': meal_entered = False else: meal_entered = True data = requests.get(url).json() possible_matches = [] for i in data['menu']['meal']: if meal_entered and i['name'].upper() != meal_in.upper(): continue if 'course' not in i: continue for j in i['course']: for key, value in j.items(): if key == 'name': course_data = j['menuitem'] meal_name = i['name'] possible_matches = find_matches(course_data, possible_matches, item_in, meal_name, requisites) if possible_matches: possible_matches = find_item_formatting(possible_matches) text = 'Yes, there is ' for i in range(len(possible_matches)): if len(possible_matches) > 1 and i == len(possible_matches) - 1: text += ' and' text += ' ' + possible_matches[i] if i != len(possible_matches) - 1: text += ',' else: text = 'Sorry, that is not available' return {'fulfillmentText': text} <|reserved_special_token_1|> import requests from google.cloud import datastore import google.cloud.logging def report_error(error_text): """Logs error to Stackdriver. :param error_text: The text to log to Stackdriver :type error_text: string """ client = google.cloud.logging.Client() logger = client.logger('automated_error_catch') logger.log_text(error_text) def get_secrets(): """Fetches secrets from Datastore and returns them as a list. """ client = datastore.Client() query = client.query(kind='env_vars') entity = query.fetch() secrets = list(entity)[0] return secrets def format_requisites(text, requisites): """If any item requisites specified, adds them to response text data for more holistic response. :param text: The response text data to be formatted :type text: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits_text = '' allergens_text = '' req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': { 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts', 'wheat_barley_rye': 'wheat or barley or rye'}} for i, trait in enumerate(requisites['trait']): if traits_text: traits_text += ', ' traits_text += req_map['trait'].get(trait, trait) traits_text = format_plural(traits_text.rstrip(', ')) for i, allergen in enumerate(requisites['allergens']): if allergens_text: allergens_text += ', ' allergens_text += req_map['allergens'].get(allergen, allergen) allergens_text = format_plural(allergens_text.rstrip(', ')) allergens_text = allergens_text.replace('and', 'or') if allergens_text: allergens_text = ' without ' + allergens_text if traits_text: traits_text = ' that is ' + traits_text if (allergens_text or traits_text ) and 'Sorry, that is not available' in text: traits_text = traits_text.replace(' that is ', '') text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ') text = text.replace('that is not available', '[meal]') return text + allergens_text + ' is not available' else: return text + traits_text + allergens_text def format_plural(text): """Adds 'and' before last item in list of items. :param text: The string to be manipulated :type text: string """ if ',' in text: index = text.rfind(',') + 2 text = text[:index] + 'and ' + text[index:] return text def remove_spaces(url_block): """Removes spaces in url string to create valid url string. :param url_block: The url string to be manipulated :type search: string """ temp = '' for i in range(len(url_block)): if url_block[i] == ' ': temp += '+' else: temp += url_block[i] return temp def check_meal_available(data, meal): """Searches response data to check if meal is available at specified location/date. :param data: MDining API HTTP response data :type data: dict :param meal: Name of meal :type meal: string """ for key in data['menu']['meal']: if data['menu']['meal']['name'].upper() == meal.upper(): if 'course' in data['menu']['meal']: return True return False return False def check_course_available(data, course): """Searches response data to check if course is available in specified meal. :param data: MDining API HTTP response data :type data: dict :param course: Name of course :type course: string """ for i in range(len(data['menu']['meal']['course'])): for key, value in data['menu']['meal']['course'][i].items(): if key == 'name': if value.upper() == course.upper(): return True return False def check_item_specifications(item, traits, allergens): """Returns true if food item is satisfactory with specified traits and allergens. :param item: Data of specific food item :type item: dict :param traits: List of specified traits item must have, can be empty :type traits: list :param allergens: List of allergens item cannot have, can be empty :type allergens: list """ if allergens and 'allergens' in item: for allergen in allergens: if allergen in item['allergens']: return False if not traits: return True if 'trait' in item: for trait in traits: if trait not in item['trait']: return False return True else: return False def get_items(data, requisites, formatted): """Returns string of food items of each course in response data for fulfillmentText in response to Dialogflow. :param data: MDining API HTTP response data :type data: dict :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict :param formatted: True/False - formats response string if true :type formatted: boolean """ returndata = '' traits = requisites['trait'] allergens = requisites['allergens'] if formatted: prefix = '\t' suffix = '\n' else: prefix = '' suffix = ', ' for course in data['menu']['meal']['course']: item_data = [] datatype = type(course['menuitem']) if datatype is list: item_data += course['menuitem'] else: item_data.append(course['menuitem']) for item in item_data: if check_item_specifications(item, traits, allergens ) and 'No Service at this Time' not in item['name']: returndata += prefix + item['name'].rstrip(', ') + suffix return returndata def find_item_formatting(possible_matches): """Formatting list of possible matches into more natural sentence structure by removing redundancy: [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] -> [Chicken, chicken wings during lunch, and chicken patty during dinner] :param possible_matches: List of food items in data that matched user input :type possible_matches: list """ for i in range(len(possible_matches)): if i == 0: continue words = possible_matches[i].split() if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[ -1]: length = len(possible_matches[i].split()[-1]) + 8 possible_matches[i - 1] = possible_matches[i - 1][:length * -1] return possible_matches def find_matches(course_data, possible_matches, item_in, meal_name, requisites ): """Appends matches of specified food item in data of an individual course to list of possible matches. :param course_data: Chosen course subsection of MDining API HTTP response data :type course_data: dict :param possible_matches: List of food items in data that matched user input :type possible_matches: list :param item_in: User input food item :type item_in: string :param meal_name: Name of meal :type meal_name: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits = requisites['trait'] allergens = requisites['allergens'] item_data = [] datatype = type(course_data) if datatype is list: item_data += course_data else: item_data.append(course_data) for item in item_data: if check_item_specifications(item, traits, allergens) == False: continue if item_in.upper() in item['name'].upper(): if item['name'][-1] == ' ': item['name'] = item['name'][:-1] possible_matches.append(item['name'] + ' during ' + meal_name) return possible_matches def request_location_and_meal(date_in, loc_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and meal entities from ``findLocationAndMeal`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param meal_in: Input meal :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ url = ( 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json' ) location = '&location=' date = '&date=' meal = '&meal=' location += loc_in meal += meal_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) data = requests.get(url).json() if check_meal_available(data, meal_in): returnstring = get_items(data, requisites, False).rstrip(', ') return format_plural(returnstring) else: return 'No meal is available' def request_item(date_in, loc_in, item_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and food item entities (and meal entity if included) from ``findItem`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param item_in: Input food item :type item_in: string :param meal_in: Input meal, can be empty string if not specified :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ secrets = get_secrets() url = secrets.get('m_dining_api_main') location = '&location=' date = '&date=' meal = '&meal=' location += loc_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) if meal_in == '': meal_entered = False else: meal_entered = True data = requests.get(url).json() possible_matches = [] for i in data['menu']['meal']: if meal_entered and i['name'].upper() != meal_in.upper(): continue if 'course' not in i: continue for j in i['course']: for key, value in j.items(): if key == 'name': course_data = j['menuitem'] meal_name = i['name'] possible_matches = find_matches(course_data, possible_matches, item_in, meal_name, requisites) if possible_matches: possible_matches = find_item_formatting(possible_matches) text = 'Yes, there is ' for i in range(len(possible_matches)): if len(possible_matches) > 1 and i == len(possible_matches) - 1: text += ' and' text += ' ' + possible_matches[i] if i != len(possible_matches) - 1: text += ',' else: text = 'Sorry, that is not available' return {'fulfillmentText': text} <|reserved_special_token_1|> import requests from google.cloud import datastore import google.cloud.logging ###Helper functions def report_error(error_text): """Logs error to Stackdriver. :param error_text: The text to log to Stackdriver :type error_text: string """ client = google.cloud.logging.Client() logger = client.logger("automated_error_catch") logger.log_text(error_text) def get_secrets(): """Fetches secrets from Datastore and returns them as a list. """ client = datastore.Client() query = client.query(kind='env_vars') entity = query.fetch() secrets = list(entity)[0] return secrets def format_requisites(text, requisites): """If any item requisites specified, adds them to response text data for more holistic response. :param text: The response text data to be formatted :type text: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits_text = '' allergens_text = '' req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': {'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts', 'wheat_barley_rye': 'wheat or barley or rye'}} #If traits specified, extract into a string for i, trait in enumerate(requisites['trait']): if traits_text: traits_text += ', ' traits_text += req_map['trait'].get(trait, trait) traits_text = format_plural(traits_text.rstrip(', ')) #If allergens specified, extract into a string for i, allergen in enumerate(requisites['allergens']): if allergens_text: allergens_text += ', ' allergens_text += req_map['allergens'].get(allergen, allergen) allergens_text = format_plural(allergens_text.rstrip(', ')) allergens_text = allergens_text.replace('and', 'or') #Requisite-specific language if allergens_text: allergens_text = ' without ' + allergens_text if traits_text: traits_text = ' that is ' + traits_text #Return combined string if (allergens_text or traits_text) and 'Sorry, that is not available' in text: traits_text = traits_text.replace(' that is ', '') text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ') text = text.replace('that is not available', '[meal]') return text + allergens_text + ' is not available' else: return text + traits_text + allergens_text def format_plural(text): """Adds 'and' before last item in list of items. :param text: The string to be manipulated :type text: string """ if ',' in text: index = text.rfind(',') + 2 text = text[:index] + 'and ' + text[index:] return text def remove_spaces(url_block): """Removes spaces in url string to create valid url string. :param url_block: The url string to be manipulated :type search: string """ temp = "" for i in range(len(url_block)): if url_block[i] == ' ': temp += '+' else: temp += url_block[i] return temp def check_meal_available(data, meal): """Searches response data to check if meal is available at specified location/date. :param data: MDining API HTTP response data :type data: dict :param meal: Name of meal :type meal: string """ for key in data['menu']['meal']: if data['menu']['meal']['name'].upper() == meal.upper(): if 'course' in data['menu']['meal']: return True return False return False def check_course_available(data, course): """Searches response data to check if course is available in specified meal. :param data: MDining API HTTP response data :type data: dict :param course: Name of course :type course: string """ for i in range(len(data['menu']['meal']['course'])): for key, value in data['menu']['meal']['course'][i].items(): if key == 'name': if value.upper() == course.upper(): return True return False def check_item_specifications(item, traits, allergens): """Returns true if food item is satisfactory with specified traits and allergens. :param item: Data of specific food item :type item: dict :param traits: List of specified traits item must have, can be empty :type traits: list :param allergens: List of allergens item cannot have, can be empty :type allergens: list """ #Return false if allergens list isn't empty and any allergens found if allergens and 'allergens' in item: for allergen in allergens: if allergen in item['allergens']: return False #Return true if traits list empty if not traits: return True #Return false if traits list isn't empty and any traits are missing if 'trait' in item: for trait in traits: if trait not in item['trait']: return False #All traits found, return true return True else: return False def get_items(data, requisites, formatted): """Returns string of food items of each course in response data for fulfillmentText in response to Dialogflow. :param data: MDining API HTTP response data :type data: dict :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict :param formatted: True/False - formats response string if true :type formatted: boolean """ returndata = "" traits = requisites['trait'] allergens = requisites['allergens'] if formatted: prefix = '\t' suffix = '\n' else: prefix = '' suffix = ', ' for course in data['menu']['meal']['course']: item_data = [] datatype = type(course['menuitem']) if datatype is list: item_data += course['menuitem'] else: item_data.append(course['menuitem']) for item in item_data: if check_item_specifications(item, traits, allergens) and 'No Service at this Time' not in item['name']: returndata += (prefix + (item['name']).rstrip(', ') + suffix) return returndata def find_item_formatting(possible_matches): """Formatting list of possible matches into more natural sentence structure by removing redundancy: [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] -> [Chicken, chicken wings during lunch, and chicken patty during dinner] :param possible_matches: List of food items in data that matched user input :type possible_matches: list """ for i in range(len(possible_matches)): if i == 0: continue words = possible_matches[i].split() #If previous term has same ending ("Dinner") as current term, remove it if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[-1]: #8 = amount of characters taken up by [' during '] length = len(possible_matches[i].split()[-1]) + 8 possible_matches[i - 1] = possible_matches[i - 1][:length*-1] return possible_matches def find_matches(course_data, possible_matches, item_in, meal_name, requisites): """Appends matches of specified food item in data of an individual course to list of possible matches. :param course_data: Chosen course subsection of MDining API HTTP response data :type course_data: dict :param possible_matches: List of food items in data that matched user input :type possible_matches: list :param item_in: User input food item :type item_in: string :param meal_name: Name of meal :type meal_name: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ traits = requisites['trait'] allergens = requisites['allergens'] item_data = [] datatype = type(course_data) if datatype is list: item_data += course_data else: item_data.append(course_data) for item in item_data: if check_item_specifications(item, traits, allergens) == False: continue if item_in.upper() in item['name'].upper(): if item['name'][-1] == ' ': item['name'] = item['name'][:-1] possible_matches.append(item['name'] + ' during ' + meal_name) return possible_matches ######################################################################### ###Primary Handler Functions def request_location_and_meal(date_in, loc_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and meal entities from ``findLocationAndMeal`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param meal_in: Input meal :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ #preset vars url = 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json' location = '&location=' date = '&date=' meal = '&meal=' #API url concatenation location += loc_in meal += meal_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) #fetching json data = requests.get(url).json() #checking if specified meal available if check_meal_available(data, meal_in): returnstring = (get_items(data, requisites, False)).rstrip(', ') return format_plural(returnstring) else: return "No meal is available" #Handle meal item data request def request_item(date_in, loc_in, item_in, meal_in, requisites): """Handles searching for appropriate data response for valid specified location and food item entities (and meal entity if included) from ``findItem`` intent. :param date_in: Input date :type date_in: string :param loc_in: Input location :type loc_in: string :param item_in: Input food item :type item_in: string :param meal_in: Input meal, can be empty string if not specified :type meal_in: string :param requisites: Contains information food item must comply with (traits, allergens, etc) :type requisites: dict """ secrets = get_secrets() url = secrets.get('m_dining_api_main') location = '&location=' date = '&date=' meal = '&meal=' #API url concatenation location += loc_in date += str(date_in) url = url + location + date + meal url = remove_spaces(url) if meal_in == '': meal_entered = False else: meal_entered = True #fetching json data = requests.get(url).json() possible_matches = [] #Loop through meals for i in data['menu']['meal']: #If meal specified, only check specified meal if meal_entered and i['name'].upper() != meal_in.upper(): continue #Skip meal if no food items available if 'course' not in i: continue #Loop through food items in course for j in i['course']: for key, value in j.items(): if key == 'name': course_data = j['menuitem'] meal_name = i['name'] #Append matches to specified item to possible_matches list possible_matches = find_matches(course_data, possible_matches, item_in, meal_name, requisites) #Specified item found if possible_matches: possible_matches = find_item_formatting(possible_matches) text = 'Yes, there is ' for i in range(len(possible_matches)): if len(possible_matches) > 1 and (i == len(possible_matches) - 1): text += ' and' text += ' ' + possible_matches[i] if i != len(possible_matches) - 1: text += ',' #Specified item not found else: text = 'Sorry, that is not available' return {'fulfillmentText': text}
flexible
{ "blob_id": "bf2b3b74f772026328cdd04412455ee758c43d3f", "index": 8142, "step-1": "<mask token>\n\n\ndef report_error(error_text):\n \"\"\"Logs error to Stackdriver.\n :param error_text: The text to log to Stackdriver\n :type error_text: string\n \"\"\"\n client = google.cloud.logging.Client()\n logger = client.logger('automated_error_catch')\n logger.log_text(error_text)\n\n\n<mask token>\n\n\ndef format_requisites(text, requisites):\n \"\"\"If any item requisites specified, adds them to response text data for more holistic response.\n\n :param text: The response text data to be formatted\n :type text: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits_text = ''\n allergens_text = ''\n req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': {\n 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts',\n 'wheat_barley_rye': 'wheat or barley or rye'}}\n for i, trait in enumerate(requisites['trait']):\n if traits_text:\n traits_text += ', '\n traits_text += req_map['trait'].get(trait, trait)\n traits_text = format_plural(traits_text.rstrip(', '))\n for i, allergen in enumerate(requisites['allergens']):\n if allergens_text:\n allergens_text += ', '\n allergens_text += req_map['allergens'].get(allergen, allergen)\n allergens_text = format_plural(allergens_text.rstrip(', '))\n allergens_text = allergens_text.replace('and', 'or')\n if allergens_text:\n allergens_text = ' without ' + allergens_text\n if traits_text:\n traits_text = ' that is ' + traits_text\n if (allergens_text or traits_text\n ) and 'Sorry, that is not available' in text:\n traits_text = traits_text.replace(' that is ', '')\n text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ')\n text = text.replace('that is not available', '[meal]')\n return text + allergens_text + ' is not available'\n else:\n return text + traits_text + allergens_text\n\n\ndef format_plural(text):\n \"\"\"Adds 'and' before last item in list of items.\n\n :param text: The string to be manipulated\n :type text: string\n \"\"\"\n if ',' in text:\n index = text.rfind(',') + 2\n text = text[:index] + 'and ' + text[index:]\n return text\n\n\ndef remove_spaces(url_block):\n \"\"\"Removes spaces in url string to create valid url string.\n\n :param url_block: The url string to be manipulated\n :type search: string\n \"\"\"\n temp = ''\n for i in range(len(url_block)):\n if url_block[i] == ' ':\n temp += '+'\n else:\n temp += url_block[i]\n return temp\n\n\ndef check_meal_available(data, meal):\n \"\"\"Searches response data to check if meal is available at specified location/date.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param meal: Name of meal\n :type meal: string\n \"\"\"\n for key in data['menu']['meal']:\n if data['menu']['meal']['name'].upper() == meal.upper():\n if 'course' in data['menu']['meal']:\n return True\n return False\n return False\n\n\ndef check_course_available(data, course):\n \"\"\"Searches response data to check if course is available in specified meal.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param course: Name of course\n :type course: string\n \"\"\"\n for i in range(len(data['menu']['meal']['course'])):\n for key, value in data['menu']['meal']['course'][i].items():\n if key == 'name':\n if value.upper() == course.upper():\n return True\n return False\n\n\ndef check_item_specifications(item, traits, allergens):\n \"\"\"Returns true if food item is satisfactory with specified traits and allergens.\n\n :param item: Data of specific food item\n :type item: dict\n :param traits: List of specified traits item must have, can be empty\n :type traits: list\n :param allergens: List of allergens item cannot have, can be empty\n :type allergens: list\n \"\"\"\n if allergens and 'allergens' in item:\n for allergen in allergens:\n if allergen in item['allergens']:\n return False\n if not traits:\n return True\n if 'trait' in item:\n for trait in traits:\n if trait not in item['trait']:\n return False\n return True\n else:\n return False\n\n\ndef get_items(data, requisites, formatted):\n \"\"\"Returns string of food items of each course in response data for\n fulfillmentText in response to Dialogflow.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n :param formatted: True/False - formats response string if true\n :type formatted: boolean\n \"\"\"\n returndata = ''\n traits = requisites['trait']\n allergens = requisites['allergens']\n if formatted:\n prefix = '\\t'\n suffix = '\\n'\n else:\n prefix = ''\n suffix = ', '\n for course in data['menu']['meal']['course']:\n item_data = []\n datatype = type(course['menuitem'])\n if datatype is list:\n item_data += course['menuitem']\n else:\n item_data.append(course['menuitem'])\n for item in item_data:\n if check_item_specifications(item, traits, allergens\n ) and 'No Service at this Time' not in item['name']:\n returndata += prefix + item['name'].rstrip(', ') + suffix\n return returndata\n\n\n<mask token>\n\n\ndef find_matches(course_data, possible_matches, item_in, meal_name, requisites\n ):\n \"\"\"Appends matches of specified food item in data of an individual course to\n list of possible matches.\n\n :param course_data: Chosen course subsection of MDining API HTTP response data\n :type course_data: dict\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n :param item_in: User input food item\n :type item_in: string\n :param meal_name: Name of meal\n :type meal_name: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits = requisites['trait']\n allergens = requisites['allergens']\n item_data = []\n datatype = type(course_data)\n if datatype is list:\n item_data += course_data\n else:\n item_data.append(course_data)\n for item in item_data:\n if check_item_specifications(item, traits, allergens) == False:\n continue\n if item_in.upper() in item['name'].upper():\n if item['name'][-1] == ' ':\n item['name'] = item['name'][:-1]\n possible_matches.append(item['name'] + ' during ' + meal_name)\n return possible_matches\n\n\ndef request_location_and_meal(date_in, loc_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and meal entities from ``findLocationAndMeal`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param meal_in: Input meal\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n url = (\n 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json'\n )\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n meal += meal_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n data = requests.get(url).json()\n if check_meal_available(data, meal_in):\n returnstring = get_items(data, requisites, False).rstrip(', ')\n return format_plural(returnstring)\n else:\n return 'No meal is available'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef report_error(error_text):\n \"\"\"Logs error to Stackdriver.\n :param error_text: The text to log to Stackdriver\n :type error_text: string\n \"\"\"\n client = google.cloud.logging.Client()\n logger = client.logger('automated_error_catch')\n logger.log_text(error_text)\n\n\n<mask token>\n\n\ndef format_requisites(text, requisites):\n \"\"\"If any item requisites specified, adds them to response text data for more holistic response.\n\n :param text: The response text data to be formatted\n :type text: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits_text = ''\n allergens_text = ''\n req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': {\n 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts',\n 'wheat_barley_rye': 'wheat or barley or rye'}}\n for i, trait in enumerate(requisites['trait']):\n if traits_text:\n traits_text += ', '\n traits_text += req_map['trait'].get(trait, trait)\n traits_text = format_plural(traits_text.rstrip(', '))\n for i, allergen in enumerate(requisites['allergens']):\n if allergens_text:\n allergens_text += ', '\n allergens_text += req_map['allergens'].get(allergen, allergen)\n allergens_text = format_plural(allergens_text.rstrip(', '))\n allergens_text = allergens_text.replace('and', 'or')\n if allergens_text:\n allergens_text = ' without ' + allergens_text\n if traits_text:\n traits_text = ' that is ' + traits_text\n if (allergens_text or traits_text\n ) and 'Sorry, that is not available' in text:\n traits_text = traits_text.replace(' that is ', '')\n text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ')\n text = text.replace('that is not available', '[meal]')\n return text + allergens_text + ' is not available'\n else:\n return text + traits_text + allergens_text\n\n\ndef format_plural(text):\n \"\"\"Adds 'and' before last item in list of items.\n\n :param text: The string to be manipulated\n :type text: string\n \"\"\"\n if ',' in text:\n index = text.rfind(',') + 2\n text = text[:index] + 'and ' + text[index:]\n return text\n\n\ndef remove_spaces(url_block):\n \"\"\"Removes spaces in url string to create valid url string.\n\n :param url_block: The url string to be manipulated\n :type search: string\n \"\"\"\n temp = ''\n for i in range(len(url_block)):\n if url_block[i] == ' ':\n temp += '+'\n else:\n temp += url_block[i]\n return temp\n\n\ndef check_meal_available(data, meal):\n \"\"\"Searches response data to check if meal is available at specified location/date.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param meal: Name of meal\n :type meal: string\n \"\"\"\n for key in data['menu']['meal']:\n if data['menu']['meal']['name'].upper() == meal.upper():\n if 'course' in data['menu']['meal']:\n return True\n return False\n return False\n\n\ndef check_course_available(data, course):\n \"\"\"Searches response data to check if course is available in specified meal.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param course: Name of course\n :type course: string\n \"\"\"\n for i in range(len(data['menu']['meal']['course'])):\n for key, value in data['menu']['meal']['course'][i].items():\n if key == 'name':\n if value.upper() == course.upper():\n return True\n return False\n\n\ndef check_item_specifications(item, traits, allergens):\n \"\"\"Returns true if food item is satisfactory with specified traits and allergens.\n\n :param item: Data of specific food item\n :type item: dict\n :param traits: List of specified traits item must have, can be empty\n :type traits: list\n :param allergens: List of allergens item cannot have, can be empty\n :type allergens: list\n \"\"\"\n if allergens and 'allergens' in item:\n for allergen in allergens:\n if allergen in item['allergens']:\n return False\n if not traits:\n return True\n if 'trait' in item:\n for trait in traits:\n if trait not in item['trait']:\n return False\n return True\n else:\n return False\n\n\ndef get_items(data, requisites, formatted):\n \"\"\"Returns string of food items of each course in response data for\n fulfillmentText in response to Dialogflow.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n :param formatted: True/False - formats response string if true\n :type formatted: boolean\n \"\"\"\n returndata = ''\n traits = requisites['trait']\n allergens = requisites['allergens']\n if formatted:\n prefix = '\\t'\n suffix = '\\n'\n else:\n prefix = ''\n suffix = ', '\n for course in data['menu']['meal']['course']:\n item_data = []\n datatype = type(course['menuitem'])\n if datatype is list:\n item_data += course['menuitem']\n else:\n item_data.append(course['menuitem'])\n for item in item_data:\n if check_item_specifications(item, traits, allergens\n ) and 'No Service at this Time' not in item['name']:\n returndata += prefix + item['name'].rstrip(', ') + suffix\n return returndata\n\n\ndef find_item_formatting(possible_matches):\n \"\"\"Formatting list of possible matches into more natural sentence structure\n by removing redundancy:\n [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] ->\n [Chicken, chicken wings during lunch, and chicken patty during dinner]\n\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n \"\"\"\n for i in range(len(possible_matches)):\n if i == 0:\n continue\n words = possible_matches[i].split()\n if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[\n -1]:\n length = len(possible_matches[i].split()[-1]) + 8\n possible_matches[i - 1] = possible_matches[i - 1][:length * -1]\n return possible_matches\n\n\ndef find_matches(course_data, possible_matches, item_in, meal_name, requisites\n ):\n \"\"\"Appends matches of specified food item in data of an individual course to\n list of possible matches.\n\n :param course_data: Chosen course subsection of MDining API HTTP response data\n :type course_data: dict\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n :param item_in: User input food item\n :type item_in: string\n :param meal_name: Name of meal\n :type meal_name: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits = requisites['trait']\n allergens = requisites['allergens']\n item_data = []\n datatype = type(course_data)\n if datatype is list:\n item_data += course_data\n else:\n item_data.append(course_data)\n for item in item_data:\n if check_item_specifications(item, traits, allergens) == False:\n continue\n if item_in.upper() in item['name'].upper():\n if item['name'][-1] == ' ':\n item['name'] = item['name'][:-1]\n possible_matches.append(item['name'] + ' during ' + meal_name)\n return possible_matches\n\n\ndef request_location_and_meal(date_in, loc_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and meal entities from ``findLocationAndMeal`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param meal_in: Input meal\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n url = (\n 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json'\n )\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n meal += meal_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n data = requests.get(url).json()\n if check_meal_available(data, meal_in):\n returnstring = get_items(data, requisites, False).rstrip(', ')\n return format_plural(returnstring)\n else:\n return 'No meal is available'\n\n\ndef request_item(date_in, loc_in, item_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and food item entities (and meal entity if included) from ``findItem`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param item_in: Input food item\n :type item_in: string\n :param meal_in: Input meal, can be empty string if not specified\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n secrets = get_secrets()\n url = secrets.get('m_dining_api_main')\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n if meal_in == '':\n meal_entered = False\n else:\n meal_entered = True\n data = requests.get(url).json()\n possible_matches = []\n for i in data['menu']['meal']:\n if meal_entered and i['name'].upper() != meal_in.upper():\n continue\n if 'course' not in i:\n continue\n for j in i['course']:\n for key, value in j.items():\n if key == 'name':\n course_data = j['menuitem']\n meal_name = i['name']\n possible_matches = find_matches(course_data,\n possible_matches, item_in, meal_name, requisites)\n if possible_matches:\n possible_matches = find_item_formatting(possible_matches)\n text = 'Yes, there is '\n for i in range(len(possible_matches)):\n if len(possible_matches) > 1 and i == len(possible_matches) - 1:\n text += ' and'\n text += ' ' + possible_matches[i]\n if i != len(possible_matches) - 1:\n text += ','\n else:\n text = 'Sorry, that is not available'\n return {'fulfillmentText': text}\n", "step-3": "<mask token>\n\n\ndef report_error(error_text):\n \"\"\"Logs error to Stackdriver.\n :param error_text: The text to log to Stackdriver\n :type error_text: string\n \"\"\"\n client = google.cloud.logging.Client()\n logger = client.logger('automated_error_catch')\n logger.log_text(error_text)\n\n\ndef get_secrets():\n \"\"\"Fetches secrets from Datastore and returns them as a list.\n \"\"\"\n client = datastore.Client()\n query = client.query(kind='env_vars')\n entity = query.fetch()\n secrets = list(entity)[0]\n return secrets\n\n\ndef format_requisites(text, requisites):\n \"\"\"If any item requisites specified, adds them to response text data for more holistic response.\n\n :param text: The response text data to be formatted\n :type text: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits_text = ''\n allergens_text = ''\n req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': {\n 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts',\n 'wheat_barley_rye': 'wheat or barley or rye'}}\n for i, trait in enumerate(requisites['trait']):\n if traits_text:\n traits_text += ', '\n traits_text += req_map['trait'].get(trait, trait)\n traits_text = format_plural(traits_text.rstrip(', '))\n for i, allergen in enumerate(requisites['allergens']):\n if allergens_text:\n allergens_text += ', '\n allergens_text += req_map['allergens'].get(allergen, allergen)\n allergens_text = format_plural(allergens_text.rstrip(', '))\n allergens_text = allergens_text.replace('and', 'or')\n if allergens_text:\n allergens_text = ' without ' + allergens_text\n if traits_text:\n traits_text = ' that is ' + traits_text\n if (allergens_text or traits_text\n ) and 'Sorry, that is not available' in text:\n traits_text = traits_text.replace(' that is ', '')\n text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ')\n text = text.replace('that is not available', '[meal]')\n return text + allergens_text + ' is not available'\n else:\n return text + traits_text + allergens_text\n\n\ndef format_plural(text):\n \"\"\"Adds 'and' before last item in list of items.\n\n :param text: The string to be manipulated\n :type text: string\n \"\"\"\n if ',' in text:\n index = text.rfind(',') + 2\n text = text[:index] + 'and ' + text[index:]\n return text\n\n\ndef remove_spaces(url_block):\n \"\"\"Removes spaces in url string to create valid url string.\n\n :param url_block: The url string to be manipulated\n :type search: string\n \"\"\"\n temp = ''\n for i in range(len(url_block)):\n if url_block[i] == ' ':\n temp += '+'\n else:\n temp += url_block[i]\n return temp\n\n\ndef check_meal_available(data, meal):\n \"\"\"Searches response data to check if meal is available at specified location/date.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param meal: Name of meal\n :type meal: string\n \"\"\"\n for key in data['menu']['meal']:\n if data['menu']['meal']['name'].upper() == meal.upper():\n if 'course' in data['menu']['meal']:\n return True\n return False\n return False\n\n\ndef check_course_available(data, course):\n \"\"\"Searches response data to check if course is available in specified meal.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param course: Name of course\n :type course: string\n \"\"\"\n for i in range(len(data['menu']['meal']['course'])):\n for key, value in data['menu']['meal']['course'][i].items():\n if key == 'name':\n if value.upper() == course.upper():\n return True\n return False\n\n\ndef check_item_specifications(item, traits, allergens):\n \"\"\"Returns true if food item is satisfactory with specified traits and allergens.\n\n :param item: Data of specific food item\n :type item: dict\n :param traits: List of specified traits item must have, can be empty\n :type traits: list\n :param allergens: List of allergens item cannot have, can be empty\n :type allergens: list\n \"\"\"\n if allergens and 'allergens' in item:\n for allergen in allergens:\n if allergen in item['allergens']:\n return False\n if not traits:\n return True\n if 'trait' in item:\n for trait in traits:\n if trait not in item['trait']:\n return False\n return True\n else:\n return False\n\n\ndef get_items(data, requisites, formatted):\n \"\"\"Returns string of food items of each course in response data for\n fulfillmentText in response to Dialogflow.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n :param formatted: True/False - formats response string if true\n :type formatted: boolean\n \"\"\"\n returndata = ''\n traits = requisites['trait']\n allergens = requisites['allergens']\n if formatted:\n prefix = '\\t'\n suffix = '\\n'\n else:\n prefix = ''\n suffix = ', '\n for course in data['menu']['meal']['course']:\n item_data = []\n datatype = type(course['menuitem'])\n if datatype is list:\n item_data += course['menuitem']\n else:\n item_data.append(course['menuitem'])\n for item in item_data:\n if check_item_specifications(item, traits, allergens\n ) and 'No Service at this Time' not in item['name']:\n returndata += prefix + item['name'].rstrip(', ') + suffix\n return returndata\n\n\ndef find_item_formatting(possible_matches):\n \"\"\"Formatting list of possible matches into more natural sentence structure\n by removing redundancy:\n [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] ->\n [Chicken, chicken wings during lunch, and chicken patty during dinner]\n\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n \"\"\"\n for i in range(len(possible_matches)):\n if i == 0:\n continue\n words = possible_matches[i].split()\n if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[\n -1]:\n length = len(possible_matches[i].split()[-1]) + 8\n possible_matches[i - 1] = possible_matches[i - 1][:length * -1]\n return possible_matches\n\n\ndef find_matches(course_data, possible_matches, item_in, meal_name, requisites\n ):\n \"\"\"Appends matches of specified food item in data of an individual course to\n list of possible matches.\n\n :param course_data: Chosen course subsection of MDining API HTTP response data\n :type course_data: dict\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n :param item_in: User input food item\n :type item_in: string\n :param meal_name: Name of meal\n :type meal_name: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits = requisites['trait']\n allergens = requisites['allergens']\n item_data = []\n datatype = type(course_data)\n if datatype is list:\n item_data += course_data\n else:\n item_data.append(course_data)\n for item in item_data:\n if check_item_specifications(item, traits, allergens) == False:\n continue\n if item_in.upper() in item['name'].upper():\n if item['name'][-1] == ' ':\n item['name'] = item['name'][:-1]\n possible_matches.append(item['name'] + ' during ' + meal_name)\n return possible_matches\n\n\ndef request_location_and_meal(date_in, loc_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and meal entities from ``findLocationAndMeal`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param meal_in: Input meal\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n url = (\n 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json'\n )\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n meal += meal_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n data = requests.get(url).json()\n if check_meal_available(data, meal_in):\n returnstring = get_items(data, requisites, False).rstrip(', ')\n return format_plural(returnstring)\n else:\n return 'No meal is available'\n\n\ndef request_item(date_in, loc_in, item_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and food item entities (and meal entity if included) from ``findItem`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param item_in: Input food item\n :type item_in: string\n :param meal_in: Input meal, can be empty string if not specified\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n secrets = get_secrets()\n url = secrets.get('m_dining_api_main')\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n if meal_in == '':\n meal_entered = False\n else:\n meal_entered = True\n data = requests.get(url).json()\n possible_matches = []\n for i in data['menu']['meal']:\n if meal_entered and i['name'].upper() != meal_in.upper():\n continue\n if 'course' not in i:\n continue\n for j in i['course']:\n for key, value in j.items():\n if key == 'name':\n course_data = j['menuitem']\n meal_name = i['name']\n possible_matches = find_matches(course_data,\n possible_matches, item_in, meal_name, requisites)\n if possible_matches:\n possible_matches = find_item_formatting(possible_matches)\n text = 'Yes, there is '\n for i in range(len(possible_matches)):\n if len(possible_matches) > 1 and i == len(possible_matches) - 1:\n text += ' and'\n text += ' ' + possible_matches[i]\n if i != len(possible_matches) - 1:\n text += ','\n else:\n text = 'Sorry, that is not available'\n return {'fulfillmentText': text}\n", "step-4": "import requests\nfrom google.cloud import datastore\nimport google.cloud.logging\n\n\ndef report_error(error_text):\n \"\"\"Logs error to Stackdriver.\n :param error_text: The text to log to Stackdriver\n :type error_text: string\n \"\"\"\n client = google.cloud.logging.Client()\n logger = client.logger('automated_error_catch')\n logger.log_text(error_text)\n\n\ndef get_secrets():\n \"\"\"Fetches secrets from Datastore and returns them as a list.\n \"\"\"\n client = datastore.Client()\n query = client.query(kind='env_vars')\n entity = query.fetch()\n secrets = list(entity)[0]\n return secrets\n\n\ndef format_requisites(text, requisites):\n \"\"\"If any item requisites specified, adds them to response text data for more holistic response.\n\n :param text: The response text data to be formatted\n :type text: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits_text = ''\n allergens_text = ''\n req_map = {'trait': {'mhealthy': 'healthy'}, 'allergens': {\n 'sesame-seed': 'sesame seeds', 'tree-nuts': 'tree nuts',\n 'wheat_barley_rye': 'wheat or barley or rye'}}\n for i, trait in enumerate(requisites['trait']):\n if traits_text:\n traits_text += ', '\n traits_text += req_map['trait'].get(trait, trait)\n traits_text = format_plural(traits_text.rstrip(', '))\n for i, allergen in enumerate(requisites['allergens']):\n if allergens_text:\n allergens_text += ', '\n allergens_text += req_map['allergens'].get(allergen, allergen)\n allergens_text = format_plural(allergens_text.rstrip(', '))\n allergens_text = allergens_text.replace('and', 'or')\n if allergens_text:\n allergens_text = ' without ' + allergens_text\n if traits_text:\n traits_text = ' that is ' + traits_text\n if (allergens_text or traits_text\n ) and 'Sorry, that is not available' in text:\n traits_text = traits_text.replace(' that is ', '')\n text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ')\n text = text.replace('that is not available', '[meal]')\n return text + allergens_text + ' is not available'\n else:\n return text + traits_text + allergens_text\n\n\ndef format_plural(text):\n \"\"\"Adds 'and' before last item in list of items.\n\n :param text: The string to be manipulated\n :type text: string\n \"\"\"\n if ',' in text:\n index = text.rfind(',') + 2\n text = text[:index] + 'and ' + text[index:]\n return text\n\n\ndef remove_spaces(url_block):\n \"\"\"Removes spaces in url string to create valid url string.\n\n :param url_block: The url string to be manipulated\n :type search: string\n \"\"\"\n temp = ''\n for i in range(len(url_block)):\n if url_block[i] == ' ':\n temp += '+'\n else:\n temp += url_block[i]\n return temp\n\n\ndef check_meal_available(data, meal):\n \"\"\"Searches response data to check if meal is available at specified location/date.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param meal: Name of meal\n :type meal: string\n \"\"\"\n for key in data['menu']['meal']:\n if data['menu']['meal']['name'].upper() == meal.upper():\n if 'course' in data['menu']['meal']:\n return True\n return False\n return False\n\n\ndef check_course_available(data, course):\n \"\"\"Searches response data to check if course is available in specified meal.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param course: Name of course\n :type course: string\n \"\"\"\n for i in range(len(data['menu']['meal']['course'])):\n for key, value in data['menu']['meal']['course'][i].items():\n if key == 'name':\n if value.upper() == course.upper():\n return True\n return False\n\n\ndef check_item_specifications(item, traits, allergens):\n \"\"\"Returns true if food item is satisfactory with specified traits and allergens.\n\n :param item: Data of specific food item\n :type item: dict\n :param traits: List of specified traits item must have, can be empty\n :type traits: list\n :param allergens: List of allergens item cannot have, can be empty\n :type allergens: list\n \"\"\"\n if allergens and 'allergens' in item:\n for allergen in allergens:\n if allergen in item['allergens']:\n return False\n if not traits:\n return True\n if 'trait' in item:\n for trait in traits:\n if trait not in item['trait']:\n return False\n return True\n else:\n return False\n\n\ndef get_items(data, requisites, formatted):\n \"\"\"Returns string of food items of each course in response data for\n fulfillmentText in response to Dialogflow.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n :param formatted: True/False - formats response string if true\n :type formatted: boolean\n \"\"\"\n returndata = ''\n traits = requisites['trait']\n allergens = requisites['allergens']\n if formatted:\n prefix = '\\t'\n suffix = '\\n'\n else:\n prefix = ''\n suffix = ', '\n for course in data['menu']['meal']['course']:\n item_data = []\n datatype = type(course['menuitem'])\n if datatype is list:\n item_data += course['menuitem']\n else:\n item_data.append(course['menuitem'])\n for item in item_data:\n if check_item_specifications(item, traits, allergens\n ) and 'No Service at this Time' not in item['name']:\n returndata += prefix + item['name'].rstrip(', ') + suffix\n return returndata\n\n\ndef find_item_formatting(possible_matches):\n \"\"\"Formatting list of possible matches into more natural sentence structure\n by removing redundancy:\n [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] ->\n [Chicken, chicken wings during lunch, and chicken patty during dinner]\n\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n \"\"\"\n for i in range(len(possible_matches)):\n if i == 0:\n continue\n words = possible_matches[i].split()\n if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[\n -1]:\n length = len(possible_matches[i].split()[-1]) + 8\n possible_matches[i - 1] = possible_matches[i - 1][:length * -1]\n return possible_matches\n\n\ndef find_matches(course_data, possible_matches, item_in, meal_name, requisites\n ):\n \"\"\"Appends matches of specified food item in data of an individual course to\n list of possible matches.\n\n :param course_data: Chosen course subsection of MDining API HTTP response data\n :type course_data: dict\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n :param item_in: User input food item\n :type item_in: string\n :param meal_name: Name of meal\n :type meal_name: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits = requisites['trait']\n allergens = requisites['allergens']\n item_data = []\n datatype = type(course_data)\n if datatype is list:\n item_data += course_data\n else:\n item_data.append(course_data)\n for item in item_data:\n if check_item_specifications(item, traits, allergens) == False:\n continue\n if item_in.upper() in item['name'].upper():\n if item['name'][-1] == ' ':\n item['name'] = item['name'][:-1]\n possible_matches.append(item['name'] + ' during ' + meal_name)\n return possible_matches\n\n\ndef request_location_and_meal(date_in, loc_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and meal entities from ``findLocationAndMeal`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param meal_in: Input meal\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n url = (\n 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json'\n )\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n meal += meal_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n data = requests.get(url).json()\n if check_meal_available(data, meal_in):\n returnstring = get_items(data, requisites, False).rstrip(', ')\n return format_plural(returnstring)\n else:\n return 'No meal is available'\n\n\ndef request_item(date_in, loc_in, item_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and food item entities (and meal entity if included) from ``findItem`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param item_in: Input food item\n :type item_in: string\n :param meal_in: Input meal, can be empty string if not specified\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n secrets = get_secrets()\n url = secrets.get('m_dining_api_main')\n location = '&location='\n date = '&date='\n meal = '&meal='\n location += loc_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n if meal_in == '':\n meal_entered = False\n else:\n meal_entered = True\n data = requests.get(url).json()\n possible_matches = []\n for i in data['menu']['meal']:\n if meal_entered and i['name'].upper() != meal_in.upper():\n continue\n if 'course' not in i:\n continue\n for j in i['course']:\n for key, value in j.items():\n if key == 'name':\n course_data = j['menuitem']\n meal_name = i['name']\n possible_matches = find_matches(course_data,\n possible_matches, item_in, meal_name, requisites)\n if possible_matches:\n possible_matches = find_item_formatting(possible_matches)\n text = 'Yes, there is '\n for i in range(len(possible_matches)):\n if len(possible_matches) > 1 and i == len(possible_matches) - 1:\n text += ' and'\n text += ' ' + possible_matches[i]\n if i != len(possible_matches) - 1:\n text += ','\n else:\n text = 'Sorry, that is not available'\n return {'fulfillmentText': text}\n", "step-5": "import requests\nfrom google.cloud import datastore\nimport google.cloud.logging\n\n###Helper functions\n\ndef report_error(error_text):\n \"\"\"Logs error to Stackdriver.\n :param error_text: The text to log to Stackdriver\n :type error_text: string\n \"\"\"\n client = google.cloud.logging.Client()\n logger = client.logger(\"automated_error_catch\")\n logger.log_text(error_text)\n\ndef get_secrets():\n \"\"\"Fetches secrets from Datastore and returns them as a list.\n \"\"\"\n client = datastore.Client()\n query = client.query(kind='env_vars')\n entity = query.fetch()\n secrets = list(entity)[0]\n return secrets\n\ndef format_requisites(text, requisites):\n \"\"\"If any item requisites specified, adds them to response text data for more holistic response.\n\n :param text: The response text data to be formatted\n :type text: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n traits_text = ''\n allergens_text = ''\n\n req_map = {'trait': {'mhealthy': 'healthy'},\n 'allergens': {'sesame-seed': 'sesame seeds',\n 'tree-nuts': 'tree nuts',\n 'wheat_barley_rye': 'wheat or barley or rye'}}\n\n #If traits specified, extract into a string\n for i, trait in enumerate(requisites['trait']):\n if traits_text:\n traits_text += ', '\n traits_text += req_map['trait'].get(trait, trait)\n traits_text = format_plural(traits_text.rstrip(', '))\n\n #If allergens specified, extract into a string\n for i, allergen in enumerate(requisites['allergens']):\n if allergens_text:\n allergens_text += ', '\n allergens_text += req_map['allergens'].get(allergen, allergen)\n allergens_text = format_plural(allergens_text.rstrip(', '))\n allergens_text = allergens_text.replace('and', 'or')\n\n #Requisite-specific language\n if allergens_text:\n allergens_text = ' without ' + allergens_text\n if traits_text:\n traits_text = ' that is ' + traits_text\n\n #Return combined string\n if (allergens_text or traits_text) and 'Sorry, that is not available' in text:\n traits_text = traits_text.replace(' that is ', '')\n text = text.replace('Sorry, ', 'Sorry, ' + traits_text + ' ')\n text = text.replace('that is not available', '[meal]')\n return text + allergens_text + ' is not available'\n else:\n return text + traits_text + allergens_text\n\ndef format_plural(text):\n \"\"\"Adds 'and' before last item in list of items.\n\n :param text: The string to be manipulated\n :type text: string\n \"\"\"\n if ',' in text:\n index = text.rfind(',') + 2\n text = text[:index] + 'and ' + text[index:]\n return text\n\ndef remove_spaces(url_block):\n \"\"\"Removes spaces in url string to create valid url string.\n\n :param url_block: The url string to be manipulated\n :type search: string\n \"\"\"\n temp = \"\"\n for i in range(len(url_block)):\n if url_block[i] == ' ':\n temp += '+'\n else:\n temp += url_block[i]\n return temp\n\ndef check_meal_available(data, meal):\n \"\"\"Searches response data to check if meal is available at specified location/date.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param meal: Name of meal\n :type meal: string\n \"\"\"\n for key in data['menu']['meal']:\n if data['menu']['meal']['name'].upper() == meal.upper():\n if 'course' in data['menu']['meal']:\n return True\n return False\n return False\n\ndef check_course_available(data, course):\n \"\"\"Searches response data to check if course is available in specified meal.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param course: Name of course\n :type course: string\n \"\"\"\n for i in range(len(data['menu']['meal']['course'])):\n for key, value in data['menu']['meal']['course'][i].items():\n if key == 'name':\n if value.upper() == course.upper():\n return True\n return False\n\n\n\ndef check_item_specifications(item, traits, allergens):\n \"\"\"Returns true if food item is satisfactory with specified traits and allergens.\n\n :param item: Data of specific food item\n :type item: dict\n :param traits: List of specified traits item must have, can be empty\n :type traits: list\n :param allergens: List of allergens item cannot have, can be empty\n :type allergens: list\n \"\"\"\n #Return false if allergens list isn't empty and any allergens found\n if allergens and 'allergens' in item:\n for allergen in allergens:\n if allergen in item['allergens']:\n return False\n\n #Return true if traits list empty\n if not traits:\n return True\n\n #Return false if traits list isn't empty and any traits are missing\n if 'trait' in item:\n for trait in traits:\n if trait not in item['trait']:\n return False\n\n #All traits found, return true\n return True\n else:\n return False\n\ndef get_items(data, requisites, formatted):\n \"\"\"Returns string of food items of each course in response data for\n fulfillmentText in response to Dialogflow.\n\n :param data: MDining API HTTP response data\n :type data: dict\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n :param formatted: True/False - formats response string if true\n :type formatted: boolean\n \"\"\"\n returndata = \"\"\n traits = requisites['trait']\n allergens = requisites['allergens']\n\n if formatted:\n prefix = '\\t'\n suffix = '\\n'\n else:\n prefix = ''\n suffix = ', '\n\n for course in data['menu']['meal']['course']:\n item_data = []\n datatype = type(course['menuitem'])\n\n if datatype is list:\n item_data += course['menuitem']\n else:\n item_data.append(course['menuitem'])\n\n for item in item_data:\n if check_item_specifications(item, traits, allergens) and 'No Service at this Time' not in item['name']:\n returndata += (prefix + (item['name']).rstrip(', ') + suffix)\n\n return returndata\n\ndef find_item_formatting(possible_matches):\n \"\"\"Formatting list of possible matches into more natural sentence structure\n by removing redundancy:\n [Chicken during lunch, chicken wings during lunch, and chicken patty during dinner] ->\n [Chicken, chicken wings during lunch, and chicken patty during dinner]\n\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n \"\"\"\n for i in range(len(possible_matches)):\n if i == 0:\n continue\n words = possible_matches[i].split()\n\n #If previous term has same ending (\"Dinner\") as current term, remove it\n if possible_matches[i].split()[-1] == possible_matches[i - 1].split()[-1]:\n #8 = amount of characters taken up by [' during ']\n length = len(possible_matches[i].split()[-1]) + 8\n possible_matches[i - 1] = possible_matches[i - 1][:length*-1]\n\n return possible_matches\n\n\ndef find_matches(course_data, possible_matches, item_in, meal_name, requisites):\n \"\"\"Appends matches of specified food item in data of an individual course to\n list of possible matches.\n\n :param course_data: Chosen course subsection of MDining API HTTP response data\n :type course_data: dict\n :param possible_matches: List of food items in data that matched user input\n :type possible_matches: list\n :param item_in: User input food item\n :type item_in: string\n :param meal_name: Name of meal\n :type meal_name: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n\n traits = requisites['trait']\n allergens = requisites['allergens']\n\n item_data = []\n datatype = type(course_data)\n\n if datatype is list:\n item_data += course_data\n else:\n item_data.append(course_data)\n\n for item in item_data:\n if check_item_specifications(item, traits, allergens) == False:\n continue\n if item_in.upper() in item['name'].upper():\n if item['name'][-1] == ' ':\n item['name'] = item['name'][:-1]\n\n possible_matches.append(item['name'] + ' during ' + meal_name)\n\n return possible_matches\n\n\n\n#########################################################################\n###Primary Handler Functions\n\n\ndef request_location_and_meal(date_in, loc_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and meal entities from ``findLocationAndMeal`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param meal_in: Input meal\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n\n #preset vars\n url = 'http://api.studentlife.umich.edu/menu/xml2print.php?controller=&view=json'\n location = '&location='\n date = '&date='\n meal = '&meal='\n\n #API url concatenation\n location += loc_in\n meal += meal_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n\n #fetching json\n data = requests.get(url).json()\n\n #checking if specified meal available\n if check_meal_available(data, meal_in):\n returnstring = (get_items(data, requisites, False)).rstrip(', ')\n return format_plural(returnstring)\n else:\n return \"No meal is available\"\n\n#Handle meal item data request\ndef request_item(date_in, loc_in, item_in, meal_in, requisites):\n \"\"\"Handles searching for appropriate data response for valid specified\n location and food item entities (and meal entity if included) from ``findItem`` intent.\n\n :param date_in: Input date\n :type date_in: string\n :param loc_in: Input location\n :type loc_in: string\n :param item_in: Input food item\n :type item_in: string\n :param meal_in: Input meal, can be empty string if not specified\n :type meal_in: string\n :param requisites: Contains information food item must comply with (traits, allergens, etc)\n :type requisites: dict\n \"\"\"\n secrets = get_secrets()\n url = secrets.get('m_dining_api_main')\n location = '&location='\n date = '&date='\n meal = '&meal='\n\n #API url concatenation\n location += loc_in\n date += str(date_in)\n url = url + location + date + meal\n url = remove_spaces(url)\n\n if meal_in == '':\n meal_entered = False\n else:\n meal_entered = True\n\n #fetching json\n data = requests.get(url).json()\n\n possible_matches = []\n\n #Loop through meals\n for i in data['menu']['meal']:\n\n #If meal specified, only check specified meal\n if meal_entered and i['name'].upper() != meal_in.upper():\n continue\n #Skip meal if no food items available\n if 'course' not in i:\n continue\n\n #Loop through food items in course\n for j in i['course']:\n for key, value in j.items():\n if key == 'name':\n course_data = j['menuitem']\n meal_name = i['name']\n #Append matches to specified item to possible_matches list\n possible_matches = find_matches(course_data, possible_matches,\n item_in, meal_name, requisites)\n \n #Specified item found\n if possible_matches:\n possible_matches = find_item_formatting(possible_matches)\n text = 'Yes, there is '\n for i in range(len(possible_matches)):\n if len(possible_matches) > 1 and (i == len(possible_matches) - 1):\n text += ' and'\n text += ' ' + possible_matches[i]\n if i != len(possible_matches) - 1:\n text += ','\n\n #Specified item not found\n else:\n text = 'Sorry, that is not available'\n\n\n return {'fulfillmentText': text}\n", "step-ids": [ 10, 12, 13, 14, 15 ] }
[ 10, 12, 13, 14, 15 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def first_repeat(chars): for x in chars: if chars.count(x) > 1: return x return '-1'
flexible
{ "blob_id": "bf683f8e7fb5ad5f7cd915a8a01d9adf7d13e739", "index": 3375, "step-1": "<mask token>\n", "step-2": "def first_repeat(chars):\n for x in chars:\n if chars.count(x) > 1:\n return x\n return '-1'\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> with open(sourceFile, 'r') as paragraph: paragraph = paragraph.read().split('\n\n') for sentence in paragraph: sentWithPunctuation = sentence sentNoPunctuation = re.sub('[^\\w\\s]', '', sentence) words = sentNoPunctuation.split(' ') for word in words: wordLen = wordLen + len(word) totWords = totWords + len(words) avgSentLen_Words = round(totWords / len(paragraph), 2) avgLetterCount = round(wordLen / totWords, 2) totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation) avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2) print(f""" Paragraph Analysis of '{sourceFile}' file""") print(f'---------------------------------------------------------') print(f' Approximate Word Count: {totWords} ') print(f' Approximate Sentence Count: {len(paragraph)} ') print(f' Average Letter Count: {avgLetterCount} ') print(f' Average Sentence Length (words): {avgSentLen_Words} ') print(f' Average Sentence Length (chars): {avgSentLen_chars} ') <|reserved_special_token_1|> <|reserved_special_token_0|> totWords = 0 wordLen = 0 totSentWithPunctuation = 0 sourceFile = os.path.join('Resources', 'paragraph_2.txt') with open(sourceFile, 'r') as paragraph: paragraph = paragraph.read().split('\n\n') for sentence in paragraph: sentWithPunctuation = sentence sentNoPunctuation = re.sub('[^\\w\\s]', '', sentence) words = sentNoPunctuation.split(' ') for word in words: wordLen = wordLen + len(word) totWords = totWords + len(words) avgSentLen_Words = round(totWords / len(paragraph), 2) avgLetterCount = round(wordLen / totWords, 2) totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation) avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2) print(f""" Paragraph Analysis of '{sourceFile}' file""") print(f'---------------------------------------------------------') print(f' Approximate Word Count: {totWords} ') print(f' Approximate Sentence Count: {len(paragraph)} ') print(f' Average Letter Count: {avgLetterCount} ') print(f' Average Sentence Length (words): {avgSentLen_Words} ') print(f' Average Sentence Length (chars): {avgSentLen_chars} ') <|reserved_special_token_1|> import os import csv import re totWords = 0 wordLen = 0 totSentWithPunctuation = 0 sourceFile = os.path.join('Resources', 'paragraph_2.txt') with open(sourceFile, 'r') as paragraph: paragraph = paragraph.read().split('\n\n') for sentence in paragraph: sentWithPunctuation = sentence sentNoPunctuation = re.sub('[^\\w\\s]', '', sentence) words = sentNoPunctuation.split(' ') for word in words: wordLen = wordLen + len(word) totWords = totWords + len(words) avgSentLen_Words = round(totWords / len(paragraph), 2) avgLetterCount = round(wordLen / totWords, 2) totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation) avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2) print(f""" Paragraph Analysis of '{sourceFile}' file""") print(f'---------------------------------------------------------') print(f' Approximate Word Count: {totWords} ') print(f' Approximate Sentence Count: {len(paragraph)} ') print(f' Average Letter Count: {avgLetterCount} ') print(f' Average Sentence Length (words): {avgSentLen_Words} ') print(f' Average Sentence Length (chars): {avgSentLen_chars} ') <|reserved_special_token_1|> import os import csv import re totWords = 0 wordLen = 0 totSentWithPunctuation = 0 sourceFile = os.path.join('Resources', 'paragraph_2.txt') with open(sourceFile, 'r') as paragraph: paragraph = paragraph.read().split("\n\n") for sentence in paragraph: # Remove punctuation from sentences sentWithPunctuation = sentence sentNoPunctuation = re.sub(r'[^\w\s]','',sentence) #Split sentence with no punctuation by words using spaces words = sentNoPunctuation.split(" ") for word in words: wordLen = wordLen + len(word) # Compute totals for output message totWords = totWords + len(words) # Total words for all sentences avgSentLen_Words = round(totWords / len(paragraph),2) # Average words for all sentences avgLetterCount = round(wordLen/totWords,2) # Average letter by word for all sentences totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation) avgSentLen_chars = round(totSentWithPunctuation / len(paragraph),2) #Validate output by printing a test line # print(f"words: {len(words)} S w Punct. len: {len(sentWithPunctuation)} Sentence: {sentWithPunctuation}") print(f"\n\nParagraph Analysis of '{sourceFile}' file") print(f"---------------------------------------------------------") print(f" Approximate Word Count: {totWords} ") print(f" Approximate Sentence Count: {len(paragraph)} ") print(f" Average Letter Count: {avgLetterCount} ") print(f" Average Sentence Length (words): {avgSentLen_Words} ") print(f" Average Sentence Length (chars): {avgSentLen_chars} ")
flexible
{ "blob_id": "3cd7abf9659fe1db0ef3aa58df8dd7fd959e10a6", "index": 386, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split('\\n\\n')\nfor sentence in paragraph:\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub('[^\\\\w\\\\s]', '', sentence)\n words = sentNoPunctuation.split(' ')\n for word in words:\n wordLen = wordLen + len(word)\n totWords = totWords + len(words)\n avgSentLen_Words = round(totWords / len(paragraph), 2)\n avgLetterCount = round(wordLen / totWords, 2)\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2)\nprint(f\"\"\"\n\nParagraph Analysis of '{sourceFile}' file\"\"\")\nprint(f'---------------------------------------------------------')\nprint(f' Approximate Word Count: {totWords} ')\nprint(f' Approximate Sentence Count: {len(paragraph)} ')\nprint(f' Average Letter Count: {avgLetterCount} ')\nprint(f' Average Sentence Length (words): {avgSentLen_Words} ')\nprint(f' Average Sentence Length (chars): {avgSentLen_chars} ')\n", "step-3": "<mask token>\ntotWords = 0\nwordLen = 0\ntotSentWithPunctuation = 0\nsourceFile = os.path.join('Resources', 'paragraph_2.txt')\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split('\\n\\n')\nfor sentence in paragraph:\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub('[^\\\\w\\\\s]', '', sentence)\n words = sentNoPunctuation.split(' ')\n for word in words:\n wordLen = wordLen + len(word)\n totWords = totWords + len(words)\n avgSentLen_Words = round(totWords / len(paragraph), 2)\n avgLetterCount = round(wordLen / totWords, 2)\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2)\nprint(f\"\"\"\n\nParagraph Analysis of '{sourceFile}' file\"\"\")\nprint(f'---------------------------------------------------------')\nprint(f' Approximate Word Count: {totWords} ')\nprint(f' Approximate Sentence Count: {len(paragraph)} ')\nprint(f' Average Letter Count: {avgLetterCount} ')\nprint(f' Average Sentence Length (words): {avgSentLen_Words} ')\nprint(f' Average Sentence Length (chars): {avgSentLen_chars} ')\n", "step-4": "import os\nimport csv\nimport re\ntotWords = 0\nwordLen = 0\ntotSentWithPunctuation = 0\nsourceFile = os.path.join('Resources', 'paragraph_2.txt')\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split('\\n\\n')\nfor sentence in paragraph:\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub('[^\\\\w\\\\s]', '', sentence)\n words = sentNoPunctuation.split(' ')\n for word in words:\n wordLen = wordLen + len(word)\n totWords = totWords + len(words)\n avgSentLen_Words = round(totWords / len(paragraph), 2)\n avgLetterCount = round(wordLen / totWords, 2)\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2)\nprint(f\"\"\"\n\nParagraph Analysis of '{sourceFile}' file\"\"\")\nprint(f'---------------------------------------------------------')\nprint(f' Approximate Word Count: {totWords} ')\nprint(f' Approximate Sentence Count: {len(paragraph)} ')\nprint(f' Average Letter Count: {avgLetterCount} ')\nprint(f' Average Sentence Length (words): {avgSentLen_Words} ')\nprint(f' Average Sentence Length (chars): {avgSentLen_chars} ')\n", "step-5": "import os\nimport csv\nimport re\n\ntotWords = 0\nwordLen = 0\ntotSentWithPunctuation = 0\n\nsourceFile = os.path.join('Resources', 'paragraph_2.txt')\n\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split(\"\\n\\n\")\n\n\nfor sentence in paragraph:\n # Remove punctuation from sentences\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub(r'[^\\w\\s]','',sentence)\n\n #Split sentence with no punctuation by words using spaces\n words = sentNoPunctuation.split(\" \")\n for word in words:\n wordLen = wordLen + len(word)\n\n # Compute totals for output message \n totWords = totWords + len(words) # Total words for all sentences\n avgSentLen_Words = round(totWords / len(paragraph),2) # Average words for all sentences\n avgLetterCount = round(wordLen/totWords,2) # Average letter by word for all sentences\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph),2)\n\n #Validate output by printing a test line\n # print(f\"words: {len(words)} S w Punct. len: {len(sentWithPunctuation)} Sentence: {sentWithPunctuation}\")\n\nprint(f\"\\n\\nParagraph Analysis of '{sourceFile}' file\")\nprint(f\"---------------------------------------------------------\")\nprint(f\" Approximate Word Count: {totWords} \")\nprint(f\" Approximate Sentence Count: {len(paragraph)} \")\nprint(f\" Average Letter Count: {avgLetterCount} \")\nprint(f\" Average Sentence Length (words): {avgSentLen_Words} \")\nprint(f\" Average Sentence Length (chars): {avgSentLen_chars} \")\n\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def itertools_groupby_example(list_of_nodes): graph = defaultdict(list) for key, group in groupby(l, lambda x: x[0]): graph[key].append(list(group)) print(dict(graph)) def itertools_false_filter_example(iterator): l = [] for item in filterfalse(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_dropwhile_example(iterator): l = [] for item in dropwhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_takewhile_example(iterator): l = [] print(iterator) for item in takewhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_cycle_example(iterator): for item in cycle(iterator): print(item) <|reserved_special_token_0|> def itertools_chain_from_iterable_examaple(): l = [] for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]): l.append(item) print(l) def itertools_zip_longest(): l1 = ['red', 'orange', 'yellow', 'green', 'blue'] l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] l3 = ['a', 'b', 'c'] for item in zip_longest(l1, l2, l3, fillvalue=None): print(item) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def itertools_groupby_example(list_of_nodes): graph = defaultdict(list) for key, group in groupby(l, lambda x: x[0]): graph[key].append(list(group)) print(dict(graph)) def itertools_false_filter_example(iterator): l = [] for item in filterfalse(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_dropwhile_example(iterator): l = [] for item in dropwhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_takewhile_example(iterator): l = [] print(iterator) for item in takewhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_cycle_example(iterator): for item in cycle(iterator): print(item) def itertools_count_example(): for item in count(start=1, step=1): print(item) <|reserved_special_token_0|> def itertools_chain_example(iterator1, iterator2): l = [] for item in chain(iterator1, iterator2): l.append(item) print(l) def itertools_islice_example(iterator): l = [] for item in islice(iterator, 0, 10, 2): l.append(item) print(l) def itertools_chain_from_iterable_examaple(): l = [] for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]): l.append(item) print(l) def itertools_zip_longest(): l1 = ['red', 'orange', 'yellow', 'green', 'blue'] l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] l3 = ['a', 'b', 'c'] for item in zip_longest(l1, l2, l3, fillvalue=None): print(item) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def itertools_groupby_example(list_of_nodes): graph = defaultdict(list) for key, group in groupby(l, lambda x: x[0]): graph[key].append(list(group)) print(dict(graph)) def itertools_false_filter_example(iterator): l = [] for item in filterfalse(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_dropwhile_example(iterator): l = [] for item in dropwhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_takewhile_example(iterator): l = [] print(iterator) for item in takewhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_cycle_example(iterator): for item in cycle(iterator): print(item) def itertools_count_example(): for item in count(start=1, step=1): print(item) def itertools_repeat_example(): for item in repeat(10, 5): print(3) def itertools_chain_example(iterator1, iterator2): l = [] for item in chain(iterator1, iterator2): l.append(item) print(l) def itertools_islice_example(iterator): l = [] for item in islice(iterator, 0, 10, 2): l.append(item) print(l) def itertools_chain_from_iterable_examaple(): l = [] for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]): l.append(item) print(l) def itertools_zip_longest(): l1 = ['red', 'orange', 'yellow', 'green', 'blue'] l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] l3 = ['a', 'b', 'c'] for item in zip_longest(l1, l2, l3, fillvalue=None): print(item) <|reserved_special_token_0|> <|reserved_special_token_1|> l = [(1, 2, 9), (1, 3, 12), (2, 3, 8), (2, 4, 4), (2, 5, 7), (3, 5, 5), (3, 6, 2), (4, 5, 2), (4, 7, 10), (5, 6, 11), (5, 7, 2), (6, 8, 4), (7, 8, 4), (7, 9, 3), (8, 9, 13)] b = ['America', 'Sudan', 'Srilanka', 'Pakistan', 'Nepal', 'India', 'France'] <|reserved_special_token_0|> def itertools_groupby_example(list_of_nodes): graph = defaultdict(list) for key, group in groupby(l, lambda x: x[0]): graph[key].append(list(group)) print(dict(graph)) def itertools_false_filter_example(iterator): l = [] for item in filterfalse(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_dropwhile_example(iterator): l = [] for item in dropwhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_takewhile_example(iterator): l = [] print(iterator) for item in takewhile(lambda x: x > 10, iterator): l.append(item) print(l) def itertools_cycle_example(iterator): for item in cycle(iterator): print(item) def itertools_count_example(): for item in count(start=1, step=1): print(item) def itertools_repeat_example(): for item in repeat(10, 5): print(3) def itertools_chain_example(iterator1, iterator2): l = [] for item in chain(iterator1, iterator2): l.append(item) print(l) def itertools_islice_example(iterator): l = [] for item in islice(iterator, 0, 10, 2): l.append(item) print(l) def itertools_chain_from_iterable_examaple(): l = [] for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]): l.append(item) print(l) def itertools_zip_longest(): l1 = ['red', 'orange', 'yellow', 'green', 'blue'] l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] l3 = ['a', 'b', 'c'] for item in zip_longest(l1, l2, l3, fillvalue=None): print(item) iterator = [11, 15, 2, 5, 8, 10, 50, 8, 2, 3, 90, 80, 100] iterator1 = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 5] iterator2 = ['a', 'b', 'c'] <|reserved_special_token_1|> #https://docs.python.org/3.4/library/itertools.html#module-itertools l = [(1, 2, 9), (1, 3, 12), (2, 3, 8), (2, 4, 4), (2, 5, 7), (3, 5, 5), (3, 6, 2), (4, 5, 2), (4, 7, 10), (5, 6, 11), (5, 7, 2), (6, 8, 4), (7, 8, 4), (7, 9, 3), (8, 9, 13)] b = ['America', 'Sudan', 'Srilanka', 'Pakistan', 'Nepal', 'India', 'France'] from itertools import groupby, filterfalse, dropwhile, cycle, count, repeat, chain, takewhile, islice, zip_longest from collections import defaultdict #NOTE- always use itertools with sorted list if index of element is not issue to your solution def itertools_groupby_example(list_of_nodes): graph = defaultdict(list) for key, group in groupby(l, lambda x: x[0]): graph[key].append(list(group)) print(dict(graph)) def itertools_false_filter_example(iterator): l = [] for item in filterfalse(lambda x :x>10, iterator): l.append(item) print(l) def itertools_dropwhile_example(iterator): l = [] for item in dropwhile(lambda x: x>10, iterator): l.append(item) print(l) def itertools_takewhile_example(iterator): l = [] print(iterator) for item in takewhile(lambda x: x>10, iterator): l.append(item) print(l) def itertools_cycle_example(iterator): for item in cycle(iterator): print(item) def itertools_count_example(): for item in count(start=1, step=1): print(item) def itertools_repeat_example(): for item in repeat(10, 5): print(3) def itertools_chain_example(iterator1, iterator2): l = [] for item in chain(iterator1, iterator2): l.append(item) print(l) def itertools_islice_example(iterator): l = [] for item in islice(iterator, 0, 10, 2): l.append(item) print(l) def itertools_chain_from_iterable_examaple(): l = [] for item in chain.from_iterable([[2,3,4],[2,5,6]]): l.append(item) print(l) def itertools_zip_longest(): l1 = ['red', 'orange', 'yellow', 'green', 'blue'] l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,] l3 = ['a','b','c'] for item in zip_longest(l1, l2, l3, fillvalue=None): print(item) iterator = [11,15,2,5,8,10,50,8,2,3,90,80,100] iterator1 = [0,10,20,30,40,50,60,70,80,90,100,5] iterator2 = ['a','b','c'] #itertools_false_filter_example(iterator1) #itertools_dropwhile_example(iterator1) #itertools_cycle_example(iterator1) #itertools_count_example() #itertools_repeat_example() #itertools_chain_example(iterator1, iterator2) #itertools_takewhile_example(iterator) #itertools_islice_example(iterator) #itertools_chain_from_iterable_examaple() #itertools_zip_longest()
flexible
{ "blob_id": "629353392e3a4f346f734543ae3f2b8dc616a6c3", "index": 5816, "step-1": "<mask token>\n\n\ndef itertools_groupby_example(list_of_nodes):\n graph = defaultdict(list)\n for key, group in groupby(l, lambda x: x[0]):\n graph[key].append(list(group))\n print(dict(graph))\n\n\ndef itertools_false_filter_example(iterator):\n l = []\n for item in filterfalse(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_dropwhile_example(iterator):\n l = []\n for item in dropwhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_takewhile_example(iterator):\n l = []\n print(iterator)\n for item in takewhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_cycle_example(iterator):\n for item in cycle(iterator):\n print(item)\n\n\n<mask token>\n\n\ndef itertools_chain_from_iterable_examaple():\n l = []\n for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]):\n l.append(item)\n print(l)\n\n\ndef itertools_zip_longest():\n l1 = ['red', 'orange', 'yellow', 'green', 'blue']\n l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n l3 = ['a', 'b', 'c']\n for item in zip_longest(l1, l2, l3, fillvalue=None):\n print(item)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef itertools_groupby_example(list_of_nodes):\n graph = defaultdict(list)\n for key, group in groupby(l, lambda x: x[0]):\n graph[key].append(list(group))\n print(dict(graph))\n\n\ndef itertools_false_filter_example(iterator):\n l = []\n for item in filterfalse(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_dropwhile_example(iterator):\n l = []\n for item in dropwhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_takewhile_example(iterator):\n l = []\n print(iterator)\n for item in takewhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_cycle_example(iterator):\n for item in cycle(iterator):\n print(item)\n\n\ndef itertools_count_example():\n for item in count(start=1, step=1):\n print(item)\n\n\n<mask token>\n\n\ndef itertools_chain_example(iterator1, iterator2):\n l = []\n for item in chain(iterator1, iterator2):\n l.append(item)\n print(l)\n\n\ndef itertools_islice_example(iterator):\n l = []\n for item in islice(iterator, 0, 10, 2):\n l.append(item)\n print(l)\n\n\ndef itertools_chain_from_iterable_examaple():\n l = []\n for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]):\n l.append(item)\n print(l)\n\n\ndef itertools_zip_longest():\n l1 = ['red', 'orange', 'yellow', 'green', 'blue']\n l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n l3 = ['a', 'b', 'c']\n for item in zip_longest(l1, l2, l3, fillvalue=None):\n print(item)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef itertools_groupby_example(list_of_nodes):\n graph = defaultdict(list)\n for key, group in groupby(l, lambda x: x[0]):\n graph[key].append(list(group))\n print(dict(graph))\n\n\ndef itertools_false_filter_example(iterator):\n l = []\n for item in filterfalse(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_dropwhile_example(iterator):\n l = []\n for item in dropwhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_takewhile_example(iterator):\n l = []\n print(iterator)\n for item in takewhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_cycle_example(iterator):\n for item in cycle(iterator):\n print(item)\n\n\ndef itertools_count_example():\n for item in count(start=1, step=1):\n print(item)\n\n\ndef itertools_repeat_example():\n for item in repeat(10, 5):\n print(3)\n\n\ndef itertools_chain_example(iterator1, iterator2):\n l = []\n for item in chain(iterator1, iterator2):\n l.append(item)\n print(l)\n\n\ndef itertools_islice_example(iterator):\n l = []\n for item in islice(iterator, 0, 10, 2):\n l.append(item)\n print(l)\n\n\ndef itertools_chain_from_iterable_examaple():\n l = []\n for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]):\n l.append(item)\n print(l)\n\n\ndef itertools_zip_longest():\n l1 = ['red', 'orange', 'yellow', 'green', 'blue']\n l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n l3 = ['a', 'b', 'c']\n for item in zip_longest(l1, l2, l3, fillvalue=None):\n print(item)\n\n\n<mask token>\n", "step-4": "l = [(1, 2, 9), (1, 3, 12), (2, 3, 8), (2, 4, 4), (2, 5, 7), (3, 5, 5), (3,\n 6, 2), (4, 5, 2), (4, 7, 10), (5, 6, 11), (5, 7, 2), (6, 8, 4), (7, 8, \n 4), (7, 9, 3), (8, 9, 13)]\nb = ['America', 'Sudan', 'Srilanka', 'Pakistan', 'Nepal', 'India', 'France']\n<mask token>\n\n\ndef itertools_groupby_example(list_of_nodes):\n graph = defaultdict(list)\n for key, group in groupby(l, lambda x: x[0]):\n graph[key].append(list(group))\n print(dict(graph))\n\n\ndef itertools_false_filter_example(iterator):\n l = []\n for item in filterfalse(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_dropwhile_example(iterator):\n l = []\n for item in dropwhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_takewhile_example(iterator):\n l = []\n print(iterator)\n for item in takewhile(lambda x: x > 10, iterator):\n l.append(item)\n print(l)\n\n\ndef itertools_cycle_example(iterator):\n for item in cycle(iterator):\n print(item)\n\n\ndef itertools_count_example():\n for item in count(start=1, step=1):\n print(item)\n\n\ndef itertools_repeat_example():\n for item in repeat(10, 5):\n print(3)\n\n\ndef itertools_chain_example(iterator1, iterator2):\n l = []\n for item in chain(iterator1, iterator2):\n l.append(item)\n print(l)\n\n\ndef itertools_islice_example(iterator):\n l = []\n for item in islice(iterator, 0, 10, 2):\n l.append(item)\n print(l)\n\n\ndef itertools_chain_from_iterable_examaple():\n l = []\n for item in chain.from_iterable([[2, 3, 4], [2, 5, 6]]):\n l.append(item)\n print(l)\n\n\ndef itertools_zip_longest():\n l1 = ['red', 'orange', 'yellow', 'green', 'blue']\n l2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n l3 = ['a', 'b', 'c']\n for item in zip_longest(l1, l2, l3, fillvalue=None):\n print(item)\n\n\niterator = [11, 15, 2, 5, 8, 10, 50, 8, 2, 3, 90, 80, 100]\niterator1 = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 5]\niterator2 = ['a', 'b', 'c']\n", "step-5": "#https://docs.python.org/3.4/library/itertools.html#module-itertools\n\n\nl = [(1, 2, 9), (1, 3, 12), (2, 3, 8), (2, 4, 4), (2, 5, 7), (3, 5, 5), (3, 6, 2), (4, 5, 2), (4, 7, 10),\n (5, 6, 11), (5, 7, 2), (6, 8, 4), (7, 8, 4), (7, 9, 3), (8, 9, 13)]\n\nb = ['America', 'Sudan', 'Srilanka', 'Pakistan', 'Nepal', 'India', 'France']\n\nfrom itertools import groupby, filterfalse, dropwhile, cycle, count, repeat, chain, takewhile, islice, zip_longest\nfrom collections import defaultdict\n#NOTE- always use itertools with sorted list if index of element is not issue to your solution\n\ndef itertools_groupby_example(list_of_nodes):\n\tgraph = defaultdict(list)\n\tfor key, group in groupby(l, lambda x: x[0]):\n\t\t\tgraph[key].append(list(group))\n\tprint(dict(graph))\n\ndef itertools_false_filter_example(iterator):\n\tl = []\n\tfor item in filterfalse(lambda x :x>10, iterator):\n\t\tl.append(item)\n\tprint(l)\n\ndef itertools_dropwhile_example(iterator):\n\tl = []\n\tfor item in dropwhile(lambda x: x>10, iterator):\n\t\tl.append(item)\n\tprint(l)\n\ndef itertools_takewhile_example(iterator):\n\tl = []\n\tprint(iterator)\n\tfor item in takewhile(lambda x: x>10, iterator):\n\t\tl.append(item)\n\tprint(l)\n\ndef itertools_cycle_example(iterator):\n\tfor item in cycle(iterator):\n\t\tprint(item)\n\ndef itertools_count_example():\n\tfor item in count(start=1, step=1):\n\t\tprint(item)\n\ndef itertools_repeat_example():\n\tfor item in repeat(10, 5):\n\t\tprint(3)\n\ndef itertools_chain_example(iterator1, iterator2):\n\tl = []\n\tfor item in chain(iterator1, iterator2):\n\t\tl.append(item)\n\tprint(l)\n\ndef itertools_islice_example(iterator):\n\tl = []\n\tfor item in islice(iterator, 0, 10, 2):\n\t\tl.append(item)\n\tprint(l)\n\ndef itertools_chain_from_iterable_examaple():\n\tl = []\n\tfor item in chain.from_iterable([[2,3,4],[2,5,6]]):\n\t\tl.append(item)\n\tprint(l)\n\ndef itertools_zip_longest():\n\tl1 = ['red', 'orange', 'yellow', 'green', 'blue']\n\tl2 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,]\n\tl3 = ['a','b','c']\n\n\tfor item in zip_longest(l1, l2, l3, fillvalue=None):\n\t\tprint(item)\n\niterator = [11,15,2,5,8,10,50,8,2,3,90,80,100]\niterator1 = [0,10,20,30,40,50,60,70,80,90,100,5]\niterator2 = ['a','b','c']\n\n#itertools_false_filter_example(iterator1)\n#itertools_dropwhile_example(iterator1)\n#itertools_cycle_example(iterator1)\n#itertools_count_example()\n#itertools_repeat_example()\n#itertools_chain_example(iterator1, iterator2)\n#itertools_takewhile_example(iterator)\n#itertools_islice_example(iterator)\n#itertools_chain_from_iterable_examaple()\n#itertools_zip_longest()", "step-ids": [ 7, 10, 11, 12, 14 ] }
[ 7, 10, 11, 12, 14 ]
import os import numpy as np import pandas as pd import random import platform import subprocess import shlex import teradata from joblib import dump import shutil from tqdm import tqdm def get_session(db, usr, pwd): """Функция устанавливает соединение с ТД и возвращает сессию""" if platform.system() == 'Windows': driver = 'Teradata' else: driver = 'Teradata Database ODBC Driver 16.20' udaExec = teradata.UdaExec(appName='DataLoad', version='0.1', logConsole=False) session = udaExec.connect(method='odbc', system=db, # Сервер ТД из файла username=usr, # Логин TD password=pwd, # Пароль TD driver = driver, charset='UTF8', autoCommit='True', USEREGIONALSETTINGS='N', transactionMode = 'TERADATA' ) return session def sql2df(query, session, chunksize=100000): """ Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу """ db = pd.read_sql(query, session, chunksize=chunksize) data = pd.DataFrame() for x in tqdm(db): data = pd.concat([data, x]) return data def check_config(): """ .twbcfg.ini to root path """ path = os.path.expanduser("~") config_path = os.path.join(path, ".twbcfg.ini") log_path = os.path.join(path, "tmp", "teradata_logs") if not os.path.exists(config_path): if not os.path.exists(log_path): os.mkdir(log_path) config = f'''CheckpointDirectory='{log_path}' LogDirectory='{log_path}' ''' with open(config_path, 'w') as f: f.write(config) def td_download(query="", bd="tdsb15.cgs.sbrf.ru", username="", password="", fast=False, return_df=False, csv=True, chunksize=100000): """ Функция возвращает данные из ТД: путь к csv или датафрейм. fast=True - использовать утилиты ТД, False - ODBC; return_df - вернуть датафрейм; csv - записать данные в файл при fast=False; chunksize - размер бача для ODBC; query должен содержать where, чтобы выгрузить название столбцов из БД """ local_seed = str(random.randint(0, 1000000)) query = query.replace("\n", " ") if not fast: # Teradata python package session = get_session(bd, username, password) frame = sql2df(query, session, chunksize=chunksize) session.close() if return_df: return frame else: path_to_file = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if csv: filename = path_to_file + ".csv" frame.to_csv(filename, sep=';', index=False, encoding="utf8") return filename else: dump(frame, path_to_file) return path_to_file else: # FastLoad check_config() query = query.replace("'", "''") # prepair query for FastLoad path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) os.mkdir(path_to_folder) else: os.mkdir(path_to_folder) path_to_file = os.path.join(path_to_folder, 'dataset.csv') open(path_to_file, 'w').close() # Create utility files txt = '''SourceTdpId = '%s' ,SourceUserName = '%s' ,SourceUserPassword = '%s' ,DDLPrivateLogName = 'ddlprivate.log' ,ExportPrivateLogName = 'exportprivate.log' ,TargetErrorList = ['3807'] ,TargetFileName = '%s' ,TargetFormat = 'delimited' ,TargetTextDelimiter = ';' ,TargetOpenMode = 'write' ,SelectStmt = '%s' ''' % (bd, username, password, path_to_file, query) qtxt = '''USING CHAR SET UTF-8 DEFINE JOB qstart2 ( APPLY TO OPERATOR ($FILE_WRITER) SELECT * FROM OPERATOR($EXPORT); );''' with open(path_to_folder + '/qstart2.txt', 'w+') as f: f.write(qtxt) with open(path_to_folder + '/jobvars.txt', 'w+') as f: f.write(txt) # run FastLoad # p = subprocess.Popen( # shlex.split(f"tbuild -f {path_to_folder}/qstart2.txt -v {path_to_folder}/jobvars.txt -j qstart2") # ) # p.wait() p = subprocess.run( shlex.split(f"tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}"), stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) # columns names query = query.replace("\n", " ").replace("''","'") query = query.lower() query_list = query.split("where") if len(query_list) == 2: columns_query = " where 1=0 and ".join(query_list) session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist() session.close() else: print("Coudn't load columns names") columns_names = None if not return_df: if columns_names: with open(path_to_folder + '/columns_names.txt', 'w') as f: f.write("\n".join(columns_names)) return path_to_file else: if columns_names: frame = pd.read_csv(path_to_file, names=columns_names, delimiter=';') else: frame = pd.read_csv(path_to_file, header=None, delimiter=';') return frame def py2td(x): """Функция вставляет пропуски и корректирует тип данных под ТД""" x_type = type(x) if x_type == float: if x % 1 == 0: return int(x) else: return x elif x == 'null': return None else: return x def td_import( username="", password="", bd="tdsb15.cgs.sbrf.ru", tbl_name="", schema="SBX_RETAIL_MP_PFM", loadframe=True, df=None, path_to_file=None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288, ): """ Функция записывате данные в ТД через утилиты или ODBC """ table = schema + "." + tbl_name if not fast: if not loadframe: df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index=False) # insert n_iters = len(df) // batch_size + (len(df) % batch_size > 0) df_dict = df.to_dict('records') session = get_session(bd, username, password) for i in tqdm(range(n_iters), total=n_iters): session.executemany( f"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})", [list(row.values()) for row in df_dict[i * batch_size:i * batch_size + batch_size]], batch=True ) session.close() else: check_config() local_seed = str(random.randint(0, 1000000)) path_to_folder = os.path.join(os.getcwd(), "data", "output_" + local_seed) if os.path.exists(path_to_folder): shutil.rmtree(path_to_folder) else: os.mkdir(path_to_folder) if loadframe: converted = df.replace(np.NaN, '').astype(str) path_to_file = path_to_folder + '/tmp.csv' converted.to_csv(path_to_file, index=False, header=False, sep=";", encoding="utf8") converted_len = converted.apply(lambda x: x.str.encode('utf-8').apply(len)).max().to_dict() else: converted_len = pd.read_csv(path_to_file, sep=';', dtype="str", header=None, encoding="utf8", low_memory=False, nrows=100000) columns_query = f"select * from {table} where 1=0" session = get_session(bd, username, password) columns_names = pd.read_sql(columns_query, session).columns.tolist() session.close() shutil.copy(path_to_file, path_to_folder + "/tmp.csv") # cp file for correct working Change to move& converted_len.columns = columns_names converted_len = converted_len.apply(lambda x: x.str.encode('utf-8').apply(len)).max().to_dict() # create empty tmp table td_temp_table = table + "_tmp_" + local_seed # change schema session = get_session(bd, username, password) session.execute( f"create multiset table {td_temp_table} as {table} with no data no primary index" ) session.close() # Create utility file txt = f"""USING CHARACTER SET UTF8 DEFINE JOB teradata_upload Description 'Fastload script' ( DEFINE OPERATOR Load_operator TYPE LOAD SCHEMA * ATTRIBUTES ( VARCHAR TdPid='{bd}', VARCHAR UserName='{username}', VARCHAR UserPassWord='{password}', VARCHAR TargetTable='{td_temp_table}', VARCHAR LogTable='{schema}.usr_tpt_log', VARCHAR DateForm='AnsiDate', INTEGER MaxSessions={max_sessions} ); DEFINE SCHEMA Define_Employee_Schema ( {','.join(f'{key} VARCHAR({max(1, value*2)})' for key, value in converted_len.items())} ); DEFINE OPERATOR Producer_File_Detail TYPE DATACONNECTOR PRODUCER SCHEMA Define_Employee_Schema ATTRIBUTES ( VARCHAR DirectoryPath='{path_to_folder}/' , VARCHAR FileName='tmp.csv' , VARCHAR TextDelimiter=';' , VARCHAR QuotedData = 'Optional' , VARCHAR OpenQuoteMark = '"' , VARCHAR CloseQuoteMark = '"' , VARCHAR Format='Delimited' , VARCHAR OpenMode='Read' , VARCHAR INDICATORMODE='N' , INTEGER BUFFERSIZE = {buffersize} ); APPLY ( 'INSERT INTO {td_temp_table}({','.join( f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join( f'{key}' for key, value in converted_len.items())});' ) TO OPERATOR(Load_operator) SELECT * FROM OPERATOR (Producer_File_Detail); );""" with open(path_to_folder + '/load_code.tpt', 'w+') as f: f.write(txt) # Start TPT load p = subprocess.Popen( shlex.split(f"tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}") ) p.wait() # Merge print("Merging in Teradata... \r", end='', flush=True) session = get_session(bd, username, password) session.execute(f"insert into {table} sel * from {td_temp_table}") session.close() # Drop temporary table print("Cleaning... \r", end='', flush=True) session = get_session(bd, username, password) session.execute(f"drop table {td_temp_table}") session.close() # Cleanup shutil.rmtree(path_to_folder) print("Done!")
normal
{ "blob_id": "a05c94ae0ee41cfef5687f741e07a54ae793e40d", "index": 2183, "step-1": "<mask token>\n\n\ndef get_session(db, usr, pwd):\n \"\"\"Функция устанавливает соединение с ТД и возвращает сессию\"\"\"\n if platform.system() == 'Windows':\n driver = 'Teradata'\n else:\n driver = 'Teradata Database ODBC Driver 16.20'\n udaExec = teradata.UdaExec(appName='DataLoad', version='0.1',\n logConsole=False)\n session = udaExec.connect(method='odbc', system=db, username=usr,\n password=pwd, driver=driver, charset='UTF8', autoCommit='True',\n USEREGIONALSETTINGS='N', transactionMode='TERADATA')\n return session\n\n\ndef sql2df(query, session, chunksize=100000):\n \"\"\" Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу \"\"\"\n db = pd.read_sql(query, session, chunksize=chunksize)\n data = pd.DataFrame()\n for x in tqdm(db):\n data = pd.concat([data, x])\n return data\n\n\ndef check_config():\n \"\"\" .twbcfg.ini to root path \"\"\"\n path = os.path.expanduser('~')\n config_path = os.path.join(path, '.twbcfg.ini')\n log_path = os.path.join(path, 'tmp', 'teradata_logs')\n if not os.path.exists(config_path):\n if not os.path.exists(log_path):\n os.mkdir(log_path)\n config = (\n f\"CheckpointDirectory='{log_path}' \\n LogDirectory='{log_path}' \"\n )\n with open(config_path, 'w') as f:\n f.write(config)\n\n\n<mask token>\n\n\ndef py2td(x):\n \"\"\"Функция вставляет пропуски и корректирует тип данных под ТД\"\"\"\n x_type = type(x)\n if x_type == float:\n if x % 1 == 0:\n return int(x)\n else:\n return x\n elif x == 'null':\n return None\n else:\n return x\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_session(db, usr, pwd):\n \"\"\"Функция устанавливает соединение с ТД и возвращает сессию\"\"\"\n if platform.system() == 'Windows':\n driver = 'Teradata'\n else:\n driver = 'Teradata Database ODBC Driver 16.20'\n udaExec = teradata.UdaExec(appName='DataLoad', version='0.1',\n logConsole=False)\n session = udaExec.connect(method='odbc', system=db, username=usr,\n password=pwd, driver=driver, charset='UTF8', autoCommit='True',\n USEREGIONALSETTINGS='N', transactionMode='TERADATA')\n return session\n\n\ndef sql2df(query, session, chunksize=100000):\n \"\"\" Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу \"\"\"\n db = pd.read_sql(query, session, chunksize=chunksize)\n data = pd.DataFrame()\n for x in tqdm(db):\n data = pd.concat([data, x])\n return data\n\n\ndef check_config():\n \"\"\" .twbcfg.ini to root path \"\"\"\n path = os.path.expanduser('~')\n config_path = os.path.join(path, '.twbcfg.ini')\n log_path = os.path.join(path, 'tmp', 'teradata_logs')\n if not os.path.exists(config_path):\n if not os.path.exists(log_path):\n os.mkdir(log_path)\n config = (\n f\"CheckpointDirectory='{log_path}' \\n LogDirectory='{log_path}' \"\n )\n with open(config_path, 'w') as f:\n f.write(config)\n\n\n<mask token>\n\n\ndef py2td(x):\n \"\"\"Функция вставляет пропуски и корректирует тип данных под ТД\"\"\"\n x_type = type(x)\n if x_type == float:\n if x % 1 == 0:\n return int(x)\n else:\n return x\n elif x == 'null':\n return None\n else:\n return x\n\n\ndef td_import(username='', password='', bd='tdsb15.cgs.sbrf.ru', tbl_name=\n '', schema='SBX_RETAIL_MP_PFM', loadframe=True, df=None, path_to_file=\n None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288):\n \"\"\"\n Функция записывате данные в ТД через утилиты или ODBC\n\n \"\"\"\n table = schema + '.' + tbl_name\n if not fast:\n if not loadframe:\n df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index=\n False)\n n_iters = len(df) // batch_size + (len(df) % batch_size > 0)\n df_dict = df.to_dict('records')\n session = get_session(bd, username, password)\n for i in tqdm(range(n_iters), total=n_iters):\n session.executemany(\n f\"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})\"\n , [list(row.values()) for row in df_dict[i * batch_size:i *\n batch_size + batch_size]], batch=True)\n session.close()\n else:\n check_config()\n local_seed = str(random.randint(0, 1000000))\n path_to_folder = os.path.join(os.getcwd(), 'data', 'output_' +\n local_seed)\n if os.path.exists(path_to_folder):\n shutil.rmtree(path_to_folder)\n else:\n os.mkdir(path_to_folder)\n if loadframe:\n converted = df.replace(np.NaN, '').astype(str)\n path_to_file = path_to_folder + '/tmp.csv'\n converted.to_csv(path_to_file, index=False, header=False, sep=\n ';', encoding='utf8')\n converted_len = converted.apply(lambda x: x.str.encode('utf-8')\n .apply(len)).max().to_dict()\n else:\n converted_len = pd.read_csv(path_to_file, sep=';', dtype='str',\n header=None, encoding='utf8', low_memory=False, nrows=100000)\n columns_query = f'select * from {table} where 1=0'\n session = get_session(bd, username, password)\n columns_names = pd.read_sql(columns_query, session).columns.tolist(\n )\n session.close()\n shutil.copy(path_to_file, path_to_folder + '/tmp.csv')\n converted_len.columns = columns_names\n converted_len = converted_len.apply(lambda x: x.str.encode(\n 'utf-8').apply(len)).max().to_dict()\n td_temp_table = table + '_tmp_' + local_seed\n session = get_session(bd, username, password)\n session.execute(\n f'create multiset table {td_temp_table} as {table} with no data no primary index'\n )\n session.close()\n txt = f\"\"\"USING CHARACTER SET UTF8\n DEFINE JOB teradata_upload\n Description 'Fastload script'\n (\n DEFINE OPERATOR Load_operator\n TYPE LOAD\n SCHEMA *\n ATTRIBUTES\n (\n VARCHAR TdPid='{bd}',\n VARCHAR UserName='{username}',\n VARCHAR UserPassWord='{password}',\n VARCHAR TargetTable='{td_temp_table}',\n VARCHAR LogTable='{schema}.usr_tpt_log',\n VARCHAR DateForm='AnsiDate',\n INTEGER MaxSessions={max_sessions}\n );\n\n DEFINE SCHEMA Define_Employee_Schema\n (\n {','.join(f'{key} VARCHAR({max(1, value * 2)})' for key, value in converted_len.items())} \n );\n\n DEFINE OPERATOR Producer_File_Detail\n TYPE DATACONNECTOR PRODUCER\n SCHEMA Define_Employee_Schema\n ATTRIBUTES\n (\n VARCHAR DirectoryPath='{path_to_folder}/'\n , VARCHAR FileName='tmp.csv'\n , VARCHAR TextDelimiter=';'\n , VARCHAR QuotedData = 'Optional'\n , VARCHAR OpenQuoteMark = '\"'\n , VARCHAR CloseQuoteMark = '\"'\n , VARCHAR Format='Delimited'\n , VARCHAR OpenMode='Read'\n , VARCHAR INDICATORMODE='N'\n , INTEGER BUFFERSIZE = {buffersize}\n );\n\n APPLY\n (\n 'INSERT INTO {td_temp_table}({','.join(f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join(f'{key}' for key, value in converted_len.items())});'\n )\n TO OPERATOR(Load_operator)\n\n SELECT * FROM OPERATOR (Producer_File_Detail);\n );\"\"\"\n with open(path_to_folder + '/load_code.tpt', 'w+') as f:\n f.write(txt)\n p = subprocess.Popen(shlex.split(\n f'tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}'))\n p.wait()\n print('Merging in Teradata... \\r', end='', flush=True)\n session = get_session(bd, username, password)\n session.execute(f'insert into {table} sel * from {td_temp_table}')\n session.close()\n print('Cleaning... \\r', end='', flush=True)\n session = get_session(bd, username, password)\n session.execute(f'drop table {td_temp_table}')\n session.close()\n shutil.rmtree(path_to_folder)\n print('Done!')\n", "step-3": "<mask token>\n\n\ndef get_session(db, usr, pwd):\n \"\"\"Функция устанавливает соединение с ТД и возвращает сессию\"\"\"\n if platform.system() == 'Windows':\n driver = 'Teradata'\n else:\n driver = 'Teradata Database ODBC Driver 16.20'\n udaExec = teradata.UdaExec(appName='DataLoad', version='0.1',\n logConsole=False)\n session = udaExec.connect(method='odbc', system=db, username=usr,\n password=pwd, driver=driver, charset='UTF8', autoCommit='True',\n USEREGIONALSETTINGS='N', transactionMode='TERADATA')\n return session\n\n\ndef sql2df(query, session, chunksize=100000):\n \"\"\" Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу \"\"\"\n db = pd.read_sql(query, session, chunksize=chunksize)\n data = pd.DataFrame()\n for x in tqdm(db):\n data = pd.concat([data, x])\n return data\n\n\ndef check_config():\n \"\"\" .twbcfg.ini to root path \"\"\"\n path = os.path.expanduser('~')\n config_path = os.path.join(path, '.twbcfg.ini')\n log_path = os.path.join(path, 'tmp', 'teradata_logs')\n if not os.path.exists(config_path):\n if not os.path.exists(log_path):\n os.mkdir(log_path)\n config = (\n f\"CheckpointDirectory='{log_path}' \\n LogDirectory='{log_path}' \"\n )\n with open(config_path, 'w') as f:\n f.write(config)\n\n\ndef td_download(query='', bd='tdsb15.cgs.sbrf.ru', username='', password='',\n fast=False, return_df=False, csv=True, chunksize=100000):\n \"\"\"\n Функция возвращает данные из ТД: путь к csv или датафрейм.\n\n fast=True - использовать утилиты ТД, False - ODBC;\n return_df - вернуть датафрейм;\n csv - записать данные в файл при fast=False;\n chunksize - размер бача для ODBC;\n query должен содержать where, чтобы выгрузить название столбцов из БД\n\n \"\"\"\n local_seed = str(random.randint(0, 1000000))\n query = query.replace('\\n', ' ')\n if not fast:\n session = get_session(bd, username, password)\n frame = sql2df(query, session, chunksize=chunksize)\n session.close()\n if return_df:\n return frame\n else:\n path_to_file = os.path.join(os.getcwd(), 'data', 'input_' +\n local_seed)\n if csv:\n filename = path_to_file + '.csv'\n frame.to_csv(filename, sep=';', index=False, encoding='utf8')\n return filename\n else:\n dump(frame, path_to_file)\n return path_to_file\n else:\n check_config()\n query = query.replace(\"'\", \"''\")\n path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' +\n local_seed)\n if os.path.exists(path_to_folder):\n shutil.rmtree(path_to_folder)\n os.mkdir(path_to_folder)\n else:\n os.mkdir(path_to_folder)\n path_to_file = os.path.join(path_to_folder, 'dataset.csv')\n open(path_to_file, 'w').close()\n txt = (\n \"\"\"SourceTdpId = '%s'\n ,SourceUserName = '%s' \n ,SourceUserPassword = '%s'\n ,DDLPrivateLogName = 'ddlprivate.log'\n ,ExportPrivateLogName = 'exportprivate.log'\n ,TargetErrorList = ['3807']\n ,TargetFileName = '%s'\n ,TargetFormat = 'delimited'\n ,TargetTextDelimiter = ';'\n ,TargetOpenMode = 'write'\n ,SelectStmt = '%s' \"\"\"\n % (bd, username, password, path_to_file, query))\n qtxt = \"\"\"USING CHAR SET UTF-8\n DEFINE JOB qstart2\n (\n APPLY TO OPERATOR ($FILE_WRITER)\n SELECT * FROM OPERATOR($EXPORT);\n );\"\"\"\n with open(path_to_folder + '/qstart2.txt', 'w+') as f:\n f.write(qtxt)\n with open(path_to_folder + '/jobvars.txt', 'w+') as f:\n f.write(txt)\n p = subprocess.run(shlex.split(\n f'tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}'\n ), stdout=subprocess.PIPE, stderr=subprocess.STDOUT)\n query = query.replace('\\n', ' ').replace(\"''\", \"'\")\n query = query.lower()\n query_list = query.split('where')\n if len(query_list) == 2:\n columns_query = ' where 1=0 and '.join(query_list)\n session = get_session(bd, username, password)\n columns_names = pd.read_sql(columns_query, session).columns.tolist(\n )\n session.close()\n else:\n print(\"Coudn't load columns names\")\n columns_names = None\n if not return_df:\n if columns_names:\n with open(path_to_folder + '/columns_names.txt', 'w') as f:\n f.write('\\n'.join(columns_names))\n return path_to_file\n else:\n if columns_names:\n frame = pd.read_csv(path_to_file, names=columns_names,\n delimiter=';')\n else:\n frame = pd.read_csv(path_to_file, header=None, delimiter=';')\n return frame\n\n\ndef py2td(x):\n \"\"\"Функция вставляет пропуски и корректирует тип данных под ТД\"\"\"\n x_type = type(x)\n if x_type == float:\n if x % 1 == 0:\n return int(x)\n else:\n return x\n elif x == 'null':\n return None\n else:\n return x\n\n\ndef td_import(username='', password='', bd='tdsb15.cgs.sbrf.ru', tbl_name=\n '', schema='SBX_RETAIL_MP_PFM', loadframe=True, df=None, path_to_file=\n None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288):\n \"\"\"\n Функция записывате данные в ТД через утилиты или ODBC\n\n \"\"\"\n table = schema + '.' + tbl_name\n if not fast:\n if not loadframe:\n df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index=\n False)\n n_iters = len(df) // batch_size + (len(df) % batch_size > 0)\n df_dict = df.to_dict('records')\n session = get_session(bd, username, password)\n for i in tqdm(range(n_iters), total=n_iters):\n session.executemany(\n f\"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})\"\n , [list(row.values()) for row in df_dict[i * batch_size:i *\n batch_size + batch_size]], batch=True)\n session.close()\n else:\n check_config()\n local_seed = str(random.randint(0, 1000000))\n path_to_folder = os.path.join(os.getcwd(), 'data', 'output_' +\n local_seed)\n if os.path.exists(path_to_folder):\n shutil.rmtree(path_to_folder)\n else:\n os.mkdir(path_to_folder)\n if loadframe:\n converted = df.replace(np.NaN, '').astype(str)\n path_to_file = path_to_folder + '/tmp.csv'\n converted.to_csv(path_to_file, index=False, header=False, sep=\n ';', encoding='utf8')\n converted_len = converted.apply(lambda x: x.str.encode('utf-8')\n .apply(len)).max().to_dict()\n else:\n converted_len = pd.read_csv(path_to_file, sep=';', dtype='str',\n header=None, encoding='utf8', low_memory=False, nrows=100000)\n columns_query = f'select * from {table} where 1=0'\n session = get_session(bd, username, password)\n columns_names = pd.read_sql(columns_query, session).columns.tolist(\n )\n session.close()\n shutil.copy(path_to_file, path_to_folder + '/tmp.csv')\n converted_len.columns = columns_names\n converted_len = converted_len.apply(lambda x: x.str.encode(\n 'utf-8').apply(len)).max().to_dict()\n td_temp_table = table + '_tmp_' + local_seed\n session = get_session(bd, username, password)\n session.execute(\n f'create multiset table {td_temp_table} as {table} with no data no primary index'\n )\n session.close()\n txt = f\"\"\"USING CHARACTER SET UTF8\n DEFINE JOB teradata_upload\n Description 'Fastload script'\n (\n DEFINE OPERATOR Load_operator\n TYPE LOAD\n SCHEMA *\n ATTRIBUTES\n (\n VARCHAR TdPid='{bd}',\n VARCHAR UserName='{username}',\n VARCHAR UserPassWord='{password}',\n VARCHAR TargetTable='{td_temp_table}',\n VARCHAR LogTable='{schema}.usr_tpt_log',\n VARCHAR DateForm='AnsiDate',\n INTEGER MaxSessions={max_sessions}\n );\n\n DEFINE SCHEMA Define_Employee_Schema\n (\n {','.join(f'{key} VARCHAR({max(1, value * 2)})' for key, value in converted_len.items())} \n );\n\n DEFINE OPERATOR Producer_File_Detail\n TYPE DATACONNECTOR PRODUCER\n SCHEMA Define_Employee_Schema\n ATTRIBUTES\n (\n VARCHAR DirectoryPath='{path_to_folder}/'\n , VARCHAR FileName='tmp.csv'\n , VARCHAR TextDelimiter=';'\n , VARCHAR QuotedData = 'Optional'\n , VARCHAR OpenQuoteMark = '\"'\n , VARCHAR CloseQuoteMark = '\"'\n , VARCHAR Format='Delimited'\n , VARCHAR OpenMode='Read'\n , VARCHAR INDICATORMODE='N'\n , INTEGER BUFFERSIZE = {buffersize}\n );\n\n APPLY\n (\n 'INSERT INTO {td_temp_table}({','.join(f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join(f'{key}' for key, value in converted_len.items())});'\n )\n TO OPERATOR(Load_operator)\n\n SELECT * FROM OPERATOR (Producer_File_Detail);\n );\"\"\"\n with open(path_to_folder + '/load_code.tpt', 'w+') as f:\n f.write(txt)\n p = subprocess.Popen(shlex.split(\n f'tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}'))\n p.wait()\n print('Merging in Teradata... \\r', end='', flush=True)\n session = get_session(bd, username, password)\n session.execute(f'insert into {table} sel * from {td_temp_table}')\n session.close()\n print('Cleaning... \\r', end='', flush=True)\n session = get_session(bd, username, password)\n session.execute(f'drop table {td_temp_table}')\n session.close()\n shutil.rmtree(path_to_folder)\n print('Done!')\n", "step-4": "import os\nimport numpy as np\nimport pandas as pd\nimport random\nimport platform\nimport subprocess\nimport shlex\nimport teradata\nfrom joblib import dump\nimport shutil\nfrom tqdm import tqdm\n\n\ndef get_session(db, usr, pwd):\n \"\"\"Функция устанавливает соединение с ТД и возвращает сессию\"\"\"\n if platform.system() == 'Windows':\n driver = 'Teradata'\n else:\n driver = 'Teradata Database ODBC Driver 16.20'\n udaExec = teradata.UdaExec(appName='DataLoad', version='0.1',\n logConsole=False)\n session = udaExec.connect(method='odbc', system=db, username=usr,\n password=pwd, driver=driver, charset='UTF8', autoCommit='True',\n USEREGIONALSETTINGS='N', transactionMode='TERADATA')\n return session\n\n\ndef sql2df(query, session, chunksize=100000):\n \"\"\" Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу \"\"\"\n db = pd.read_sql(query, session, chunksize=chunksize)\n data = pd.DataFrame()\n for x in tqdm(db):\n data = pd.concat([data, x])\n return data\n\n\ndef check_config():\n \"\"\" .twbcfg.ini to root path \"\"\"\n path = os.path.expanduser('~')\n config_path = os.path.join(path, '.twbcfg.ini')\n log_path = os.path.join(path, 'tmp', 'teradata_logs')\n if not os.path.exists(config_path):\n if not os.path.exists(log_path):\n os.mkdir(log_path)\n config = (\n f\"CheckpointDirectory='{log_path}' \\n LogDirectory='{log_path}' \"\n )\n with open(config_path, 'w') as f:\n f.write(config)\n\n\ndef td_download(query='', bd='tdsb15.cgs.sbrf.ru', username='', password='',\n fast=False, return_df=False, csv=True, chunksize=100000):\n \"\"\"\n Функция возвращает данные из ТД: путь к csv или датафрейм.\n\n fast=True - использовать утилиты ТД, False - ODBC;\n return_df - вернуть датафрейм;\n csv - записать данные в файл при fast=False;\n chunksize - размер бача для ODBC;\n query должен содержать where, чтобы выгрузить название столбцов из БД\n\n \"\"\"\n local_seed = str(random.randint(0, 1000000))\n query = query.replace('\\n', ' ')\n if not fast:\n session = get_session(bd, username, password)\n frame = sql2df(query, session, chunksize=chunksize)\n session.close()\n if return_df:\n return frame\n else:\n path_to_file = os.path.join(os.getcwd(), 'data', 'input_' +\n local_seed)\n if csv:\n filename = path_to_file + '.csv'\n frame.to_csv(filename, sep=';', index=False, encoding='utf8')\n return filename\n else:\n dump(frame, path_to_file)\n return path_to_file\n else:\n check_config()\n query = query.replace(\"'\", \"''\")\n path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' +\n local_seed)\n if os.path.exists(path_to_folder):\n shutil.rmtree(path_to_folder)\n os.mkdir(path_to_folder)\n else:\n os.mkdir(path_to_folder)\n path_to_file = os.path.join(path_to_folder, 'dataset.csv')\n open(path_to_file, 'w').close()\n txt = (\n \"\"\"SourceTdpId = '%s'\n ,SourceUserName = '%s' \n ,SourceUserPassword = '%s'\n ,DDLPrivateLogName = 'ddlprivate.log'\n ,ExportPrivateLogName = 'exportprivate.log'\n ,TargetErrorList = ['3807']\n ,TargetFileName = '%s'\n ,TargetFormat = 'delimited'\n ,TargetTextDelimiter = ';'\n ,TargetOpenMode = 'write'\n ,SelectStmt = '%s' \"\"\"\n % (bd, username, password, path_to_file, query))\n qtxt = \"\"\"USING CHAR SET UTF-8\n DEFINE JOB qstart2\n (\n APPLY TO OPERATOR ($FILE_WRITER)\n SELECT * FROM OPERATOR($EXPORT);\n );\"\"\"\n with open(path_to_folder + '/qstart2.txt', 'w+') as f:\n f.write(qtxt)\n with open(path_to_folder + '/jobvars.txt', 'w+') as f:\n f.write(txt)\n p = subprocess.run(shlex.split(\n f'tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}'\n ), stdout=subprocess.PIPE, stderr=subprocess.STDOUT)\n query = query.replace('\\n', ' ').replace(\"''\", \"'\")\n query = query.lower()\n query_list = query.split('where')\n if len(query_list) == 2:\n columns_query = ' where 1=0 and '.join(query_list)\n session = get_session(bd, username, password)\n columns_names = pd.read_sql(columns_query, session).columns.tolist(\n )\n session.close()\n else:\n print(\"Coudn't load columns names\")\n columns_names = None\n if not return_df:\n if columns_names:\n with open(path_to_folder + '/columns_names.txt', 'w') as f:\n f.write('\\n'.join(columns_names))\n return path_to_file\n else:\n if columns_names:\n frame = pd.read_csv(path_to_file, names=columns_names,\n delimiter=';')\n else:\n frame = pd.read_csv(path_to_file, header=None, delimiter=';')\n return frame\n\n\ndef py2td(x):\n \"\"\"Функция вставляет пропуски и корректирует тип данных под ТД\"\"\"\n x_type = type(x)\n if x_type == float:\n if x % 1 == 0:\n return int(x)\n else:\n return x\n elif x == 'null':\n return None\n else:\n return x\n\n\ndef td_import(username='', password='', bd='tdsb15.cgs.sbrf.ru', tbl_name=\n '', schema='SBX_RETAIL_MP_PFM', loadframe=True, df=None, path_to_file=\n None, fast=False, batch_size=12000, max_sessions=6, buffersize=524288):\n \"\"\"\n Функция записывате данные в ТД через утилиты или ODBC\n\n \"\"\"\n table = schema + '.' + tbl_name\n if not fast:\n if not loadframe:\n df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index=\n False)\n n_iters = len(df) // batch_size + (len(df) % batch_size > 0)\n df_dict = df.to_dict('records')\n session = get_session(bd, username, password)\n for i in tqdm(range(n_iters), total=n_iters):\n session.executemany(\n f\"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})\"\n , [list(row.values()) for row in df_dict[i * batch_size:i *\n batch_size + batch_size]], batch=True)\n session.close()\n else:\n check_config()\n local_seed = str(random.randint(0, 1000000))\n path_to_folder = os.path.join(os.getcwd(), 'data', 'output_' +\n local_seed)\n if os.path.exists(path_to_folder):\n shutil.rmtree(path_to_folder)\n else:\n os.mkdir(path_to_folder)\n if loadframe:\n converted = df.replace(np.NaN, '').astype(str)\n path_to_file = path_to_folder + '/tmp.csv'\n converted.to_csv(path_to_file, index=False, header=False, sep=\n ';', encoding='utf8')\n converted_len = converted.apply(lambda x: x.str.encode('utf-8')\n .apply(len)).max().to_dict()\n else:\n converted_len = pd.read_csv(path_to_file, sep=';', dtype='str',\n header=None, encoding='utf8', low_memory=False, nrows=100000)\n columns_query = f'select * from {table} where 1=0'\n session = get_session(bd, username, password)\n columns_names = pd.read_sql(columns_query, session).columns.tolist(\n )\n session.close()\n shutil.copy(path_to_file, path_to_folder + '/tmp.csv')\n converted_len.columns = columns_names\n converted_len = converted_len.apply(lambda x: x.str.encode(\n 'utf-8').apply(len)).max().to_dict()\n td_temp_table = table + '_tmp_' + local_seed\n session = get_session(bd, username, password)\n session.execute(\n f'create multiset table {td_temp_table} as {table} with no data no primary index'\n )\n session.close()\n txt = f\"\"\"USING CHARACTER SET UTF8\n DEFINE JOB teradata_upload\n Description 'Fastload script'\n (\n DEFINE OPERATOR Load_operator\n TYPE LOAD\n SCHEMA *\n ATTRIBUTES\n (\n VARCHAR TdPid='{bd}',\n VARCHAR UserName='{username}',\n VARCHAR UserPassWord='{password}',\n VARCHAR TargetTable='{td_temp_table}',\n VARCHAR LogTable='{schema}.usr_tpt_log',\n VARCHAR DateForm='AnsiDate',\n INTEGER MaxSessions={max_sessions}\n );\n\n DEFINE SCHEMA Define_Employee_Schema\n (\n {','.join(f'{key} VARCHAR({max(1, value * 2)})' for key, value in converted_len.items())} \n );\n\n DEFINE OPERATOR Producer_File_Detail\n TYPE DATACONNECTOR PRODUCER\n SCHEMA Define_Employee_Schema\n ATTRIBUTES\n (\n VARCHAR DirectoryPath='{path_to_folder}/'\n , VARCHAR FileName='tmp.csv'\n , VARCHAR TextDelimiter=';'\n , VARCHAR QuotedData = 'Optional'\n , VARCHAR OpenQuoteMark = '\"'\n , VARCHAR CloseQuoteMark = '\"'\n , VARCHAR Format='Delimited'\n , VARCHAR OpenMode='Read'\n , VARCHAR INDICATORMODE='N'\n , INTEGER BUFFERSIZE = {buffersize}\n );\n\n APPLY\n (\n 'INSERT INTO {td_temp_table}({','.join(f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join(f'{key}' for key, value in converted_len.items())});'\n )\n TO OPERATOR(Load_operator)\n\n SELECT * FROM OPERATOR (Producer_File_Detail);\n );\"\"\"\n with open(path_to_folder + '/load_code.tpt', 'w+') as f:\n f.write(txt)\n p = subprocess.Popen(shlex.split(\n f'tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}'))\n p.wait()\n print('Merging in Teradata... \\r', end='', flush=True)\n session = get_session(bd, username, password)\n session.execute(f'insert into {table} sel * from {td_temp_table}')\n session.close()\n print('Cleaning... \\r', end='', flush=True)\n session = get_session(bd, username, password)\n session.execute(f'drop table {td_temp_table}')\n session.close()\n shutil.rmtree(path_to_folder)\n print('Done!')\n", "step-5": "import os\r\nimport numpy as np\r\nimport pandas as pd\r\nimport random\r\nimport platform\r\nimport subprocess\r\nimport shlex\r\nimport teradata\r\nfrom joblib import dump\r\nimport shutil\r\nfrom tqdm import tqdm\r\n\r\n\r\ndef get_session(db, usr, pwd):\r\n \"\"\"Функция устанавливает соединение с ТД и возвращает сессию\"\"\"\r\n\r\n if platform.system() == 'Windows':\r\n driver = 'Teradata'\r\n else:\r\n driver = 'Teradata Database ODBC Driver 16.20'\r\n\r\n udaExec = teradata.UdaExec(appName='DataLoad', version='0.1', logConsole=False)\r\n session = udaExec.connect(method='odbc',\r\n system=db, # Сервер ТД из файла\r\n username=usr, # Логин TD\r\n password=pwd, # Пароль TD\r\n driver = driver,\r\n charset='UTF8',\r\n autoCommit='True',\r\n USEREGIONALSETTINGS='N',\r\n transactionMode = 'TERADATA'\r\n )\r\n return session\r\n\r\n\r\ndef sql2df(query, session, chunksize=100000):\r\n \"\"\" Функция грузит из терадаты данные в батчах по 100к и склеивает их в одну таблицу \"\"\"\r\n db = pd.read_sql(query, session, chunksize=chunksize)\r\n data = pd.DataFrame()\r\n for x in tqdm(db):\r\n data = pd.concat([data, x])\r\n return data\r\n\r\n\r\ndef check_config():\r\n \"\"\" .twbcfg.ini to root path \"\"\"\r\n path = os.path.expanduser(\"~\")\r\n config_path = os.path.join(path, \".twbcfg.ini\")\r\n log_path = os.path.join(path, \"tmp\", \"teradata_logs\")\r\n\r\n if not os.path.exists(config_path):\r\n if not os.path.exists(log_path):\r\n os.mkdir(log_path)\r\n config = f'''CheckpointDirectory='{log_path}' \r\n LogDirectory='{log_path}' '''\r\n with open(config_path, 'w') as f:\r\n f.write(config)\r\n\r\n\r\n\r\ndef td_download(query=\"\",\r\n bd=\"tdsb15.cgs.sbrf.ru\",\r\n username=\"\", password=\"\",\r\n fast=False, return_df=False, csv=True,\r\n chunksize=100000):\r\n \"\"\"\r\n Функция возвращает данные из ТД: путь к csv или датафрейм.\r\n\r\n fast=True - использовать утилиты ТД, False - ODBC;\r\n return_df - вернуть датафрейм;\r\n csv - записать данные в файл при fast=False;\r\n chunksize - размер бача для ODBC;\r\n query должен содержать where, чтобы выгрузить название столбцов из БД\r\n\r\n \"\"\"\r\n local_seed = str(random.randint(0, 1000000))\r\n query = query.replace(\"\\n\", \" \")\r\n\r\n if not fast:\r\n # Teradata python package\r\n session = get_session(bd, username, password)\r\n frame = sql2df(query, session, chunksize=chunksize)\r\n session.close()\r\n if return_df:\r\n return frame\r\n else:\r\n path_to_file = os.path.join(os.getcwd(), 'data', 'input_' + local_seed)\r\n if csv:\r\n filename = path_to_file + \".csv\"\r\n frame.to_csv(filename, sep=';', index=False, encoding=\"utf8\")\r\n return filename\r\n else:\r\n dump(frame, path_to_file)\r\n return path_to_file\r\n else:\r\n # FastLoad\r\n check_config()\r\n query = query.replace(\"'\", \"''\") # prepair query for FastLoad\r\n path_to_folder = os.path.join(os.getcwd(), 'data', 'input_' + local_seed)\r\n\r\n if os.path.exists(path_to_folder):\r\n shutil.rmtree(path_to_folder)\r\n os.mkdir(path_to_folder)\r\n else:\r\n os.mkdir(path_to_folder)\r\n\r\n path_to_file = os.path.join(path_to_folder, 'dataset.csv')\r\n open(path_to_file, 'w').close()\r\n\r\n # Create utility files\r\n txt = '''SourceTdpId = '%s'\r\n ,SourceUserName = '%s' \r\n ,SourceUserPassword = '%s'\r\n ,DDLPrivateLogName = 'ddlprivate.log'\r\n ,ExportPrivateLogName = 'exportprivate.log'\r\n ,TargetErrorList = ['3807']\r\n ,TargetFileName = '%s'\r\n ,TargetFormat = 'delimited'\r\n ,TargetTextDelimiter = ';'\r\n ,TargetOpenMode = 'write'\r\n ,SelectStmt = '%s' ''' % (bd, username, password, path_to_file, query)\r\n qtxt = '''USING CHAR SET UTF-8\r\n DEFINE JOB qstart2\r\n (\r\n APPLY TO OPERATOR ($FILE_WRITER)\r\n SELECT * FROM OPERATOR($EXPORT);\r\n );'''\r\n with open(path_to_folder + '/qstart2.txt', 'w+') as f:\r\n f.write(qtxt)\r\n with open(path_to_folder + '/jobvars.txt', 'w+') as f:\r\n f.write(txt)\r\n # run FastLoad\r\n# p = subprocess.Popen(\r\n# shlex.split(f\"tbuild -f {path_to_folder}/qstart2.txt -v {path_to_folder}/jobvars.txt -j qstart2\")\r\n# )\r\n# p.wait()\r\n p = subprocess.run(\r\n shlex.split(f\"tbuild -f {path_to_folder}/tdd.txt -v {path_to_folder}/jobvars.txt -j tdd_{str(local_seed)}\"), stdout=subprocess.PIPE, stderr=subprocess.STDOUT\r\n )\r\n\r\n # columns names\r\n query = query.replace(\"\\n\", \" \").replace(\"''\",\"'\")\r\n query = query.lower()\r\n query_list = query.split(\"where\")\r\n if len(query_list) == 2:\r\n columns_query = \" where 1=0 and \".join(query_list)\r\n session = get_session(bd, username, password)\r\n columns_names = pd.read_sql(columns_query, session).columns.tolist()\r\n session.close()\r\n else:\r\n print(\"Coudn't load columns names\")\r\n columns_names = None\r\n\r\n if not return_df:\r\n if columns_names:\r\n with open(path_to_folder + '/columns_names.txt', 'w') as f:\r\n f.write(\"\\n\".join(columns_names))\r\n return path_to_file\r\n else:\r\n if columns_names:\r\n frame = pd.read_csv(path_to_file, names=columns_names, delimiter=';')\r\n else:\r\n frame = pd.read_csv(path_to_file, header=None, delimiter=';')\r\n return frame\r\n\r\n\r\ndef py2td(x):\r\n \"\"\"Функция вставляет пропуски и корректирует тип данных под ТД\"\"\"\r\n x_type = type(x)\r\n if x_type == float:\r\n if x % 1 == 0:\r\n return int(x)\r\n else:\r\n return x\r\n elif x == 'null':\r\n return None\r\n else:\r\n return x\r\n\r\n\r\ndef td_import(\r\n username=\"\", password=\"\",\r\n bd=\"tdsb15.cgs.sbrf.ru\", tbl_name=\"\",\r\n schema=\"SBX_RETAIL_MP_PFM\",\r\n loadframe=True, df=None, path_to_file=None, fast=False,\r\n batch_size=12000, max_sessions=6, buffersize=524288,\r\n):\r\n \"\"\"\r\n Функция записывате данные в ТД через утилиты или ODBC\r\n\r\n \"\"\"\r\n table = schema + \".\" + tbl_name\r\n if not fast:\r\n if not loadframe:\r\n df = pd.read_csv(path_to_file, sep=';', encoding='utf8', index=False)\r\n # insert\r\n n_iters = len(df) // batch_size + (len(df) % batch_size > 0)\r\n df_dict = df.to_dict('records')\r\n session = get_session(bd, username, password)\r\n for i in tqdm(range(n_iters), total=n_iters):\r\n session.executemany(\r\n f\"INSERT INTO {table} VALUES ({','.join(list('?' * df.shape[1]))})\",\r\n [list(row.values()) for row in df_dict[i * batch_size:i * batch_size + batch_size]],\r\n batch=True\r\n )\r\n session.close()\r\n else:\r\n check_config()\r\n local_seed = str(random.randint(0, 1000000))\r\n path_to_folder = os.path.join(os.getcwd(), \"data\", \"output_\" + local_seed)\r\n\r\n if os.path.exists(path_to_folder):\r\n shutil.rmtree(path_to_folder)\r\n else:\r\n os.mkdir(path_to_folder)\r\n\r\n if loadframe:\r\n converted = df.replace(np.NaN, '').astype(str)\r\n path_to_file = path_to_folder + '/tmp.csv'\r\n converted.to_csv(path_to_file, index=False, header=False, sep=\";\", encoding=\"utf8\")\r\n converted_len = converted.apply(lambda x: x.str.encode('utf-8').apply(len)).max().to_dict()\r\n else:\r\n converted_len = pd.read_csv(path_to_file, sep=';', dtype=\"str\", header=None, encoding=\"utf8\",\r\n low_memory=False, nrows=100000)\r\n columns_query = f\"select * from {table} where 1=0\"\r\n session = get_session(bd, username, password)\r\n columns_names = pd.read_sql(columns_query, session).columns.tolist()\r\n session.close()\r\n shutil.copy(path_to_file, path_to_folder + \"/tmp.csv\") # cp file for correct working Change to move&\r\n\r\n converted_len.columns = columns_names\r\n converted_len = converted_len.apply(lambda x: x.str.encode('utf-8').apply(len)).max().to_dict()\r\n\r\n # create empty tmp table\r\n td_temp_table = table + \"_tmp_\" + local_seed # change schema\r\n session = get_session(bd, username, password)\r\n session.execute(\r\n f\"create multiset table {td_temp_table} as {table} with no data no primary index\"\r\n )\r\n session.close()\r\n # Create utility file\r\n txt = f\"\"\"USING CHARACTER SET UTF8\r\n DEFINE JOB teradata_upload\r\n Description 'Fastload script'\r\n (\r\n DEFINE OPERATOR Load_operator\r\n TYPE LOAD\r\n SCHEMA *\r\n ATTRIBUTES\r\n (\r\n VARCHAR TdPid='{bd}',\r\n VARCHAR UserName='{username}',\r\n VARCHAR UserPassWord='{password}',\r\n VARCHAR TargetTable='{td_temp_table}',\r\n VARCHAR LogTable='{schema}.usr_tpt_log',\r\n VARCHAR DateForm='AnsiDate',\r\n INTEGER MaxSessions={max_sessions}\r\n );\r\n\r\n DEFINE SCHEMA Define_Employee_Schema\r\n (\r\n {','.join(f'{key} VARCHAR({max(1, value*2)})' for key, value in converted_len.items())} \r\n );\r\n\r\n DEFINE OPERATOR Producer_File_Detail\r\n TYPE DATACONNECTOR PRODUCER\r\n SCHEMA Define_Employee_Schema\r\n ATTRIBUTES\r\n (\r\n VARCHAR DirectoryPath='{path_to_folder}/'\r\n , VARCHAR FileName='tmp.csv'\r\n , VARCHAR TextDelimiter=';'\r\n , VARCHAR QuotedData = 'Optional'\r\n , VARCHAR OpenQuoteMark = '\"'\r\n , VARCHAR CloseQuoteMark = '\"'\r\n , VARCHAR Format='Delimited'\r\n , VARCHAR OpenMode='Read'\r\n , VARCHAR INDICATORMODE='N'\r\n , INTEGER BUFFERSIZE = {buffersize}\r\n );\r\n\r\n APPLY\r\n (\r\n 'INSERT INTO {td_temp_table}({','.join(\r\n f'{key}' for key, value in converted_len.items())}) VALUES (:{',:'.join(\r\n f'{key}' for key, value in converted_len.items())});'\r\n )\r\n TO OPERATOR(Load_operator)\r\n\r\n SELECT * FROM OPERATOR (Producer_File_Detail);\r\n );\"\"\"\r\n with open(path_to_folder + '/load_code.tpt', 'w+') as f:\r\n f.write(txt)\r\n # Start TPT load\r\n p = subprocess.Popen(\r\n shlex.split(f\"tbuild -f {path_to_folder}/load_code.tpt -L {path_to_folder}\")\r\n )\r\n p.wait()\r\n # Merge\r\n print(\"Merging in Teradata... \\r\", end='', flush=True)\r\n session = get_session(bd, username, password)\r\n session.execute(f\"insert into {table} sel * from {td_temp_table}\")\r\n session.close()\r\n # Drop temporary table\r\n print(\"Cleaning... \\r\", end='', flush=True)\r\n session = get_session(bd, username, password)\r\n session.execute(f\"drop table {td_temp_table}\")\r\n session.close()\r\n # Cleanup\r\n shutil.rmtree(path_to_folder)\r\n print(\"Done!\")\r\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> import matplotlib.pyplot as plotOp import numpy as np from random import randint import re as regexOp
flexible
{ "blob_id": "6c0a1d4ffd64e0566be53937d9b48975f2530852", "index": 7767, "step-1": "<mask token>\n", "step-2": "import matplotlib.pyplot as plotOp\nimport numpy as np\nfrom random import randint\nimport re as regexOp\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
class player: def __init__(self, name: str, symbol: str): self._name = name self._symbol = symbol def decide_next_move(self): """ Checks all possible combinations to decide best next move :return: board position """ pass def get_next_move(self): """ Asks user for next move :return: board position """ return int(input('Enter your move: '))
normal
{ "blob_id": "3cc894570189fe545f5db3150d0b69c16dc211dc", "index": 981, "step-1": "class player:\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "class player:\n\n def __init__(self, name: str, symbol: str):\n self._name = name\n self._symbol = symbol\n <mask token>\n <mask token>\n", "step-3": "class player:\n\n def __init__(self, name: str, symbol: str):\n self._name = name\n self._symbol = symbol\n <mask token>\n\n def get_next_move(self):\n \"\"\"\n Asks user for next move\n :return: board position\n \"\"\"\n return int(input('Enter your move: '))\n", "step-4": "class player:\n\n def __init__(self, name: str, symbol: str):\n self._name = name\n self._symbol = symbol\n\n def decide_next_move(self):\n \"\"\"\n Checks all possible combinations to decide best next move\n :return: board position\n \"\"\"\n pass\n\n def get_next_move(self):\n \"\"\"\n Asks user for next move\n :return: board position\n \"\"\"\n return int(input('Enter your move: '))\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
# -*- coding:utf-8 -*- import sys import time class ProgressBar: @staticmethod def progress_test(): bar_length = 100 for percent in range(0, 101): hashes = '#' * int(percent / 100.0 * bar_length) spaces = ' ' * (bar_length - len(hashes)) sys.stdout.write("\rPercent: [%s] %d%%" % (hashes + spaces, percent)) sys.stdout.flush() time.sleep(0.05) class ProgressBar1: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): # print('\t') self.pointer = int(self.width * (x / 100.0)) return "|" + "#" * self.pointer + "-" * (self.width - self.pointer) + "| %d %% done" % int(x) class ProgressBar2: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self,x): # print('\r') self.pointer = x return "|" + "#" * self.pointer + "-" * (100 - self.pointer)+ "| %d %% done" % int(x) @staticmethod def run(): # progress_test() ProgressBar.progress_test() # pb = ProgressBar.ProgressBar1() # for i in range(101): # # os.system('cls') # print(pb(i)) # time.sleep(0.02) # # pb = ProgressBar.ProgressBar2() # for i in range(101): # # os.system('cls') # print(pb(i)) # time.sleep(0.02) if __name__ == '__main__': ProgressBar.run()
normal
{ "blob_id": "f928eb34155046107c99db8ded11747d5960c767", "index": 2527, "step-1": "<mask token>\n\n\nclass ProgressBar:\n <mask token>\n\n\n class ProgressBar1:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = int(self.width * (x / 100.0))\n return '|' + '#' * self.pointer + '-' * (self.width - self.pointer\n ) + '| %d %% done' % int(x)\n\n\n class ProgressBar2:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = x\n return '|' + '#' * self.pointer + '-' * (100 - self.pointer\n ) + '| %d %% done' % int(x)\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ProgressBar:\n\n @staticmethod\n def progress_test():\n bar_length = 100\n for percent in range(0, 101):\n hashes = '#' * int(percent / 100.0 * bar_length)\n spaces = ' ' * (bar_length - len(hashes))\n sys.stdout.write('\\rPercent: [%s] %d%%' % (hashes + spaces,\n percent))\n sys.stdout.flush()\n time.sleep(0.05)\n\n\n class ProgressBar1:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = int(self.width * (x / 100.0))\n return '|' + '#' * self.pointer + '-' * (self.width - self.pointer\n ) + '| %d %% done' % int(x)\n\n\n class ProgressBar2:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = x\n return '|' + '#' * self.pointer + '-' * (100 - self.pointer\n ) + '| %d %% done' % int(x)\n\n @staticmethod\n def run():\n ProgressBar.progress_test()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ProgressBar:\n\n @staticmethod\n def progress_test():\n bar_length = 100\n for percent in range(0, 101):\n hashes = '#' * int(percent / 100.0 * bar_length)\n spaces = ' ' * (bar_length - len(hashes))\n sys.stdout.write('\\rPercent: [%s] %d%%' % (hashes + spaces,\n percent))\n sys.stdout.flush()\n time.sleep(0.05)\n\n\n class ProgressBar1:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = int(self.width * (x / 100.0))\n return '|' + '#' * self.pointer + '-' * (self.width - self.pointer\n ) + '| %d %% done' % int(x)\n\n\n class ProgressBar2:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = x\n return '|' + '#' * self.pointer + '-' * (100 - self.pointer\n ) + '| %d %% done' % int(x)\n\n @staticmethod\n def run():\n ProgressBar.progress_test()\n\n\nif __name__ == '__main__':\n ProgressBar.run()\n", "step-4": "import sys\nimport time\n\n\nclass ProgressBar:\n\n @staticmethod\n def progress_test():\n bar_length = 100\n for percent in range(0, 101):\n hashes = '#' * int(percent / 100.0 * bar_length)\n spaces = ' ' * (bar_length - len(hashes))\n sys.stdout.write('\\rPercent: [%s] %d%%' % (hashes + spaces,\n percent))\n sys.stdout.flush()\n time.sleep(0.05)\n\n\n class ProgressBar1:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = int(self.width * (x / 100.0))\n return '|' + '#' * self.pointer + '-' * (self.width - self.pointer\n ) + '| %d %% done' % int(x)\n\n\n class ProgressBar2:\n\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n self.pointer = x\n return '|' + '#' * self.pointer + '-' * (100 - self.pointer\n ) + '| %d %% done' % int(x)\n\n @staticmethod\n def run():\n ProgressBar.progress_test()\n\n\nif __name__ == '__main__':\n ProgressBar.run()\n", "step-5": "# -*- coding:utf-8 -*-\nimport sys\nimport time\n\n\nclass ProgressBar:\n\n @staticmethod\n def progress_test():\n bar_length = 100\n for percent in range(0, 101):\n hashes = '#' * int(percent / 100.0 * bar_length)\n spaces = ' ' * (bar_length - len(hashes))\n sys.stdout.write(\"\\rPercent: [%s] %d%%\" % (hashes + spaces, percent))\n sys.stdout.flush()\n time.sleep(0.05)\n\n class ProgressBar1:\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self, x):\n # print('\\t')\n self.pointer = int(self.width * (x / 100.0))\n return \"|\" + \"#\" * self.pointer + \"-\" * (self.width - self.pointer) + \"| %d %% done\" % int(x)\n\n class ProgressBar2:\n def __init__(self, width=50):\n self.pointer = 0\n self.width = width\n\n def __call__(self,x):\n # print('\\r')\n self.pointer = x\n return \"|\" + \"#\" * self.pointer + \"-\" * (100 - self.pointer)+ \"| %d %% done\" % int(x)\n\n @staticmethod\n def run():\n # progress_test()\n ProgressBar.progress_test()\n # pb = ProgressBar.ProgressBar1()\n # for i in range(101):\n # # os.system('cls')\n # print(pb(i))\n # time.sleep(0.02)\n #\n # pb = ProgressBar.ProgressBar2()\n # for i in range(101):\n # # os.system('cls')\n # print(pb(i))\n # time.sleep(0.02)\n\n\nif __name__ == '__main__':\n ProgressBar.run()", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
''' 단어 수학 시간 : 68ms (~2초), 메모리 : 29200KB (~256MB) 분류 : greedy ''' import sys input = sys.stdin.readline # 입력 N = int(input()) # 단어의 개수 arr = [list(input().strip()) for _ in range(N)] # 풀이 alphabet = [] for word in arr: for a in word: if a not in alphabet: alphabet.append(a) value_list = [] for a in alphabet: value = 0 for word in arr: if a not in word: # 알파벳 없으면 넘어감 continue s = "" for w in word: s += "1" if w == a else "0" value += int(s) value_list.append(value) value_list.sort(reverse=True) # 내림차순 정렬 answer = 0 value = 9 for s in value_list: answer += value * s value -= 1 # 출력 print(answer)
normal
{ "blob_id": "6efc7ff304a05dfc5a7bed7d646e5d6ac034ce85", "index": 4706, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor word in arr:\n for a in word:\n if a not in alphabet:\n alphabet.append(a)\n<mask token>\nfor a in alphabet:\n value = 0\n for word in arr:\n if a not in word:\n continue\n s = ''\n for w in word:\n s += '1' if w == a else '0'\n value += int(s)\n value_list.append(value)\nvalue_list.sort(reverse=True)\n<mask token>\nfor s in value_list:\n answer += value * s\n value -= 1\nprint(answer)\n", "step-3": "<mask token>\ninput = sys.stdin.readline\nN = int(input())\narr = [list(input().strip()) for _ in range(N)]\nalphabet = []\nfor word in arr:\n for a in word:\n if a not in alphabet:\n alphabet.append(a)\nvalue_list = []\nfor a in alphabet:\n value = 0\n for word in arr:\n if a not in word:\n continue\n s = ''\n for w in word:\n s += '1' if w == a else '0'\n value += int(s)\n value_list.append(value)\nvalue_list.sort(reverse=True)\nanswer = 0\nvalue = 9\nfor s in value_list:\n answer += value * s\n value -= 1\nprint(answer)\n", "step-4": "<mask token>\nimport sys\ninput = sys.stdin.readline\nN = int(input())\narr = [list(input().strip()) for _ in range(N)]\nalphabet = []\nfor word in arr:\n for a in word:\n if a not in alphabet:\n alphabet.append(a)\nvalue_list = []\nfor a in alphabet:\n value = 0\n for word in arr:\n if a not in word:\n continue\n s = ''\n for w in word:\n s += '1' if w == a else '0'\n value += int(s)\n value_list.append(value)\nvalue_list.sort(reverse=True)\nanswer = 0\nvalue = 9\nfor s in value_list:\n answer += value * s\n value -= 1\nprint(answer)\n", "step-5": "''' 단어 수학\n시간 : 68ms (~2초), 메모리 : 29200KB (~256MB)\n분류 : greedy\n'''\n\nimport sys\ninput = sys.stdin.readline\n\n# 입력\nN = int(input()) # 단어의 개수\narr = [list(input().strip()) for _ in range(N)]\n\n# 풀이\nalphabet = []\nfor word in arr:\n for a in word:\n if a not in alphabet:\n alphabet.append(a)\n\nvalue_list = []\nfor a in alphabet:\n value = 0\n for word in arr:\n if a not in word: # 알파벳 없으면 넘어감\n continue\n\n s = \"\"\n for w in word:\n s += \"1\" if w == a else \"0\"\n value += int(s)\n\n value_list.append(value)\n\nvalue_list.sort(reverse=True) # 내림차순 정렬\n\nanswer = 0\nvalue = 9\nfor s in value_list:\n answer += value * s\n value -= 1\n\n# 출력\nprint(answer)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from hops import constants class Cluster(object): """ Represents a Cluster in Cluster Analysis computed for a featuregroup or training dataset in the featurestore """ def __init__(self, cluster_json): """ Initialize the cluster object from JSON payload Args: :cluster_json: JSON data of the cluster """ self.datapoint_name = cluster_json[constants.REST_CONFIG. JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME] self.cluster = int(cluster_json[constants.REST_CONFIG. JSON_CLUSTERING_ANALYSIS_CLUSTER])
normal
{ "blob_id": "753c87a3d22aeca1001eb770831b846b175d873e", "index": 9139, "step-1": "<mask token>\n\n\nclass Cluster(object):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Cluster(object):\n <mask token>\n\n def __init__(self, cluster_json):\n \"\"\"\n Initialize the cluster object from JSON payload\n\n Args:\n :cluster_json: JSON data of the cluster\n \"\"\"\n self.datapoint_name = cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME]\n self.cluster = int(cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_CLUSTER])\n", "step-3": "<mask token>\n\n\nclass Cluster(object):\n \"\"\"\n Represents a Cluster in Cluster Analysis computed for a featuregroup or training dataset in the featurestore\n \"\"\"\n\n def __init__(self, cluster_json):\n \"\"\"\n Initialize the cluster object from JSON payload\n\n Args:\n :cluster_json: JSON data of the cluster\n \"\"\"\n self.datapoint_name = cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME]\n self.cluster = int(cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_CLUSTER])\n", "step-4": "from hops import constants\n\n\nclass Cluster(object):\n \"\"\"\n Represents a Cluster in Cluster Analysis computed for a featuregroup or training dataset in the featurestore\n \"\"\"\n\n def __init__(self, cluster_json):\n \"\"\"\n Initialize the cluster object from JSON payload\n\n Args:\n :cluster_json: JSON data of the cluster\n \"\"\"\n self.datapoint_name = cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_DATA_POINT_NAME]\n self.cluster = int(cluster_json[constants.REST_CONFIG.\n JSON_CLUSTERING_ANALYSIS_CLUSTER])\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
<|reserved_special_token_0|> class MoleculeDriver(enum.Enum): docker = 1 lxd = 2 vagrant = 3 class TestPlatform(enum.Enum): linux = 1 ubuntu = 2 centos = 3 <|reserved_special_token_0|> def print_sub_header(sub_header_text): print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' + f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL) def print_success_message(success_message_text): print(colorama.Fore.GREEN + colorama.Style.BRIGHT + f' {success_message_text}: Success '.center(80, '=') + colorama. Style.RESET_ALL) <|reserved_special_token_0|> def get_base_config_path(driver_code, platform_code): base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format( driver=driver_code.name, platform=platform_code.name) return str(pathlib.Path(__file__).resolve().parent / base_config) def get_molecule_scenarios(context): scenarios = [] for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir(): if child_obj.is_dir(): if (child_obj / 'molecule.yml').exists(): scenarios.append(child_obj.name) return sorted(scenarios) <|reserved_special_token_0|> def get_parameter_value(host, ansible_var_name, param_value, default_value): if host.backend.HAS_RUN_ANSIBLE: ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None) else: ansible_var_value = None return_value = ansible_var_value if param_value is None else param_value if return_value is None: return_value = default_value return return_value def get_github_release_info(release_url): if 'AO_GITHUB_OAUTH_TOKEN' in os.environ: headers = {'Authorization': 'token ' + os.environ[ 'AO_GITHUB_OAUTH_TOKEN']} else: headers = None return requests.get('https://api.github.com/repos/' + release_url, headers=headers).json() <|reserved_special_token_1|> <|reserved_special_token_0|> class MoleculeDriver(enum.Enum): docker = 1 lxd = 2 vagrant = 3 class TestPlatform(enum.Enum): linux = 1 ubuntu = 2 centos = 3 <|reserved_special_token_0|> def print_sub_header(sub_header_text): print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' + f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL) def print_success_message(success_message_text): print(colorama.Fore.GREEN + colorama.Style.BRIGHT + f' {success_message_text}: Success '.center(80, '=') + colorama. Style.RESET_ALL) <|reserved_special_token_0|> def get_base_config_path(driver_code, platform_code): base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format( driver=driver_code.name, platform=platform_code.name) return str(pathlib.Path(__file__).resolve().parent / base_config) def get_molecule_scenarios(context): scenarios = [] for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir(): if child_obj.is_dir(): if (child_obj / 'molecule.yml').exists(): scenarios.append(child_obj.name) return sorted(scenarios) def run_molecule(context, command, scenario, driver, platform='linux', env={}): driver_code = MoleculeDriver[driver.lower()] platform_code = TestPlatform[platform.lower()] molecule_env = env.copy() if driver_code == MoleculeDriver.lxd: molecule_env.update({'MOLECULE_USER_NAME': 'root'}) elif driver_code == MoleculeDriver.vagrant: molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'}) molecule_command = ( f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}' ) if scenario is not None: molecule_command += f' -s {scenario}' run_command(context, molecule_command, env=molecule_env, echo=True) def get_parameter_value(host, ansible_var_name, param_value, default_value): if host.backend.HAS_RUN_ANSIBLE: ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None) else: ansible_var_value = None return_value = ansible_var_value if param_value is None else param_value if return_value is None: return_value = default_value return return_value def get_github_release_info(release_url): if 'AO_GITHUB_OAUTH_TOKEN' in os.environ: headers = {'Authorization': 'token ' + os.environ[ 'AO_GITHUB_OAUTH_TOKEN']} else: headers = None return requests.get('https://api.github.com/repos/' + release_url, headers=headers).json() <|reserved_special_token_1|> <|reserved_special_token_0|> class MoleculeDriver(enum.Enum): docker = 1 lxd = 2 vagrant = 3 class TestPlatform(enum.Enum): linux = 1 ubuntu = 2 centos = 3 def print_header(header_text): print(colorama.Fore.CYAN + colorama.Style.BRIGHT + f' {header_text} '. center(80, '=') + colorama.Style.RESET_ALL) def print_sub_header(sub_header_text): print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' + f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL) def print_success_message(success_message_text): print(colorama.Fore.GREEN + colorama.Style.BRIGHT + f' {success_message_text}: Success '.center(80, '=') + colorama. Style.RESET_ALL) def run_command(context, *args, **kwargs): try: return context.run(*args, **kwargs) except invoke.exceptions.Failure: print(colorama.Fore.RED + colorama.Style.BRIGHT + "Failure: error executing '" + args[0] + "' command" + colorama .Style.RESET_ALL) raise def get_base_config_path(driver_code, platform_code): base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format( driver=driver_code.name, platform=platform_code.name) return str(pathlib.Path(__file__).resolve().parent / base_config) def get_molecule_scenarios(context): scenarios = [] for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir(): if child_obj.is_dir(): if (child_obj / 'molecule.yml').exists(): scenarios.append(child_obj.name) return sorted(scenarios) def run_molecule(context, command, scenario, driver, platform='linux', env={}): driver_code = MoleculeDriver[driver.lower()] platform_code = TestPlatform[platform.lower()] molecule_env = env.copy() if driver_code == MoleculeDriver.lxd: molecule_env.update({'MOLECULE_USER_NAME': 'root'}) elif driver_code == MoleculeDriver.vagrant: molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'}) molecule_command = ( f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}' ) if scenario is not None: molecule_command += f' -s {scenario}' run_command(context, molecule_command, env=molecule_env, echo=True) def get_parameter_value(host, ansible_var_name, param_value, default_value): if host.backend.HAS_RUN_ANSIBLE: ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None) else: ansible_var_value = None return_value = ansible_var_value if param_value is None else param_value if return_value is None: return_value = default_value return return_value def get_github_release_info(release_url): if 'AO_GITHUB_OAUTH_TOKEN' in os.environ: headers = {'Authorization': 'token ' + os.environ[ 'AO_GITHUB_OAUTH_TOKEN']} else: headers = None return requests.get('https://api.github.com/repos/' + release_url, headers=headers).json() <|reserved_special_token_1|> <|reserved_special_token_0|> with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) import invoke class MoleculeDriver(enum.Enum): docker = 1 lxd = 2 vagrant = 3 class TestPlatform(enum.Enum): linux = 1 ubuntu = 2 centos = 3 def print_header(header_text): print(colorama.Fore.CYAN + colorama.Style.BRIGHT + f' {header_text} '. center(80, '=') + colorama.Style.RESET_ALL) def print_sub_header(sub_header_text): print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' + f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL) def print_success_message(success_message_text): print(colorama.Fore.GREEN + colorama.Style.BRIGHT + f' {success_message_text}: Success '.center(80, '=') + colorama. Style.RESET_ALL) def run_command(context, *args, **kwargs): try: return context.run(*args, **kwargs) except invoke.exceptions.Failure: print(colorama.Fore.RED + colorama.Style.BRIGHT + "Failure: error executing '" + args[0] + "' command" + colorama .Style.RESET_ALL) raise def get_base_config_path(driver_code, platform_code): base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format( driver=driver_code.name, platform=platform_code.name) return str(pathlib.Path(__file__).resolve().parent / base_config) def get_molecule_scenarios(context): scenarios = [] for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir(): if child_obj.is_dir(): if (child_obj / 'molecule.yml').exists(): scenarios.append(child_obj.name) return sorted(scenarios) def run_molecule(context, command, scenario, driver, platform='linux', env={}): driver_code = MoleculeDriver[driver.lower()] platform_code = TestPlatform[platform.lower()] molecule_env = env.copy() if driver_code == MoleculeDriver.lxd: molecule_env.update({'MOLECULE_USER_NAME': 'root'}) elif driver_code == MoleculeDriver.vagrant: molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'}) molecule_command = ( f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}' ) if scenario is not None: molecule_command += f' -s {scenario}' run_command(context, molecule_command, env=molecule_env, echo=True) def get_parameter_value(host, ansible_var_name, param_value, default_value): if host.backend.HAS_RUN_ANSIBLE: ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None) else: ansible_var_value = None return_value = ansible_var_value if param_value is None else param_value if return_value is None: return_value = default_value return return_value def get_github_release_info(release_url): if 'AO_GITHUB_OAUTH_TOKEN' in os.environ: headers = {'Authorization': 'token ' + os.environ[ 'AO_GITHUB_OAUTH_TOKEN']} else: headers = None return requests.get('https://api.github.com/repos/' + release_url, headers=headers).json() <|reserved_special_token_1|> import os import pathlib import enum import warnings import colorama import requests with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) import invoke class MoleculeDriver(enum.Enum): docker = 1 lxd = 2 vagrant = 3 class TestPlatform(enum.Enum): linux = 1 ubuntu = 2 centos = 3 def print_header(header_text): print( colorama.Fore.CYAN + colorama.Style.BRIGHT + f" {header_text} ".center(80, "=") + colorama.Style.RESET_ALL ) def print_sub_header(sub_header_text): print( colorama.Fore.CYAN + colorama.Style.BRIGHT + "--" + f" {sub_header_text} ".ljust(78, "-") + colorama.Style.RESET_ALL ) def print_success_message(success_message_text): print( colorama.Fore.GREEN + colorama.Style.BRIGHT + f" {success_message_text}: Success ".center(80, "=") + colorama.Style.RESET_ALL ) def run_command(context, *args, **kwargs): try: return context.run(*args, **kwargs) except invoke.exceptions.Failure: print( colorama.Fore.RED + colorama.Style.BRIGHT + "Failure: error executing '" + args[0] + "' command" + colorama.Style.RESET_ALL ) raise def get_base_config_path(driver_code, platform_code): base_config = "molecule/molecule_base_{driver}_{platform}.yml".format( driver=driver_code.name, platform=platform_code.name ) return str(pathlib.Path(__file__).resolve().parent / base_config) def get_molecule_scenarios(context): scenarios = [] for child_obj in (pathlib.Path.cwd() / "molecule").iterdir(): if child_obj.is_dir(): if (child_obj / "molecule.yml").exists(): scenarios.append(child_obj.name) return sorted(scenarios) def run_molecule(context, command, scenario, driver, platform="linux", env={}): driver_code = MoleculeDriver[driver.lower()] platform_code = TestPlatform[platform.lower()] molecule_env = env.copy() if driver_code == MoleculeDriver.lxd: molecule_env.update({"MOLECULE_USER_NAME": "root"}) elif driver_code == MoleculeDriver.vagrant: molecule_env.update({"MOLECULE_USER_NAME": "vagrant"}) molecule_command = ( f"molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}" ) if scenario is not None: molecule_command += f" -s {scenario}" run_command(context, molecule_command, env=molecule_env, echo=True) def get_parameter_value(host, ansible_var_name, param_value, default_value): if host.backend.HAS_RUN_ANSIBLE: ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None) else: ansible_var_value = None return_value = ansible_var_value if param_value is None else param_value if return_value is None: return_value = default_value return return_value def get_github_release_info(release_url): if "AO_GITHUB_OAUTH_TOKEN" in os.environ: headers = {"Authorization": "token " + os.environ["AO_GITHUB_OAUTH_TOKEN"]} else: headers = None return requests.get( "https://api.github.com/repos/" + release_url, headers=headers ).json()
flexible
{ "blob_id": "5bdc08b66916959d462314b8a6e5794e5fa12b55", "index": 7986, "step-1": "<mask token>\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\n<mask token>\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\n<mask token>\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-2": "<mask token>\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\n<mask token>\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\n<mask token>\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform='linux', env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({'MOLECULE_USER_NAME': 'root'})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'})\n molecule_command = (\n f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}'\n )\n if scenario is not None:\n molecule_command += f' -s {scenario}'\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-3": "<mask token>\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\ndef print_header(header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + f' {header_text} '.\n center(80, '=') + colorama.Style.RESET_ALL)\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\ndef run_command(context, *args, **kwargs):\n try:\n return context.run(*args, **kwargs)\n except invoke.exceptions.Failure:\n print(colorama.Fore.RED + colorama.Style.BRIGHT +\n \"Failure: error executing '\" + args[0] + \"' command\" + colorama\n .Style.RESET_ALL)\n raise\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform='linux', env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({'MOLECULE_USER_NAME': 'root'})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'})\n molecule_command = (\n f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}'\n )\n if scenario is not None:\n molecule_command += f' -s {scenario}'\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-4": "<mask token>\nwith warnings.catch_warnings():\n warnings.filterwarnings('ignore', category=DeprecationWarning)\n import invoke\n\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\n\ndef print_header(header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + f' {header_text} '.\n center(80, '=') + colorama.Style.RESET_ALL)\n\n\ndef print_sub_header(sub_header_text):\n print(colorama.Fore.CYAN + colorama.Style.BRIGHT + '--' +\n f' {sub_header_text} '.ljust(78, '-') + colorama.Style.RESET_ALL)\n\n\ndef print_success_message(success_message_text):\n print(colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f' {success_message_text}: Success '.center(80, '=') + colorama.\n Style.RESET_ALL)\n\n\ndef run_command(context, *args, **kwargs):\n try:\n return context.run(*args, **kwargs)\n except invoke.exceptions.Failure:\n print(colorama.Fore.RED + colorama.Style.BRIGHT +\n \"Failure: error executing '\" + args[0] + \"' command\" + colorama\n .Style.RESET_ALL)\n raise\n\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = 'molecule/molecule_base_{driver}_{platform}.yml'.format(\n driver=driver_code.name, platform=platform_code.name)\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / 'molecule').iterdir():\n if child_obj.is_dir():\n if (child_obj / 'molecule.yml').exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform='linux', env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({'MOLECULE_USER_NAME': 'root'})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({'MOLECULE_USER_NAME': 'vagrant'})\n molecule_command = (\n f'molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}'\n )\n if scenario is not None:\n molecule_command += f' -s {scenario}'\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name,\n None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\n\ndef get_github_release_info(release_url):\n if 'AO_GITHUB_OAUTH_TOKEN' in os.environ:\n headers = {'Authorization': 'token ' + os.environ[\n 'AO_GITHUB_OAUTH_TOKEN']}\n else:\n headers = None\n return requests.get('https://api.github.com/repos/' + release_url,\n headers=headers).json()\n", "step-5": "import os\nimport pathlib\nimport enum\nimport warnings\nimport colorama\nimport requests\nwith warnings.catch_warnings():\n warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n import invoke\n\nclass MoleculeDriver(enum.Enum):\n docker = 1\n lxd = 2\n vagrant = 3\n\nclass TestPlatform(enum.Enum):\n linux = 1\n ubuntu = 2\n centos = 3\n\ndef print_header(header_text):\n print(\n colorama.Fore.CYAN + colorama.Style.BRIGHT +\n f\" {header_text} \".center(80, \"=\") +\n colorama.Style.RESET_ALL\n )\n\n\ndef print_sub_header(sub_header_text):\n print(\n colorama.Fore.CYAN + colorama.Style.BRIGHT + \"--\" +\n f\" {sub_header_text} \".ljust(78, \"-\") +\n colorama.Style.RESET_ALL\n )\n\n\ndef print_success_message(success_message_text):\n print(\n colorama.Fore.GREEN + colorama.Style.BRIGHT +\n f\" {success_message_text}: Success \".center(80, \"=\") +\n colorama.Style.RESET_ALL\n )\n\n\ndef run_command(context, *args, **kwargs):\n try:\n return context.run(*args, **kwargs)\n except invoke.exceptions.Failure:\n print(\n colorama.Fore.RED + colorama.Style.BRIGHT +\n \"Failure: error executing '\" + args[0] + \"' command\" +\n colorama.Style.RESET_ALL\n )\n raise\n\ndef get_base_config_path(driver_code, platform_code):\n base_config = \"molecule/molecule_base_{driver}_{platform}.yml\".format(\n driver=driver_code.name, platform=platform_code.name\n )\n return str(pathlib.Path(__file__).resolve().parent / base_config)\n\ndef get_molecule_scenarios(context):\n scenarios = []\n for child_obj in (pathlib.Path.cwd() / \"molecule\").iterdir():\n if child_obj.is_dir():\n if (child_obj / \"molecule.yml\").exists():\n scenarios.append(child_obj.name)\n return sorted(scenarios)\n\n\ndef run_molecule(context, command, scenario, driver, platform=\"linux\", env={}):\n driver_code = MoleculeDriver[driver.lower()]\n platform_code = TestPlatform[platform.lower()]\n molecule_env = env.copy()\n if driver_code == MoleculeDriver.lxd:\n molecule_env.update({\"MOLECULE_USER_NAME\": \"root\"})\n elif driver_code == MoleculeDriver.vagrant:\n molecule_env.update({\"MOLECULE_USER_NAME\": \"vagrant\"})\n molecule_command = (\n f\"molecule --base-config {get_base_config_path(driver_code, platform_code)} {command}\"\n )\n if scenario is not None:\n molecule_command += f\" -s {scenario}\"\n run_command(context, molecule_command, env=molecule_env, echo=True)\n\ndef get_parameter_value(host, ansible_var_name, param_value, default_value):\n if host.backend.HAS_RUN_ANSIBLE:\n ansible_var_value = host.ansible.get_variables().get(ansible_var_name, None)\n else:\n ansible_var_value = None\n return_value = ansible_var_value if param_value is None else param_value\n if return_value is None:\n return_value = default_value\n return return_value\n\ndef get_github_release_info(release_url):\n if \"AO_GITHUB_OAUTH_TOKEN\" in os.environ:\n headers = {\"Authorization\": \"token \" + os.environ[\"AO_GITHUB_OAUTH_TOKEN\"]}\n else:\n headers = None\n return requests.get(\n \"https://api.github.com/repos/\" + release_url, headers=headers\n ).json()\n", "step-ids": [ 10, 11, 13, 14, 16 ] }
[ 10, 11, 13, 14, 16 ]
""" This file is part of the tractor library. See LICENSE.txt for licensing, CONTRIBUTORS.txt for contributor information. Created on Jan 06, 2012. """ from StringIO import StringIO from datetime import datetime from tractor.attachment import AttachmentWrapper from tractor.attachment import Base64Converter from tractor.tests.base import BaseTestCase from xmlrpclib import Binary import zipfile class Base64ConverterTestCase(BaseTestCase): def test_encode_string(self): test_str = 'This is a string for base64 conversion testing.' exp_conv = Binary(test_str) self.assert_equal(Base64Converter.encode_string(test_str), exp_conv) def test_encode_stream(self): test_stream = StringIO('This is a stream for base64 conversion testing.') exp_conv = Binary(test_stream.read()) self.assert_equal(Base64Converter.encode_stream(test_stream), exp_conv) test_stream.close() def test_encode_zip_stream(self): zip_stream = StringIO() archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False) archive.writestr('file1', 'test stream 1') archive.writestr('file2', 'test stream 2') for zfile in archive.filelist: zfile.create_system = 0 archive.close() zip_stream.seek(0) exp_conv = Binary(zip_stream.getvalue()) self.assert_equal(Base64Converter.encode_zip_stream(zip_stream), exp_conv) zip_stream.close() def test_decode_string(self): test_str = 'This is a string for base64 conversion testing.' conv = Base64Converter.encode_string(test_str) self.assert_equal(Base64Converter.decode_to_string(conv), test_str) def test_decode_stream(self): test_stream = StringIO('This is a stream for base64 conversion testing.') conv = Base64Converter.encode_stream(test_stream) decoded_conv = Base64Converter.decode_to_stream(conv) decoded_cont = decoded_conv.read() test_stream.seek(0) exp_cont = test_stream.read() self.assert_equal(decoded_cont, exp_cont) def test_decode_zip_file_data(self): zip_stream = StringIO() archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False) archive.writestr('file1', 'test stream 1') archive.writestr('file2', 'test stream 2') for zfile in archive.filelist: zfile.create_system = 0 archive.close() zip_stream.seek(0) conv = Base64Converter.encode_zip_stream(zip_stream) decoded_conv = Base64Converter.decode_to_stream(conv) ret_archive = zipfile.ZipFile(decoded_conv, 'a', zipfile.ZIP_DEFLATED, False) content1 = None content2 = None self.assert_equal(len(ret_archive.namelist()), 2) for file_name in ret_archive.namelist(): if file_name == 'file1': content1 = ret_archive.read(file_name) self.assert_equal(content1, 'test stream 1') self.assert_not_equal(content2, 'test stream 2') else: content2 = ret_archive.read(file_name) self.assert_equal(content2, 'test stream 2') self.assert_not_equal(content2, 'test stream 1') class AttachmentTestCase(BaseTestCase): def set_up(self): BaseTestCase.set_up(self) self.init_data = dict(content='Important attachment content.', file_name='test_file1.txt', description='A test file.', size=14, author='user1', time=None) def test_init(self): att = AttachmentWrapper(**self.init_data) for attr_name, exp_value in self.init_data.iteritems(): self.assert_equal(getattr(att, attr_name), exp_value) def test_create_from_trac_data(self): file_name = 'test_file1.txt' description = 'A test file.' size = len(file_name) time = datetime author = 'user1' trac_data = (file_name, description, size, time, author) att = AttachmentWrapper.create_from_trac_data(trac_data) self.init_data['content'] = None self.init_data['time'] = time for attr_name, exp_value in self.init_data.iteritems(): self.assert_equal(getattr(att, attr_name), exp_value) def test_get_base64_data_for_upload(self): # Test string test_str = 'This is a string for base64 conversion testing.' self.init_data['content'] = test_str exp_conv = Base64Converter.encode_string(test_str) att = AttachmentWrapper(**self.init_data) self.assert_equal(att.get_base64_data_for_upload(), exp_conv) # Test stream test_stream = StringIO('This is a stream for base64 conversion testing.') exp_conv = Base64Converter.encode_stream(test_stream) self.init_data['content'] = test_stream att = AttachmentWrapper(**self.init_data) self.assert_equal(att.get_base64_data_for_upload(), exp_conv) # Test file map file_map = dict(file1='test stream 1', file2='test stream 2') zip_stream = StringIO() archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False) for fn, content in file_map.iteritems(): archive.writestr(fn, content) for zfile in archive.filelist: zfile.create_system = 0 archive.close() zip_stream.seek(0) exp_conv = Base64Converter.encode_zip_stream(zip_stream) self.init_data['content'] = file_map att = AttachmentWrapper(**self.init_data) self.assert_equal(att.get_base64_data_for_upload(), exp_conv) # Test error raising self.init_data['content'] = 1 att = AttachmentWrapper(**self.init_data) self.assert_raises(TypeError, att.get_base64_data_for_upload)
normal
{ "blob_id": "41681a80807800efc06b3912533d739dab2cd085", "index": 1999, "step-1": "<mask token>\n\n\nclass AttachmentTestCase(BaseTestCase):\n\n def set_up(self):\n BaseTestCase.set_up(self)\n self.init_data = dict(content='Important attachment content.',\n file_name='test_file1.txt', description='A test file.', size=14,\n author='user1', time=None)\n\n def test_init(self):\n att = AttachmentWrapper(**self.init_data)\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_create_from_trac_data(self):\n file_name = 'test_file1.txt'\n description = 'A test file.'\n size = len(file_name)\n time = datetime\n author = 'user1'\n trac_data = file_name, description, size, time, author\n att = AttachmentWrapper.create_from_trac_data(trac_data)\n self.init_data['content'] = None\n self.init_data['time'] = time\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_get_base64_data_for_upload(self):\n test_str = 'This is a string for base64 conversion testing.'\n self.init_data['content'] = test_str\n exp_conv = Base64Converter.encode_string(test_str)\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n exp_conv = Base64Converter.encode_stream(test_stream)\n self.init_data['content'] = test_stream\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n file_map = dict(file1='test stream 1', file2='test stream 2')\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n for fn, content in file_map.iteritems():\n archive.writestr(fn, content)\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Base64Converter.encode_zip_stream(zip_stream)\n self.init_data['content'] = file_map\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n self.init_data['content'] = 1\n att = AttachmentWrapper(**self.init_data)\n self.assert_raises(TypeError, att.get_base64_data_for_upload)\n", "step-2": "<mask token>\n\n\nclass Base64ConverterTestCase(BaseTestCase):\n <mask token>\n <mask token>\n\n def test_encode_zip_stream(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Binary(zip_stream.getvalue())\n self.assert_equal(Base64Converter.encode_zip_stream(zip_stream),\n exp_conv)\n zip_stream.close()\n\n def test_decode_string(self):\n test_str = 'This is a string for base64 conversion testing.'\n conv = Base64Converter.encode_string(test_str)\n self.assert_equal(Base64Converter.decode_to_string(conv), test_str)\n\n def test_decode_stream(self):\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n conv = Base64Converter.encode_stream(test_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n decoded_cont = decoded_conv.read()\n test_stream.seek(0)\n exp_cont = test_stream.read()\n self.assert_equal(decoded_cont, exp_cont)\n\n def test_decode_zip_file_data(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n conv = Base64Converter.encode_zip_stream(zip_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n ret_archive = zipfile.ZipFile(decoded_conv, 'a', zipfile.\n ZIP_DEFLATED, False)\n content1 = None\n content2 = None\n self.assert_equal(len(ret_archive.namelist()), 2)\n for file_name in ret_archive.namelist():\n if file_name == 'file1':\n content1 = ret_archive.read(file_name)\n self.assert_equal(content1, 'test stream 1')\n self.assert_not_equal(content2, 'test stream 2')\n else:\n content2 = ret_archive.read(file_name)\n self.assert_equal(content2, 'test stream 2')\n self.assert_not_equal(content2, 'test stream 1')\n\n\nclass AttachmentTestCase(BaseTestCase):\n\n def set_up(self):\n BaseTestCase.set_up(self)\n self.init_data = dict(content='Important attachment content.',\n file_name='test_file1.txt', description='A test file.', size=14,\n author='user1', time=None)\n\n def test_init(self):\n att = AttachmentWrapper(**self.init_data)\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_create_from_trac_data(self):\n file_name = 'test_file1.txt'\n description = 'A test file.'\n size = len(file_name)\n time = datetime\n author = 'user1'\n trac_data = file_name, description, size, time, author\n att = AttachmentWrapper.create_from_trac_data(trac_data)\n self.init_data['content'] = None\n self.init_data['time'] = time\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_get_base64_data_for_upload(self):\n test_str = 'This is a string for base64 conversion testing.'\n self.init_data['content'] = test_str\n exp_conv = Base64Converter.encode_string(test_str)\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n exp_conv = Base64Converter.encode_stream(test_stream)\n self.init_data['content'] = test_stream\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n file_map = dict(file1='test stream 1', file2='test stream 2')\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n for fn, content in file_map.iteritems():\n archive.writestr(fn, content)\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Base64Converter.encode_zip_stream(zip_stream)\n self.init_data['content'] = file_map\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n self.init_data['content'] = 1\n att = AttachmentWrapper(**self.init_data)\n self.assert_raises(TypeError, att.get_base64_data_for_upload)\n", "step-3": "<mask token>\n\n\nclass Base64ConverterTestCase(BaseTestCase):\n <mask token>\n\n def test_encode_stream(self):\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n exp_conv = Binary(test_stream.read())\n self.assert_equal(Base64Converter.encode_stream(test_stream), exp_conv)\n test_stream.close()\n\n def test_encode_zip_stream(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Binary(zip_stream.getvalue())\n self.assert_equal(Base64Converter.encode_zip_stream(zip_stream),\n exp_conv)\n zip_stream.close()\n\n def test_decode_string(self):\n test_str = 'This is a string for base64 conversion testing.'\n conv = Base64Converter.encode_string(test_str)\n self.assert_equal(Base64Converter.decode_to_string(conv), test_str)\n\n def test_decode_stream(self):\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n conv = Base64Converter.encode_stream(test_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n decoded_cont = decoded_conv.read()\n test_stream.seek(0)\n exp_cont = test_stream.read()\n self.assert_equal(decoded_cont, exp_cont)\n\n def test_decode_zip_file_data(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n conv = Base64Converter.encode_zip_stream(zip_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n ret_archive = zipfile.ZipFile(decoded_conv, 'a', zipfile.\n ZIP_DEFLATED, False)\n content1 = None\n content2 = None\n self.assert_equal(len(ret_archive.namelist()), 2)\n for file_name in ret_archive.namelist():\n if file_name == 'file1':\n content1 = ret_archive.read(file_name)\n self.assert_equal(content1, 'test stream 1')\n self.assert_not_equal(content2, 'test stream 2')\n else:\n content2 = ret_archive.read(file_name)\n self.assert_equal(content2, 'test stream 2')\n self.assert_not_equal(content2, 'test stream 1')\n\n\nclass AttachmentTestCase(BaseTestCase):\n\n def set_up(self):\n BaseTestCase.set_up(self)\n self.init_data = dict(content='Important attachment content.',\n file_name='test_file1.txt', description='A test file.', size=14,\n author='user1', time=None)\n\n def test_init(self):\n att = AttachmentWrapper(**self.init_data)\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_create_from_trac_data(self):\n file_name = 'test_file1.txt'\n description = 'A test file.'\n size = len(file_name)\n time = datetime\n author = 'user1'\n trac_data = file_name, description, size, time, author\n att = AttachmentWrapper.create_from_trac_data(trac_data)\n self.init_data['content'] = None\n self.init_data['time'] = time\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_get_base64_data_for_upload(self):\n test_str = 'This is a string for base64 conversion testing.'\n self.init_data['content'] = test_str\n exp_conv = Base64Converter.encode_string(test_str)\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n exp_conv = Base64Converter.encode_stream(test_stream)\n self.init_data['content'] = test_stream\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n file_map = dict(file1='test stream 1', file2='test stream 2')\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n for fn, content in file_map.iteritems():\n archive.writestr(fn, content)\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Base64Converter.encode_zip_stream(zip_stream)\n self.init_data['content'] = file_map\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n self.init_data['content'] = 1\n att = AttachmentWrapper(**self.init_data)\n self.assert_raises(TypeError, att.get_base64_data_for_upload)\n", "step-4": "<mask token>\n\n\nclass Base64ConverterTestCase(BaseTestCase):\n\n def test_encode_string(self):\n test_str = 'This is a string for base64 conversion testing.'\n exp_conv = Binary(test_str)\n self.assert_equal(Base64Converter.encode_string(test_str), exp_conv)\n\n def test_encode_stream(self):\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n exp_conv = Binary(test_stream.read())\n self.assert_equal(Base64Converter.encode_stream(test_stream), exp_conv)\n test_stream.close()\n\n def test_encode_zip_stream(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Binary(zip_stream.getvalue())\n self.assert_equal(Base64Converter.encode_zip_stream(zip_stream),\n exp_conv)\n zip_stream.close()\n\n def test_decode_string(self):\n test_str = 'This is a string for base64 conversion testing.'\n conv = Base64Converter.encode_string(test_str)\n self.assert_equal(Base64Converter.decode_to_string(conv), test_str)\n\n def test_decode_stream(self):\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n conv = Base64Converter.encode_stream(test_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n decoded_cont = decoded_conv.read()\n test_stream.seek(0)\n exp_cont = test_stream.read()\n self.assert_equal(decoded_cont, exp_cont)\n\n def test_decode_zip_file_data(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n conv = Base64Converter.encode_zip_stream(zip_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n ret_archive = zipfile.ZipFile(decoded_conv, 'a', zipfile.\n ZIP_DEFLATED, False)\n content1 = None\n content2 = None\n self.assert_equal(len(ret_archive.namelist()), 2)\n for file_name in ret_archive.namelist():\n if file_name == 'file1':\n content1 = ret_archive.read(file_name)\n self.assert_equal(content1, 'test stream 1')\n self.assert_not_equal(content2, 'test stream 2')\n else:\n content2 = ret_archive.read(file_name)\n self.assert_equal(content2, 'test stream 2')\n self.assert_not_equal(content2, 'test stream 1')\n\n\nclass AttachmentTestCase(BaseTestCase):\n\n def set_up(self):\n BaseTestCase.set_up(self)\n self.init_data = dict(content='Important attachment content.',\n file_name='test_file1.txt', description='A test file.', size=14,\n author='user1', time=None)\n\n def test_init(self):\n att = AttachmentWrapper(**self.init_data)\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_create_from_trac_data(self):\n file_name = 'test_file1.txt'\n description = 'A test file.'\n size = len(file_name)\n time = datetime\n author = 'user1'\n trac_data = file_name, description, size, time, author\n att = AttachmentWrapper.create_from_trac_data(trac_data)\n self.init_data['content'] = None\n self.init_data['time'] = time\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_get_base64_data_for_upload(self):\n test_str = 'This is a string for base64 conversion testing.'\n self.init_data['content'] = test_str\n exp_conv = Base64Converter.encode_string(test_str)\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n test_stream = StringIO(\n 'This is a stream for base64 conversion testing.')\n exp_conv = Base64Converter.encode_stream(test_stream)\n self.init_data['content'] = test_stream\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n file_map = dict(file1='test stream 1', file2='test stream 2')\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n for fn, content in file_map.iteritems():\n archive.writestr(fn, content)\n for zfile in archive.filelist:\n zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Base64Converter.encode_zip_stream(zip_stream)\n self.init_data['content'] = file_map\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n self.init_data['content'] = 1\n att = AttachmentWrapper(**self.init_data)\n self.assert_raises(TypeError, att.get_base64_data_for_upload)\n", "step-5": "\"\"\"\nThis file is part of the tractor library.\nSee LICENSE.txt for licensing, CONTRIBUTORS.txt for contributor information.\n\nCreated on Jan 06, 2012.\n\"\"\"\n\nfrom StringIO import StringIO\nfrom datetime import datetime\nfrom tractor.attachment import AttachmentWrapper\nfrom tractor.attachment import Base64Converter\nfrom tractor.tests.base import BaseTestCase\nfrom xmlrpclib import Binary\nimport zipfile\n\n\nclass Base64ConverterTestCase(BaseTestCase):\n\n def test_encode_string(self):\n test_str = 'This is a string for base64 conversion testing.'\n exp_conv = Binary(test_str)\n self.assert_equal(Base64Converter.encode_string(test_str), exp_conv)\n\n def test_encode_stream(self):\n test_stream = StringIO('This is a stream for base64 conversion testing.')\n exp_conv = Binary(test_stream.read())\n self.assert_equal(Base64Converter.encode_stream(test_stream), exp_conv)\n test_stream.close()\n\n def test_encode_zip_stream(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist: zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Binary(zip_stream.getvalue())\n self.assert_equal(Base64Converter.encode_zip_stream(zip_stream),\n exp_conv)\n zip_stream.close()\n\n def test_decode_string(self):\n test_str = 'This is a string for base64 conversion testing.'\n conv = Base64Converter.encode_string(test_str)\n self.assert_equal(Base64Converter.decode_to_string(conv), test_str)\n\n def test_decode_stream(self):\n test_stream = StringIO('This is a stream for base64 conversion testing.')\n conv = Base64Converter.encode_stream(test_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n decoded_cont = decoded_conv.read()\n test_stream.seek(0)\n exp_cont = test_stream.read()\n self.assert_equal(decoded_cont, exp_cont)\n\n def test_decode_zip_file_data(self):\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n archive.writestr('file1', 'test stream 1')\n archive.writestr('file2', 'test stream 2')\n for zfile in archive.filelist: zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n conv = Base64Converter.encode_zip_stream(zip_stream)\n decoded_conv = Base64Converter.decode_to_stream(conv)\n ret_archive = zipfile.ZipFile(decoded_conv, 'a', zipfile.ZIP_DEFLATED,\n False)\n content1 = None\n content2 = None\n self.assert_equal(len(ret_archive.namelist()), 2)\n for file_name in ret_archive.namelist():\n if file_name == 'file1':\n content1 = ret_archive.read(file_name)\n self.assert_equal(content1, 'test stream 1')\n self.assert_not_equal(content2, 'test stream 2')\n else:\n content2 = ret_archive.read(file_name)\n self.assert_equal(content2, 'test stream 2')\n self.assert_not_equal(content2, 'test stream 1')\n\nclass AttachmentTestCase(BaseTestCase):\n\n def set_up(self):\n BaseTestCase.set_up(self)\n self.init_data = dict(content='Important attachment content.',\n file_name='test_file1.txt',\n description='A test file.',\n size=14,\n author='user1',\n time=None)\n\n def test_init(self):\n att = AttachmentWrapper(**self.init_data)\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_create_from_trac_data(self):\n file_name = 'test_file1.txt'\n description = 'A test file.'\n size = len(file_name)\n time = datetime\n author = 'user1'\n trac_data = (file_name, description, size, time, author)\n att = AttachmentWrapper.create_from_trac_data(trac_data)\n self.init_data['content'] = None\n self.init_data['time'] = time\n for attr_name, exp_value in self.init_data.iteritems():\n self.assert_equal(getattr(att, attr_name), exp_value)\n\n def test_get_base64_data_for_upload(self):\n # Test string\n test_str = 'This is a string for base64 conversion testing.'\n self.init_data['content'] = test_str\n exp_conv = Base64Converter.encode_string(test_str)\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n # Test stream\n test_stream = StringIO('This is a stream for base64 conversion testing.')\n exp_conv = Base64Converter.encode_stream(test_stream)\n self.init_data['content'] = test_stream\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n # Test file map\n file_map = dict(file1='test stream 1', file2='test stream 2')\n zip_stream = StringIO()\n archive = zipfile.ZipFile(zip_stream, 'a', zipfile.ZIP_DEFLATED, False)\n for fn, content in file_map.iteritems(): archive.writestr(fn, content)\n for zfile in archive.filelist: zfile.create_system = 0\n archive.close()\n zip_stream.seek(0)\n exp_conv = Base64Converter.encode_zip_stream(zip_stream)\n self.init_data['content'] = file_map\n att = AttachmentWrapper(**self.init_data)\n self.assert_equal(att.get_base64_data_for_upload(), exp_conv)\n # Test error raising\n self.init_data['content'] = 1\n att = AttachmentWrapper(**self.init_data)\n self.assert_raises(TypeError, att.get_base64_data_for_upload)\n", "step-ids": [ 5, 10, 11, 12, 14 ] }
[ 5, 10, 11, 12, 14 ]
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2020 sungminoh <[email protected]> # # Distributed under terms of the MIT license. """ You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin. Example 1: Input: amount = 5, coins = [1, 2, 5] Output: 4 Explanation: there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 Example 2: Input: amount = 3, coins = [2] Output: 0 Explanation: the amount of 3 cannot be made up just with coins of 2. Example 3: Input: amount = 10, coins = [10] Output: 1 Note: You can assume that 1. 0 <= amount <= 5000 2. 1 <= coin <= 5000 3. the number of coins is less than 500 4. the answer is guaranteed to fit into signed 32-bit integer """ import sys from functools import lru_cache from typing import List import pytest class Solution: def change(self, amount: int, coins: List[int]) -> int: coins = sorted(coins, reverse=True) @lru_cache(None) def rec(i, amount): if i == len(coins): return 1 if amount == 0 else 0 return sum(rec(i+1, amount-c) for c in range(0, amount+1, coins[i])) return rec(0, amount) @pytest.mark.parametrize('amount, coins, expected', [ (5, [1,2,5], 4), (3, [2], 0), (10, [10], 1), ]) def test(amount, coins, expected): assert expected == Solution().change(amount, coins) if __name__ == '__main__': sys.exit(pytest.main(["-s", "-v"] + sys.argv))
normal
{ "blob_id": "332c530d221c9441d6ff3646f8e9226dc78067f9", "index": 2902, "step-1": "<mask token>\n\n\nclass Solution:\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution:\n\n def change(self, amount: int, coins: List[int]) ->int:\n coins = sorted(coins, reverse=True)\n\n @lru_cache(None)\n def rec(i, amount):\n if i == len(coins):\n return 1 if amount == 0 else 0\n return sum(rec(i + 1, amount - c) for c in range(0, amount + 1,\n coins[i]))\n return rec(0, amount)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Solution:\n\n def change(self, amount: int, coins: List[int]) ->int:\n coins = sorted(coins, reverse=True)\n\n @lru_cache(None)\n def rec(i, amount):\n if i == len(coins):\n return 1 if amount == 0 else 0\n return sum(rec(i + 1, amount - c) for c in range(0, amount + 1,\n coins[i]))\n return rec(0, amount)\n\n\[email protected]('amount, coins, expected', [(5, [1, 2, 5], 4), (3,\n [2], 0), (10, [10], 1)])\ndef test(amount, coins, expected):\n assert expected == Solution().change(amount, coins)\n\n\nif __name__ == '__main__':\n sys.exit(pytest.main(['-s', '-v'] + sys.argv))\n", "step-4": "<mask token>\nimport sys\nfrom functools import lru_cache\nfrom typing import List\nimport pytest\n\n\nclass Solution:\n\n def change(self, amount: int, coins: List[int]) ->int:\n coins = sorted(coins, reverse=True)\n\n @lru_cache(None)\n def rec(i, amount):\n if i == len(coins):\n return 1 if amount == 0 else 0\n return sum(rec(i + 1, amount - c) for c in range(0, amount + 1,\n coins[i]))\n return rec(0, amount)\n\n\[email protected]('amount, coins, expected', [(5, [1, 2, 5], 4), (3,\n [2], 0), (10, [10], 1)])\ndef test(amount, coins, expected):\n assert expected == Solution().change(amount, coins)\n\n\nif __name__ == '__main__':\n sys.exit(pytest.main(['-s', '-v'] + sys.argv))\n", "step-5": "\n#! /usr/bin/env python\n# -*- coding: utf-8 -*-\n# vim:fenc=utf-8\n#\n# Copyright © 2020 sungminoh <[email protected]>\n#\n# Distributed under terms of the MIT license.\n\n\"\"\"\nYou are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.\n\nExample 1:\n\nInput: amount = 5, coins = [1, 2, 5]\nOutput: 4\nExplanation: there are four ways to make up the amount:\n5=5\n5=2+2+1\n5=2+1+1+1\n5=1+1+1+1+1\n\nExample 2:\n\nInput: amount = 3, coins = [2]\nOutput: 0\nExplanation: the amount of 3 cannot be made up just with coins of 2.\n\nExample 3:\n\nInput: amount = 10, coins = [10]\nOutput: 1\n\nNote:\n\nYou can assume that\n 1. 0 <= amount <= 5000\n 2. 1 <= coin <= 5000\n 3. the number of coins is less than 500\n 4. the answer is guaranteed to fit into signed 32-bit integer\n\"\"\"\nimport sys\nfrom functools import lru_cache\nfrom typing import List\nimport pytest\n\n\nclass Solution:\n def change(self, amount: int, coins: List[int]) -> int:\n coins = sorted(coins, reverse=True)\n @lru_cache(None)\n def rec(i, amount):\n if i == len(coins):\n return 1 if amount == 0 else 0\n return sum(rec(i+1, amount-c) for c in range(0, amount+1, coins[i]))\n return rec(0, amount)\n\n\[email protected]('amount, coins, expected', [\n (5, [1,2,5], 4),\n (3, [2], 0),\n (10, [10], 1),\n])\ndef test(amount, coins, expected):\n assert expected == Solution().change(amount, coins)\n\n\nif __name__ == '__main__':\n sys.exit(pytest.main([\"-s\", \"-v\"] + sys.argv))\n\n", "step-ids": [ 1, 2, 4, 5, 6 ] }
[ 1, 2, 4, 5, 6 ]
<|reserved_special_token_0|> class InowasFlopyCalculationAdapter: <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content <|reserved_special_token_0|> @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() <|reserved_special_token_0|> def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class InowasFlopyCalculationAdapter: <|reserved_special_token_0|> _version = None _uuid = None _mf = None _mt = None _report = '' mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch', 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6'] mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt', 'phc', 'rct', 'sft', 'tob', 'uzt'] def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response def response_message(self): return self._report <|reserved_special_token_1|> <|reserved_special_token_0|> class InowasFlopyCalculationAdapter: """The Flopy Class""" _version = None _uuid = None _mf = None _mt = None _report = '' mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch', 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6'] mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt', 'phc', 'rct', 'sft', 'tob', 'uzt'] def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response def response_message(self): return self._report <|reserved_special_token_1|> <|reserved_special_token_0|> from .BasAdapter import BasAdapter from .ChdAdapter import ChdAdapter from .DisAdapter import DisAdapter from .GhbAdapter import GhbAdapter from .LpfAdapter import LpfAdapter from .MfAdapter import MfAdapter from .NwtAdapter import NwtAdapter from .OcAdapter import OcAdapter from .PcgAdapter import PcgAdapter from .RchAdapter import RchAdapter from .RivAdapter import RivAdapter from .ReadBudget import ReadBudget from .ReadDrawdown import ReadDrawdown from .ReadHead import ReadHead from .UpwAdapter import UpwAdapter from .WelAdapter import WelAdapter from .LmtAdapter import LmtAdapter from .MtAdapter import MtAdapter from .AdvAdapter import AdvAdapter from .BtnAdapter import BtnAdapter from .DspAdapter import DspAdapter from .GcgAdapter import GcgAdapter from .LktAdapter import LktAdapter from .PhcAdapter import PhcAdapter from .RctAdapter import RctAdapter from .SftAdapter import SftAdapter from .SsmAdapter import SsmAdapter from .TobAdapter import TobAdapter from .UztAdapter import UztAdapter class InowasFlopyCalculationAdapter: """The Flopy Class""" _version = None _uuid = None _mf = None _mt = None _report = '' mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch', 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6'] mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt', 'phc', 'rct', 'sft', 'tob', 'uzt'] def __init__(self, version, data, uuid): self._mf_data = data.get('mf') self._mt_data = data.get('mt') self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get('write_input'): self.write_input_model(self._mf) if self._mf_data.get('run_model'): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get('write_input'): self.write_input_model(self._mt) if self._mt_data.get('run_model'): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data['packages']: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response def response_message(self): return self._report <|reserved_special_token_1|> """ This module is an intermediate layer between flopy version 3.2 and the inowas-modflow-configuration format. Author: Ralf Junghanns EMail: [email protected] """ from .BasAdapter import BasAdapter from .ChdAdapter import ChdAdapter from .DisAdapter import DisAdapter from .GhbAdapter import GhbAdapter from .LpfAdapter import LpfAdapter from .MfAdapter import MfAdapter from .NwtAdapter import NwtAdapter from .OcAdapter import OcAdapter from .PcgAdapter import PcgAdapter from .RchAdapter import RchAdapter from .RivAdapter import RivAdapter from .ReadBudget import ReadBudget from .ReadDrawdown import ReadDrawdown from .ReadHead import ReadHead from .UpwAdapter import UpwAdapter from .WelAdapter import WelAdapter from .LmtAdapter import LmtAdapter from .MtAdapter import MtAdapter from .AdvAdapter import AdvAdapter from .BtnAdapter import BtnAdapter from .DspAdapter import DspAdapter from .GcgAdapter import GcgAdapter from .LktAdapter import LktAdapter from .PhcAdapter import PhcAdapter from .RctAdapter import RctAdapter from .SftAdapter import SftAdapter from .SsmAdapter import SsmAdapter from .TobAdapter import TobAdapter from .UztAdapter import UztAdapter class InowasFlopyCalculationAdapter: """The Flopy Class""" _version = None _uuid = None _mf = None _mt = None _report = '' mf_package_order = [ 'mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch', 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6' ] mt_package_order = [ "mt", "btn", "adv", "dsp", "gcg", "ssm", "lkt", "phc", "rct", "sft", "tob", "uzt" ] def __init__(self, version, data, uuid): self._mf_data = data.get("mf") self._mt_data = data.get("mt") self._version = version self._uuid = uuid if self._mf_data is not None: package_content = self.read_packages(self._mf_data) self.create_model(self.mf_package_order, package_content) if self._mf_data.get("write_input"): self.write_input_model(self._mf) if self._mf_data.get("run_model"): self._report += self.run_model(self._mf) if self._mt_data is not None: package_content = self.read_packages(self._mt_data) self.create_model(self.mt_package_order, package_content) if self._mt_data.get("write_input"): self.write_input_model(self._mt) if self._mt_data.get("run_model"): self._report += self.run_model(self._mt) @staticmethod def read_packages(data): package_content = {} for package in data["packages"]: print('Read Flopy Package: %s' % package) package_content[package.lower()] = data[package] return package_content def create_model(self, package_order, package_content): for package in package_order: if package in package_content: print('Create Flopy Package: %s' % package) self.create_package(package, package_content[package]) @staticmethod def write_input_model(model): print('Write %s input files' % model) model.write_input() @staticmethod def run_model(model): print('Run the %s model' % model) print(model.namefile) print(model.exe_name) success, report = model.run_model(report=True, silent=True) return ' \n'.join(str(e) for e in report + [success]) def check_model(self): if self._mf is not None: self._mf.check() if self._mt is not None: self._mt.check() def create_package(self, name, content): # Modlfow packages if name == 'mf': self._mf = MfAdapter(content).get_package() if name == 'dis': DisAdapter(content).get_package(self._mf) if name == 'bas' or name == 'bas6': BasAdapter(content).get_package(self._mf) if name == 'lpf': LpfAdapter(content).get_package(self._mf) if name == 'upw': UpwAdapter(content).get_package(self._mf) if name == 'pcg': PcgAdapter(content).get_package(self._mf) if name == 'nwt': NwtAdapter(content).get_package(self._mf) if name == 'oc': OcAdapter(content).get_package(self._mf) if name == 'riv': RivAdapter(content).get_package(self._mf) if name == 'wel': WelAdapter(content).get_package(self._mf) if name == 'rch': RchAdapter(content).get_package(self._mf) if name == 'chd': ChdAdapter(content).get_package(self._mf) if name == 'ghb': GhbAdapter(content).get_package(self._mf) if name == 'lmt': LmtAdapter(content).get_package(self._mf) # MT3D packages if name == 'mt': self._mt = MtAdapter(content).get_package(self._mf) if name == 'adv': AdvAdapter(content).get_package(self._mt) if name == 'btn': BtnAdapter(content).get_package(self._mt) if name == 'dsp': DspAdapter(content).get_package(self._mt) if name == 'gcg': GcgAdapter(content).get_package(self._mt) if name == 'lkt': LktAdapter(content).get_package(self._mt) if name == 'phc': PhcAdapter(content).get_package(self._mt) if name == 'rct': RctAdapter(content).get_package(self._mt) if name == 'sft': SftAdapter(content).get_package(self._mt) if name == 'ssm': SsmAdapter(content).get_package(self._mt) if name == 'tob': TobAdapter(content).get_package(self._mt) if name == 'uzt': UztAdapter(content).get_package(self._mt) def response(self): key = 'mf' if 'MF' in self._mf_data: key = 'MF' heads = ReadHead(self._mf_data[key]['model_ws']) drawdowns = ReadDrawdown(self._mf_data[key]['model_ws']) budgets = ReadBudget(self._mf_data[key]['model_ws']) response = {} response['heads'] = heads.read_times() response['drawdowns'] = drawdowns.read_times() response['budgets'] = budgets.read_times() response['number_of_layers'] = heads.read_number_of_layers() return response def response_message(self): return self._report
flexible
{ "blob_id": "fb64003c1acbddcbe952a17edcbf293a54ef28ae", "index": 2185, "step-1": "<mask token>\n\n\nclass InowasFlopyCalculationAdapter:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, version, data, uuid):\n self._mf_data = data.get('mf')\n self._mt_data = data.get('mt')\n self._version = version\n self._uuid = uuid\n if self._mf_data is not None:\n package_content = self.read_packages(self._mf_data)\n self.create_model(self.mf_package_order, package_content)\n if self._mf_data.get('write_input'):\n self.write_input_model(self._mf)\n if self._mf_data.get('run_model'):\n self._report += self.run_model(self._mf)\n if self._mt_data is not None:\n package_content = self.read_packages(self._mt_data)\n self.create_model(self.mt_package_order, package_content)\n if self._mt_data.get('write_input'):\n self.write_input_model(self._mt)\n if self._mt_data.get('run_model'):\n self._report += self.run_model(self._mt)\n\n @staticmethod\n def read_packages(data):\n package_content = {}\n for package in data['packages']:\n print('Read Flopy Package: %s' % package)\n package_content[package.lower()] = data[package]\n return package_content\n <mask token>\n\n @staticmethod\n def write_input_model(model):\n print('Write %s input files' % model)\n model.write_input()\n <mask token>\n\n def check_model(self):\n if self._mf is not None:\n self._mf.check()\n if self._mt is not None:\n self._mt.check()\n\n def create_package(self, name, content):\n if name == 'mf':\n self._mf = MfAdapter(content).get_package()\n if name == 'dis':\n DisAdapter(content).get_package(self._mf)\n if name == 'bas' or name == 'bas6':\n BasAdapter(content).get_package(self._mf)\n if name == 'lpf':\n LpfAdapter(content).get_package(self._mf)\n if name == 'upw':\n UpwAdapter(content).get_package(self._mf)\n if name == 'pcg':\n PcgAdapter(content).get_package(self._mf)\n if name == 'nwt':\n NwtAdapter(content).get_package(self._mf)\n if name == 'oc':\n OcAdapter(content).get_package(self._mf)\n if name == 'riv':\n RivAdapter(content).get_package(self._mf)\n if name == 'wel':\n WelAdapter(content).get_package(self._mf)\n if name == 'rch':\n RchAdapter(content).get_package(self._mf)\n if name == 'chd':\n ChdAdapter(content).get_package(self._mf)\n if name == 'ghb':\n GhbAdapter(content).get_package(self._mf)\n if name == 'lmt':\n LmtAdapter(content).get_package(self._mf)\n if name == 'mt':\n self._mt = MtAdapter(content).get_package(self._mf)\n if name == 'adv':\n AdvAdapter(content).get_package(self._mt)\n if name == 'btn':\n BtnAdapter(content).get_package(self._mt)\n if name == 'dsp':\n DspAdapter(content).get_package(self._mt)\n if name == 'gcg':\n GcgAdapter(content).get_package(self._mt)\n if name == 'lkt':\n LktAdapter(content).get_package(self._mt)\n if name == 'phc':\n PhcAdapter(content).get_package(self._mt)\n if name == 'rct':\n RctAdapter(content).get_package(self._mt)\n if name == 'sft':\n SftAdapter(content).get_package(self._mt)\n if name == 'ssm':\n SsmAdapter(content).get_package(self._mt)\n if name == 'tob':\n TobAdapter(content).get_package(self._mt)\n if name == 'uzt':\n UztAdapter(content).get_package(self._mt)\n\n def response(self):\n key = 'mf'\n if 'MF' in self._mf_data:\n key = 'MF'\n heads = ReadHead(self._mf_data[key]['model_ws'])\n drawdowns = ReadDrawdown(self._mf_data[key]['model_ws'])\n budgets = ReadBudget(self._mf_data[key]['model_ws'])\n response = {}\n response['heads'] = heads.read_times()\n response['drawdowns'] = drawdowns.read_times()\n response['budgets'] = budgets.read_times()\n response['number_of_layers'] = heads.read_number_of_layers()\n return response\n <mask token>\n", "step-2": "<mask token>\n\n\nclass InowasFlopyCalculationAdapter:\n <mask token>\n _version = None\n _uuid = None\n _mf = None\n _mt = None\n _report = ''\n mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch',\n 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6']\n mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt',\n 'phc', 'rct', 'sft', 'tob', 'uzt']\n\n def __init__(self, version, data, uuid):\n self._mf_data = data.get('mf')\n self._mt_data = data.get('mt')\n self._version = version\n self._uuid = uuid\n if self._mf_data is not None:\n package_content = self.read_packages(self._mf_data)\n self.create_model(self.mf_package_order, package_content)\n if self._mf_data.get('write_input'):\n self.write_input_model(self._mf)\n if self._mf_data.get('run_model'):\n self._report += self.run_model(self._mf)\n if self._mt_data is not None:\n package_content = self.read_packages(self._mt_data)\n self.create_model(self.mt_package_order, package_content)\n if self._mt_data.get('write_input'):\n self.write_input_model(self._mt)\n if self._mt_data.get('run_model'):\n self._report += self.run_model(self._mt)\n\n @staticmethod\n def read_packages(data):\n package_content = {}\n for package in data['packages']:\n print('Read Flopy Package: %s' % package)\n package_content[package.lower()] = data[package]\n return package_content\n\n def create_model(self, package_order, package_content):\n for package in package_order:\n if package in package_content:\n print('Create Flopy Package: %s' % package)\n self.create_package(package, package_content[package])\n\n @staticmethod\n def write_input_model(model):\n print('Write %s input files' % model)\n model.write_input()\n\n @staticmethod\n def run_model(model):\n print('Run the %s model' % model)\n print(model.namefile)\n print(model.exe_name)\n success, report = model.run_model(report=True, silent=True)\n return ' \\n'.join(str(e) for e in report + [success])\n\n def check_model(self):\n if self._mf is not None:\n self._mf.check()\n if self._mt is not None:\n self._mt.check()\n\n def create_package(self, name, content):\n if name == 'mf':\n self._mf = MfAdapter(content).get_package()\n if name == 'dis':\n DisAdapter(content).get_package(self._mf)\n if name == 'bas' or name == 'bas6':\n BasAdapter(content).get_package(self._mf)\n if name == 'lpf':\n LpfAdapter(content).get_package(self._mf)\n if name == 'upw':\n UpwAdapter(content).get_package(self._mf)\n if name == 'pcg':\n PcgAdapter(content).get_package(self._mf)\n if name == 'nwt':\n NwtAdapter(content).get_package(self._mf)\n if name == 'oc':\n OcAdapter(content).get_package(self._mf)\n if name == 'riv':\n RivAdapter(content).get_package(self._mf)\n if name == 'wel':\n WelAdapter(content).get_package(self._mf)\n if name == 'rch':\n RchAdapter(content).get_package(self._mf)\n if name == 'chd':\n ChdAdapter(content).get_package(self._mf)\n if name == 'ghb':\n GhbAdapter(content).get_package(self._mf)\n if name == 'lmt':\n LmtAdapter(content).get_package(self._mf)\n if name == 'mt':\n self._mt = MtAdapter(content).get_package(self._mf)\n if name == 'adv':\n AdvAdapter(content).get_package(self._mt)\n if name == 'btn':\n BtnAdapter(content).get_package(self._mt)\n if name == 'dsp':\n DspAdapter(content).get_package(self._mt)\n if name == 'gcg':\n GcgAdapter(content).get_package(self._mt)\n if name == 'lkt':\n LktAdapter(content).get_package(self._mt)\n if name == 'phc':\n PhcAdapter(content).get_package(self._mt)\n if name == 'rct':\n RctAdapter(content).get_package(self._mt)\n if name == 'sft':\n SftAdapter(content).get_package(self._mt)\n if name == 'ssm':\n SsmAdapter(content).get_package(self._mt)\n if name == 'tob':\n TobAdapter(content).get_package(self._mt)\n if name == 'uzt':\n UztAdapter(content).get_package(self._mt)\n\n def response(self):\n key = 'mf'\n if 'MF' in self._mf_data:\n key = 'MF'\n heads = ReadHead(self._mf_data[key]['model_ws'])\n drawdowns = ReadDrawdown(self._mf_data[key]['model_ws'])\n budgets = ReadBudget(self._mf_data[key]['model_ws'])\n response = {}\n response['heads'] = heads.read_times()\n response['drawdowns'] = drawdowns.read_times()\n response['budgets'] = budgets.read_times()\n response['number_of_layers'] = heads.read_number_of_layers()\n return response\n\n def response_message(self):\n return self._report\n", "step-3": "<mask token>\n\n\nclass InowasFlopyCalculationAdapter:\n \"\"\"The Flopy Class\"\"\"\n _version = None\n _uuid = None\n _mf = None\n _mt = None\n _report = ''\n mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch',\n 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6']\n mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt',\n 'phc', 'rct', 'sft', 'tob', 'uzt']\n\n def __init__(self, version, data, uuid):\n self._mf_data = data.get('mf')\n self._mt_data = data.get('mt')\n self._version = version\n self._uuid = uuid\n if self._mf_data is not None:\n package_content = self.read_packages(self._mf_data)\n self.create_model(self.mf_package_order, package_content)\n if self._mf_data.get('write_input'):\n self.write_input_model(self._mf)\n if self._mf_data.get('run_model'):\n self._report += self.run_model(self._mf)\n if self._mt_data is not None:\n package_content = self.read_packages(self._mt_data)\n self.create_model(self.mt_package_order, package_content)\n if self._mt_data.get('write_input'):\n self.write_input_model(self._mt)\n if self._mt_data.get('run_model'):\n self._report += self.run_model(self._mt)\n\n @staticmethod\n def read_packages(data):\n package_content = {}\n for package in data['packages']:\n print('Read Flopy Package: %s' % package)\n package_content[package.lower()] = data[package]\n return package_content\n\n def create_model(self, package_order, package_content):\n for package in package_order:\n if package in package_content:\n print('Create Flopy Package: %s' % package)\n self.create_package(package, package_content[package])\n\n @staticmethod\n def write_input_model(model):\n print('Write %s input files' % model)\n model.write_input()\n\n @staticmethod\n def run_model(model):\n print('Run the %s model' % model)\n print(model.namefile)\n print(model.exe_name)\n success, report = model.run_model(report=True, silent=True)\n return ' \\n'.join(str(e) for e in report + [success])\n\n def check_model(self):\n if self._mf is not None:\n self._mf.check()\n if self._mt is not None:\n self._mt.check()\n\n def create_package(self, name, content):\n if name == 'mf':\n self._mf = MfAdapter(content).get_package()\n if name == 'dis':\n DisAdapter(content).get_package(self._mf)\n if name == 'bas' or name == 'bas6':\n BasAdapter(content).get_package(self._mf)\n if name == 'lpf':\n LpfAdapter(content).get_package(self._mf)\n if name == 'upw':\n UpwAdapter(content).get_package(self._mf)\n if name == 'pcg':\n PcgAdapter(content).get_package(self._mf)\n if name == 'nwt':\n NwtAdapter(content).get_package(self._mf)\n if name == 'oc':\n OcAdapter(content).get_package(self._mf)\n if name == 'riv':\n RivAdapter(content).get_package(self._mf)\n if name == 'wel':\n WelAdapter(content).get_package(self._mf)\n if name == 'rch':\n RchAdapter(content).get_package(self._mf)\n if name == 'chd':\n ChdAdapter(content).get_package(self._mf)\n if name == 'ghb':\n GhbAdapter(content).get_package(self._mf)\n if name == 'lmt':\n LmtAdapter(content).get_package(self._mf)\n if name == 'mt':\n self._mt = MtAdapter(content).get_package(self._mf)\n if name == 'adv':\n AdvAdapter(content).get_package(self._mt)\n if name == 'btn':\n BtnAdapter(content).get_package(self._mt)\n if name == 'dsp':\n DspAdapter(content).get_package(self._mt)\n if name == 'gcg':\n GcgAdapter(content).get_package(self._mt)\n if name == 'lkt':\n LktAdapter(content).get_package(self._mt)\n if name == 'phc':\n PhcAdapter(content).get_package(self._mt)\n if name == 'rct':\n RctAdapter(content).get_package(self._mt)\n if name == 'sft':\n SftAdapter(content).get_package(self._mt)\n if name == 'ssm':\n SsmAdapter(content).get_package(self._mt)\n if name == 'tob':\n TobAdapter(content).get_package(self._mt)\n if name == 'uzt':\n UztAdapter(content).get_package(self._mt)\n\n def response(self):\n key = 'mf'\n if 'MF' in self._mf_data:\n key = 'MF'\n heads = ReadHead(self._mf_data[key]['model_ws'])\n drawdowns = ReadDrawdown(self._mf_data[key]['model_ws'])\n budgets = ReadBudget(self._mf_data[key]['model_ws'])\n response = {}\n response['heads'] = heads.read_times()\n response['drawdowns'] = drawdowns.read_times()\n response['budgets'] = budgets.read_times()\n response['number_of_layers'] = heads.read_number_of_layers()\n return response\n\n def response_message(self):\n return self._report\n", "step-4": "<mask token>\nfrom .BasAdapter import BasAdapter\nfrom .ChdAdapter import ChdAdapter\nfrom .DisAdapter import DisAdapter\nfrom .GhbAdapter import GhbAdapter\nfrom .LpfAdapter import LpfAdapter\nfrom .MfAdapter import MfAdapter\nfrom .NwtAdapter import NwtAdapter\nfrom .OcAdapter import OcAdapter\nfrom .PcgAdapter import PcgAdapter\nfrom .RchAdapter import RchAdapter\nfrom .RivAdapter import RivAdapter\nfrom .ReadBudget import ReadBudget\nfrom .ReadDrawdown import ReadDrawdown\nfrom .ReadHead import ReadHead\nfrom .UpwAdapter import UpwAdapter\nfrom .WelAdapter import WelAdapter\nfrom .LmtAdapter import LmtAdapter\nfrom .MtAdapter import MtAdapter\nfrom .AdvAdapter import AdvAdapter\nfrom .BtnAdapter import BtnAdapter\nfrom .DspAdapter import DspAdapter\nfrom .GcgAdapter import GcgAdapter\nfrom .LktAdapter import LktAdapter\nfrom .PhcAdapter import PhcAdapter\nfrom .RctAdapter import RctAdapter\nfrom .SftAdapter import SftAdapter\nfrom .SsmAdapter import SsmAdapter\nfrom .TobAdapter import TobAdapter\nfrom .UztAdapter import UztAdapter\n\n\nclass InowasFlopyCalculationAdapter:\n \"\"\"The Flopy Class\"\"\"\n _version = None\n _uuid = None\n _mf = None\n _mt = None\n _report = ''\n mf_package_order = ['mf', 'dis', 'bas', 'bas6', 'riv', 'wel', 'rch',\n 'chd', 'ghb', 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6']\n mt_package_order = ['mt', 'btn', 'adv', 'dsp', 'gcg', 'ssm', 'lkt',\n 'phc', 'rct', 'sft', 'tob', 'uzt']\n\n def __init__(self, version, data, uuid):\n self._mf_data = data.get('mf')\n self._mt_data = data.get('mt')\n self._version = version\n self._uuid = uuid\n if self._mf_data is not None:\n package_content = self.read_packages(self._mf_data)\n self.create_model(self.mf_package_order, package_content)\n if self._mf_data.get('write_input'):\n self.write_input_model(self._mf)\n if self._mf_data.get('run_model'):\n self._report += self.run_model(self._mf)\n if self._mt_data is not None:\n package_content = self.read_packages(self._mt_data)\n self.create_model(self.mt_package_order, package_content)\n if self._mt_data.get('write_input'):\n self.write_input_model(self._mt)\n if self._mt_data.get('run_model'):\n self._report += self.run_model(self._mt)\n\n @staticmethod\n def read_packages(data):\n package_content = {}\n for package in data['packages']:\n print('Read Flopy Package: %s' % package)\n package_content[package.lower()] = data[package]\n return package_content\n\n def create_model(self, package_order, package_content):\n for package in package_order:\n if package in package_content:\n print('Create Flopy Package: %s' % package)\n self.create_package(package, package_content[package])\n\n @staticmethod\n def write_input_model(model):\n print('Write %s input files' % model)\n model.write_input()\n\n @staticmethod\n def run_model(model):\n print('Run the %s model' % model)\n print(model.namefile)\n print(model.exe_name)\n success, report = model.run_model(report=True, silent=True)\n return ' \\n'.join(str(e) for e in report + [success])\n\n def check_model(self):\n if self._mf is not None:\n self._mf.check()\n if self._mt is not None:\n self._mt.check()\n\n def create_package(self, name, content):\n if name == 'mf':\n self._mf = MfAdapter(content).get_package()\n if name == 'dis':\n DisAdapter(content).get_package(self._mf)\n if name == 'bas' or name == 'bas6':\n BasAdapter(content).get_package(self._mf)\n if name == 'lpf':\n LpfAdapter(content).get_package(self._mf)\n if name == 'upw':\n UpwAdapter(content).get_package(self._mf)\n if name == 'pcg':\n PcgAdapter(content).get_package(self._mf)\n if name == 'nwt':\n NwtAdapter(content).get_package(self._mf)\n if name == 'oc':\n OcAdapter(content).get_package(self._mf)\n if name == 'riv':\n RivAdapter(content).get_package(self._mf)\n if name == 'wel':\n WelAdapter(content).get_package(self._mf)\n if name == 'rch':\n RchAdapter(content).get_package(self._mf)\n if name == 'chd':\n ChdAdapter(content).get_package(self._mf)\n if name == 'ghb':\n GhbAdapter(content).get_package(self._mf)\n if name == 'lmt':\n LmtAdapter(content).get_package(self._mf)\n if name == 'mt':\n self._mt = MtAdapter(content).get_package(self._mf)\n if name == 'adv':\n AdvAdapter(content).get_package(self._mt)\n if name == 'btn':\n BtnAdapter(content).get_package(self._mt)\n if name == 'dsp':\n DspAdapter(content).get_package(self._mt)\n if name == 'gcg':\n GcgAdapter(content).get_package(self._mt)\n if name == 'lkt':\n LktAdapter(content).get_package(self._mt)\n if name == 'phc':\n PhcAdapter(content).get_package(self._mt)\n if name == 'rct':\n RctAdapter(content).get_package(self._mt)\n if name == 'sft':\n SftAdapter(content).get_package(self._mt)\n if name == 'ssm':\n SsmAdapter(content).get_package(self._mt)\n if name == 'tob':\n TobAdapter(content).get_package(self._mt)\n if name == 'uzt':\n UztAdapter(content).get_package(self._mt)\n\n def response(self):\n key = 'mf'\n if 'MF' in self._mf_data:\n key = 'MF'\n heads = ReadHead(self._mf_data[key]['model_ws'])\n drawdowns = ReadDrawdown(self._mf_data[key]['model_ws'])\n budgets = ReadBudget(self._mf_data[key]['model_ws'])\n response = {}\n response['heads'] = heads.read_times()\n response['drawdowns'] = drawdowns.read_times()\n response['budgets'] = budgets.read_times()\n response['number_of_layers'] = heads.read_number_of_layers()\n return response\n\n def response_message(self):\n return self._report\n", "step-5": "\"\"\"\nThis module is an intermediate layer between flopy version 3.2\nand the inowas-modflow-configuration format.\n\nAuthor: Ralf Junghanns\nEMail: [email protected]\n\"\"\"\n\nfrom .BasAdapter import BasAdapter\nfrom .ChdAdapter import ChdAdapter\nfrom .DisAdapter import DisAdapter\nfrom .GhbAdapter import GhbAdapter\nfrom .LpfAdapter import LpfAdapter\nfrom .MfAdapter import MfAdapter\nfrom .NwtAdapter import NwtAdapter\nfrom .OcAdapter import OcAdapter\nfrom .PcgAdapter import PcgAdapter\nfrom .RchAdapter import RchAdapter\nfrom .RivAdapter import RivAdapter\nfrom .ReadBudget import ReadBudget\nfrom .ReadDrawdown import ReadDrawdown\nfrom .ReadHead import ReadHead\nfrom .UpwAdapter import UpwAdapter\nfrom .WelAdapter import WelAdapter\nfrom .LmtAdapter import LmtAdapter\nfrom .MtAdapter import MtAdapter\nfrom .AdvAdapter import AdvAdapter\nfrom .BtnAdapter import BtnAdapter\nfrom .DspAdapter import DspAdapter\nfrom .GcgAdapter import GcgAdapter\nfrom .LktAdapter import LktAdapter\nfrom .PhcAdapter import PhcAdapter\nfrom .RctAdapter import RctAdapter\nfrom .SftAdapter import SftAdapter\nfrom .SsmAdapter import SsmAdapter\nfrom .TobAdapter import TobAdapter\nfrom .UztAdapter import UztAdapter\n\n\nclass InowasFlopyCalculationAdapter:\n \"\"\"The Flopy Class\"\"\"\n\n _version = None\n _uuid = None\n _mf = None\n _mt = None\n _report = ''\n\n mf_package_order = [\n 'mf', 'dis', 'bas', 'bas6',\n 'riv', 'wel', 'rch', 'chd', 'ghb',\n 'lpf', 'upw', 'pcg', 'nwt', 'oc', 'lmt', 'lmt6'\n ]\n\n mt_package_order = [\n \"mt\", \"btn\", \"adv\", \"dsp\", \"gcg\", \"ssm\", \"lkt\",\n \"phc\", \"rct\", \"sft\", \"tob\", \"uzt\"\n ]\n\n def __init__(self, version, data, uuid):\n self._mf_data = data.get(\"mf\")\n self._mt_data = data.get(\"mt\")\n self._version = version\n self._uuid = uuid\n\n if self._mf_data is not None:\n package_content = self.read_packages(self._mf_data)\n self.create_model(self.mf_package_order, package_content)\n\n if self._mf_data.get(\"write_input\"):\n self.write_input_model(self._mf)\n\n if self._mf_data.get(\"run_model\"):\n self._report += self.run_model(self._mf)\n\n if self._mt_data is not None:\n package_content = self.read_packages(self._mt_data)\n self.create_model(self.mt_package_order, package_content)\n\n if self._mt_data.get(\"write_input\"):\n self.write_input_model(self._mt)\n\n if self._mt_data.get(\"run_model\"):\n self._report += self.run_model(self._mt)\n\n @staticmethod\n def read_packages(data):\n package_content = {}\n for package in data[\"packages\"]:\n print('Read Flopy Package: %s' % package)\n package_content[package.lower()] = data[package]\n return package_content\n\n def create_model(self, package_order, package_content):\n for package in package_order:\n if package in package_content:\n print('Create Flopy Package: %s' % package)\n self.create_package(package, package_content[package])\n\n @staticmethod\n def write_input_model(model):\n print('Write %s input files' % model)\n model.write_input()\n\n @staticmethod\n def run_model(model):\n print('Run the %s model' % model)\n print(model.namefile)\n print(model.exe_name)\n success, report = model.run_model(report=True, silent=True)\n return ' \\n'.join(str(e) for e in report + [success])\n\n def check_model(self):\n if self._mf is not None:\n self._mf.check()\n if self._mt is not None:\n self._mt.check()\n\n def create_package(self, name, content):\n # Modlfow packages\n if name == 'mf':\n self._mf = MfAdapter(content).get_package()\n if name == 'dis':\n DisAdapter(content).get_package(self._mf)\n if name == 'bas' or name == 'bas6':\n BasAdapter(content).get_package(self._mf)\n if name == 'lpf':\n LpfAdapter(content).get_package(self._mf)\n if name == 'upw':\n UpwAdapter(content).get_package(self._mf)\n if name == 'pcg':\n PcgAdapter(content).get_package(self._mf)\n if name == 'nwt':\n NwtAdapter(content).get_package(self._mf)\n if name == 'oc':\n OcAdapter(content).get_package(self._mf)\n if name == 'riv':\n RivAdapter(content).get_package(self._mf)\n if name == 'wel':\n WelAdapter(content).get_package(self._mf)\n if name == 'rch':\n RchAdapter(content).get_package(self._mf)\n if name == 'chd':\n ChdAdapter(content).get_package(self._mf)\n if name == 'ghb':\n GhbAdapter(content).get_package(self._mf)\n if name == 'lmt':\n LmtAdapter(content).get_package(self._mf)\n\n # MT3D packages\n if name == 'mt':\n self._mt = MtAdapter(content).get_package(self._mf)\n if name == 'adv':\n AdvAdapter(content).get_package(self._mt)\n if name == 'btn':\n BtnAdapter(content).get_package(self._mt)\n if name == 'dsp':\n DspAdapter(content).get_package(self._mt)\n if name == 'gcg':\n GcgAdapter(content).get_package(self._mt)\n if name == 'lkt':\n LktAdapter(content).get_package(self._mt)\n if name == 'phc':\n PhcAdapter(content).get_package(self._mt)\n if name == 'rct':\n RctAdapter(content).get_package(self._mt)\n if name == 'sft':\n SftAdapter(content).get_package(self._mt)\n if name == 'ssm':\n SsmAdapter(content).get_package(self._mt)\n if name == 'tob':\n TobAdapter(content).get_package(self._mt)\n if name == 'uzt':\n UztAdapter(content).get_package(self._mt)\n\n def response(self):\n key = 'mf'\n if 'MF' in self._mf_data:\n key = 'MF'\n\n heads = ReadHead(self._mf_data[key]['model_ws'])\n drawdowns = ReadDrawdown(self._mf_data[key]['model_ws'])\n budgets = ReadBudget(self._mf_data[key]['model_ws'])\n response = {}\n response['heads'] = heads.read_times()\n response['drawdowns'] = drawdowns.read_times()\n response['budgets'] = budgets.read_times()\n response['number_of_layers'] = heads.read_number_of_layers()\n\n return response\n\n def response_message(self):\n return self._report\n", "step-ids": [ 7, 11, 12, 13, 14 ] }
[ 7, 11, 12, 13, 14 ]
""" In search.py, you will implement generic search algorithms which are called by Pacman agents (in searchAgents.py). """ import util class SearchProblem: """ This class outlines the structure of a search problem, but doesn't implement any of the methods (in object-oriented terminology: an abstract class). You do not need to change anything in this class, ever. """ def getStartState(self): """ Returns the start state for the search problem """ util.raiseNotDefined() def isGoalState(self, state): """ state: Search state Returns True if and only if the state is a valid goal state """ util.raiseNotDefined() def getSuccessors(self, state): """ state: Search state For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor """ util.raiseNotDefined() def getCostOfActions(self, actions): """ actions: A list of actions to take This method returns the total cost of a particular sequence of actions. The sequence must be composed of legal moves """ util.raiseNotDefined() def tinyMazeSearch(problem): """ Returns a sequence of moves that solves tinyMaze. For any other maze, the sequence of moves will be incorrect, so only use this for tinyMaze """ from game import Directions s = Directions.SOUTH w = Directions.WEST return [s,s,w,s,w,w,s,w] def depthFirstSearch(problem): """ Search the deepest nodes in the search tree first Your search algorithm needs to return a list of actions that reaches the goal. Make sure to implement a graph search algorithm To get started, you might want to try some of these simple commands to understand the search problem that is being passed in: print("Start:", problem.getStartState()) print("Is the start a goal?", problem.isGoalState(problem.getStartState())) print("Start's successors:", problem.getSuccessors(problem.getStartState())) """ "*** YOUR CODE HERE ***" # Frontier stored in a Stack frontier = util.Stack() # Visited states stored in a list visitedStates = [] # Format of each element: (current coordinates, [path taken to get there]) frontier.push((problem.getStartState(), [])) # while there are still states to explore while not frontier.isEmpty(): # store the current state and path in separate variables currentState, pathTaken = frontier.pop() # for skipping states that have already been visited if currentState in visitedStates: continue # for returning the correct path to the goal state upon discovering it if problem.isGoalState(currentState): return pathTaken # count the current state as "visited" visitedStates.append(currentState) # for each successor state, check whether they have already been visited. if not, add their coordinates to the frontier, and append their respective direction to the path list for coordinates, direction, cost in problem.getSuccessors(currentState): if coordinates not in visitedStates: frontier.push((coordinates, pathTaken + [direction])) util.raiseNotDefined() def breadthFirstSearch(problem): """ Search the shallowest nodes in the search tree first. """ "*** YOUR CODE HERE ***" # BFS is identical to DFS, save for the data structure used to store the frontier # Frontier stored in a Queue frontier = util.Queue() # Visited states stored in a list visitedStates = [] # Format of each element: (current coordinates, [path taken to get there]) frontier.push((problem.getStartState(), [])) # while there are still states to explore while not frontier.isEmpty(): # store the current state and path in separate variables currentState, pathTaken = frontier.pop() # for skipping states that have already been visited if currentState in visitedStates: continue # for returning the correct path to the goal state upon discovering it if problem.isGoalState(currentState): return pathTaken # count the current state as "visited" visitedStates.append(currentState) # for each successor state, check whether they have already been visited. if not, add their coordinates to the frontier, and append their respective direction to the path list for coordinates, direction, cost in problem.getSuccessors(currentState): if coordinates not in visitedStates: frontier.push((coordinates, pathTaken + [direction])) util.raiseNotDefined() def uniformCostSearch(problem): "Search the node of least total cost first. " "*** YOUR CODE HERE ***" #UCS is similar to DFS and BFS, save for a few key differences # Frontier stored in a Priority Queue frontier = util.PriorityQueue() # Visited states stored in a list visitedStates = [] # Format of each element: ((current coordinates, [path taken to get there]), cost) frontier.push((problem.getStartState(), []), 0) # while there are still states to explore while not frontier.isEmpty(): # store the current state and path in separate variables currentState, pathTaken = frontier.pop() # for skipping states that have already been visited if currentState in visitedStates: continue # for returning the correct path to the goal state upon discovering it if problem.isGoalState(currentState): return pathTaken # count the current state as "visited" visitedStates.append(currentState) # for each successor state, check whether they have already been visited. for coordinates, direction, cost in problem.getSuccessors(currentState): if coordinates not in visitedStates: # if not, re-calculate the cost to reach the given coordinates, and push the updated information to the frontier newCost = problem.getCostOfActions(pathTaken + [direction]) frontier.push((coordinates, pathTaken + [direction]), newCost) util.raiseNotDefined() def nullHeuristic(state, problem=None): """ A heuristic function estimates the cost from the current state to the nearest goal in the provided SearchProblem. This heuristic is trivial. """ return 0 def aStarSearch(problem, heuristic=nullHeuristic): "Search the node that has the lowest combined cost and heuristic first." "*** YOUR CODE HERE ***" # A* is different in that the heuristic argument provided is included in some parts # Frontier stored in a Priority Queue frontier = util.PriorityQueue() # Visited states stored in a list visitedStates = [] # Format of each element: ((current coordinates, [path taken to get there]), heuristic function) frontier.push((problem.getStartState(), []), heuristic(problem.getStartState(), problem)) # while there are still states to explore while not frontier.isEmpty(): # store the current state and path in separate variables currentState, pathTaken = frontier.pop() # for skipping states that have already been visited if currentState in visitedStates: continue # for returning the correct path to the goal state upon discovering it if problem.isGoalState(currentState): return pathTaken # count the current state as "visited" visitedStates.append(currentState) # for each successor state, check whether they have already been visited. for coordinates, direction, cost in problem.getSuccessors(currentState): if coordinates not in visitedStates: # if not, re-calculate the cost to reach the given coordinates, and push the updated information to the frontier. Here, unlike UCS, the heuristic function is added to the newCost variable newCost = problem.getCostOfActions(pathTaken + [direction]) + heuristic(coordinates, problem) frontier.push((coordinates, pathTaken + [direction]), newCost) util.raiseNotDefined() # Abbreviations bfs = breadthFirstSearch dfs = depthFirstSearch astar = aStarSearch ucs = uniformCostSearch
normal
{ "blob_id": "e7b96c0161e65f3f22f2ad0832fc6d1bb529f150", "index": 9772, "step-1": "<mask token>\n\n\nclass SearchProblem:\n \"\"\"\n This class outlines the structure of a search problem, but doesn't implement\n any of the methods (in object-oriented terminology: an abstract class).\n\n You do not need to change anything in this class, ever.\n \"\"\"\n\n def getStartState(self):\n \"\"\"\n Returns the start state for the search problem\n \"\"\"\n util.raiseNotDefined()\n\n def isGoalState(self, state):\n \"\"\"\n state: Search state\n\n Returns True if and only if the state is a valid goal state\n \"\"\"\n util.raiseNotDefined()\n\n def getSuccessors(self, state):\n \"\"\"\n state: Search state\n\n For a given state, this should return a list of triples,\n (successor, action, stepCost), where 'successor' is a\n successor to the current state, 'action' is the action\n required to get there, and 'stepCost' is the incremental\n cost of expanding to that successor\n \"\"\"\n util.raiseNotDefined()\n\n def getCostOfActions(self, actions):\n \"\"\"\n actions: A list of actions to take\n\n This method returns the total cost of a particular sequence of actions. The sequence must\n be composed of legal moves\n \"\"\"\n util.raiseNotDefined()\n\n\n<mask token>\n\n\ndef depthFirstSearch(problem):\n \"\"\"\n Search the deepest nodes in the search tree first\n\n Your search algorithm needs to return a list of actions that reaches\n the goal. Make sure to implement a graph search algorithm\n\n To get started, you might want to try some of these simple commands to\n understand the search problem that is being passed in:\n\n print(\"Start:\", problem.getStartState())\n print(\"Is the start a goal?\", problem.isGoalState(problem.getStartState()))\n print(\"Start's successors:\", problem.getSuccessors(problem.getStartState()))\n \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.Stack()\n visitedStates = []\n frontier.push((problem.getStartState(), []))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n frontier.push((coordinates, pathTaken + [direction]))\n util.raiseNotDefined()\n\n\n<mask token>\n\n\ndef aStarSearch(problem, heuristic=nullHeuristic):\n \"\"\"Search the node that has the lowest combined cost and heuristic first.\"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), heuristic(problem.\n getStartState(), problem))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction]\n ) + heuristic(coordinates, problem)\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass SearchProblem:\n \"\"\"\n This class outlines the structure of a search problem, but doesn't implement\n any of the methods (in object-oriented terminology: an abstract class).\n\n You do not need to change anything in this class, ever.\n \"\"\"\n\n def getStartState(self):\n \"\"\"\n Returns the start state for the search problem\n \"\"\"\n util.raiseNotDefined()\n\n def isGoalState(self, state):\n \"\"\"\n state: Search state\n\n Returns True if and only if the state is a valid goal state\n \"\"\"\n util.raiseNotDefined()\n\n def getSuccessors(self, state):\n \"\"\"\n state: Search state\n\n For a given state, this should return a list of triples,\n (successor, action, stepCost), where 'successor' is a\n successor to the current state, 'action' is the action\n required to get there, and 'stepCost' is the incremental\n cost of expanding to that successor\n \"\"\"\n util.raiseNotDefined()\n\n def getCostOfActions(self, actions):\n \"\"\"\n actions: A list of actions to take\n\n This method returns the total cost of a particular sequence of actions. The sequence must\n be composed of legal moves\n \"\"\"\n util.raiseNotDefined()\n\n\ndef tinyMazeSearch(problem):\n \"\"\"\n Returns a sequence of moves that solves tinyMaze. For any other\n maze, the sequence of moves will be incorrect, so only use this for tinyMaze\n \"\"\"\n from game import Directions\n s = Directions.SOUTH\n w = Directions.WEST\n return [s, s, w, s, w, w, s, w]\n\n\ndef depthFirstSearch(problem):\n \"\"\"\n Search the deepest nodes in the search tree first\n\n Your search algorithm needs to return a list of actions that reaches\n the goal. Make sure to implement a graph search algorithm\n\n To get started, you might want to try some of these simple commands to\n understand the search problem that is being passed in:\n\n print(\"Start:\", problem.getStartState())\n print(\"Is the start a goal?\", problem.isGoalState(problem.getStartState()))\n print(\"Start's successors:\", problem.getSuccessors(problem.getStartState()))\n \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.Stack()\n visitedStates = []\n frontier.push((problem.getStartState(), []))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n frontier.push((coordinates, pathTaken + [direction]))\n util.raiseNotDefined()\n\n\n<mask token>\n\n\ndef uniformCostSearch(problem):\n \"\"\"Search the node of least total cost first. \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), 0)\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction])\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\n<mask token>\n\n\ndef aStarSearch(problem, heuristic=nullHeuristic):\n \"\"\"Search the node that has the lowest combined cost and heuristic first.\"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), heuristic(problem.\n getStartState(), problem))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction]\n ) + heuristic(coordinates, problem)\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass SearchProblem:\n \"\"\"\n This class outlines the structure of a search problem, but doesn't implement\n any of the methods (in object-oriented terminology: an abstract class).\n\n You do not need to change anything in this class, ever.\n \"\"\"\n\n def getStartState(self):\n \"\"\"\n Returns the start state for the search problem\n \"\"\"\n util.raiseNotDefined()\n\n def isGoalState(self, state):\n \"\"\"\n state: Search state\n\n Returns True if and only if the state is a valid goal state\n \"\"\"\n util.raiseNotDefined()\n\n def getSuccessors(self, state):\n \"\"\"\n state: Search state\n\n For a given state, this should return a list of triples,\n (successor, action, stepCost), where 'successor' is a\n successor to the current state, 'action' is the action\n required to get there, and 'stepCost' is the incremental\n cost of expanding to that successor\n \"\"\"\n util.raiseNotDefined()\n\n def getCostOfActions(self, actions):\n \"\"\"\n actions: A list of actions to take\n\n This method returns the total cost of a particular sequence of actions. The sequence must\n be composed of legal moves\n \"\"\"\n util.raiseNotDefined()\n\n\ndef tinyMazeSearch(problem):\n \"\"\"\n Returns a sequence of moves that solves tinyMaze. For any other\n maze, the sequence of moves will be incorrect, so only use this for tinyMaze\n \"\"\"\n from game import Directions\n s = Directions.SOUTH\n w = Directions.WEST\n return [s, s, w, s, w, w, s, w]\n\n\ndef depthFirstSearch(problem):\n \"\"\"\n Search the deepest nodes in the search tree first\n\n Your search algorithm needs to return a list of actions that reaches\n the goal. Make sure to implement a graph search algorithm\n\n To get started, you might want to try some of these simple commands to\n understand the search problem that is being passed in:\n\n print(\"Start:\", problem.getStartState())\n print(\"Is the start a goal?\", problem.isGoalState(problem.getStartState()))\n print(\"Start's successors:\", problem.getSuccessors(problem.getStartState()))\n \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.Stack()\n visitedStates = []\n frontier.push((problem.getStartState(), []))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n frontier.push((coordinates, pathTaken + [direction]))\n util.raiseNotDefined()\n\n\ndef breadthFirstSearch(problem):\n \"\"\"\n Search the shallowest nodes in the search tree first.\n \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.Queue()\n visitedStates = []\n frontier.push((problem.getStartState(), []))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n frontier.push((coordinates, pathTaken + [direction]))\n util.raiseNotDefined()\n\n\ndef uniformCostSearch(problem):\n \"\"\"Search the node of least total cost first. \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), 0)\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction])\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\ndef nullHeuristic(state, problem=None):\n \"\"\"\n A heuristic function estimates the cost from the current state to the nearest\n goal in the provided SearchProblem. This heuristic is trivial.\n \"\"\"\n return 0\n\n\ndef aStarSearch(problem, heuristic=nullHeuristic):\n \"\"\"Search the node that has the lowest combined cost and heuristic first.\"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), heuristic(problem.\n getStartState(), problem))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction]\n ) + heuristic(coordinates, problem)\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass SearchProblem:\n \"\"\"\n This class outlines the structure of a search problem, but doesn't implement\n any of the methods (in object-oriented terminology: an abstract class).\n\n You do not need to change anything in this class, ever.\n \"\"\"\n\n def getStartState(self):\n \"\"\"\n Returns the start state for the search problem\n \"\"\"\n util.raiseNotDefined()\n\n def isGoalState(self, state):\n \"\"\"\n state: Search state\n\n Returns True if and only if the state is a valid goal state\n \"\"\"\n util.raiseNotDefined()\n\n def getSuccessors(self, state):\n \"\"\"\n state: Search state\n\n For a given state, this should return a list of triples,\n (successor, action, stepCost), where 'successor' is a\n successor to the current state, 'action' is the action\n required to get there, and 'stepCost' is the incremental\n cost of expanding to that successor\n \"\"\"\n util.raiseNotDefined()\n\n def getCostOfActions(self, actions):\n \"\"\"\n actions: A list of actions to take\n\n This method returns the total cost of a particular sequence of actions. The sequence must\n be composed of legal moves\n \"\"\"\n util.raiseNotDefined()\n\n\ndef tinyMazeSearch(problem):\n \"\"\"\n Returns a sequence of moves that solves tinyMaze. For any other\n maze, the sequence of moves will be incorrect, so only use this for tinyMaze\n \"\"\"\n from game import Directions\n s = Directions.SOUTH\n w = Directions.WEST\n return [s, s, w, s, w, w, s, w]\n\n\ndef depthFirstSearch(problem):\n \"\"\"\n Search the deepest nodes in the search tree first\n\n Your search algorithm needs to return a list of actions that reaches\n the goal. Make sure to implement a graph search algorithm\n\n To get started, you might want to try some of these simple commands to\n understand the search problem that is being passed in:\n\n print(\"Start:\", problem.getStartState())\n print(\"Is the start a goal?\", problem.isGoalState(problem.getStartState()))\n print(\"Start's successors:\", problem.getSuccessors(problem.getStartState()))\n \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.Stack()\n visitedStates = []\n frontier.push((problem.getStartState(), []))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n frontier.push((coordinates, pathTaken + [direction]))\n util.raiseNotDefined()\n\n\ndef breadthFirstSearch(problem):\n \"\"\"\n Search the shallowest nodes in the search tree first.\n \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.Queue()\n visitedStates = []\n frontier.push((problem.getStartState(), []))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n frontier.push((coordinates, pathTaken + [direction]))\n util.raiseNotDefined()\n\n\ndef uniformCostSearch(problem):\n \"\"\"Search the node of least total cost first. \"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), 0)\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction])\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\ndef nullHeuristic(state, problem=None):\n \"\"\"\n A heuristic function estimates the cost from the current state to the nearest\n goal in the provided SearchProblem. This heuristic is trivial.\n \"\"\"\n return 0\n\n\ndef aStarSearch(problem, heuristic=nullHeuristic):\n \"\"\"Search the node that has the lowest combined cost and heuristic first.\"\"\"\n \"\"\"*** YOUR CODE HERE ***\"\"\"\n frontier = util.PriorityQueue()\n visitedStates = []\n frontier.push((problem.getStartState(), []), heuristic(problem.\n getStartState(), problem))\n while not frontier.isEmpty():\n currentState, pathTaken = frontier.pop()\n if currentState in visitedStates:\n continue\n if problem.isGoalState(currentState):\n return pathTaken\n visitedStates.append(currentState)\n for coordinates, direction, cost in problem.getSuccessors(currentState\n ):\n if coordinates not in visitedStates:\n newCost = problem.getCostOfActions(pathTaken + [direction]\n ) + heuristic(coordinates, problem)\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n util.raiseNotDefined()\n\n\nbfs = breadthFirstSearch\ndfs = depthFirstSearch\nastar = aStarSearch\nucs = uniformCostSearch\n", "step-5": "\"\"\"\nIn search.py, you will implement generic search algorithms which are called\nby Pacman agents (in searchAgents.py).\n\"\"\"\n\nimport util\n\nclass SearchProblem:\n \"\"\"\n This class outlines the structure of a search problem, but doesn't implement\n any of the methods (in object-oriented terminology: an abstract class).\n\n You do not need to change anything in this class, ever.\n \"\"\"\n\n def getStartState(self):\n \"\"\"\n Returns the start state for the search problem\n \"\"\"\n util.raiseNotDefined()\n\n def isGoalState(self, state):\n \"\"\"\n state: Search state\n\n Returns True if and only if the state is a valid goal state\n \"\"\"\n util.raiseNotDefined()\n\n def getSuccessors(self, state):\n \"\"\"\n state: Search state\n\n For a given state, this should return a list of triples,\n (successor, action, stepCost), where 'successor' is a\n successor to the current state, 'action' is the action\n required to get there, and 'stepCost' is the incremental\n cost of expanding to that successor\n \"\"\"\n util.raiseNotDefined()\n\n def getCostOfActions(self, actions):\n \"\"\"\n actions: A list of actions to take\n\n This method returns the total cost of a particular sequence of actions. The sequence must\n be composed of legal moves\n \"\"\"\n util.raiseNotDefined()\n\ndef tinyMazeSearch(problem):\n \"\"\"\n Returns a sequence of moves that solves tinyMaze. For any other\n maze, the sequence of moves will be incorrect, so only use this for tinyMaze\n \"\"\"\n from game import Directions\n s = Directions.SOUTH\n w = Directions.WEST\n return [s,s,w,s,w,w,s,w]\n\ndef depthFirstSearch(problem):\n \"\"\"\n Search the deepest nodes in the search tree first\n\n Your search algorithm needs to return a list of actions that reaches\n the goal. Make sure to implement a graph search algorithm\n\n To get started, you might want to try some of these simple commands to\n understand the search problem that is being passed in:\n\n print(\"Start:\", problem.getStartState())\n print(\"Is the start a goal?\", problem.isGoalState(problem.getStartState()))\n print(\"Start's successors:\", problem.getSuccessors(problem.getStartState()))\n \"\"\"\n \"*** YOUR CODE HERE ***\"\n\n # Frontier stored in a Stack\n frontier = util.Stack()\n\n # Visited states stored in a list\n visitedStates = []\n\n # Format of each element: (current coordinates, [path taken to get there]) \n frontier.push((problem.getStartState(), []))\n\n # while there are still states to explore\n while not frontier.isEmpty():\n \n # store the current state and path in separate variables\n currentState, pathTaken = frontier.pop()\n\n # for skipping states that have already been visited\n if currentState in visitedStates:\n continue\n\n # for returning the correct path to the goal state upon discovering it\n if problem.isGoalState(currentState):\n return pathTaken\n\n # count the current state as \"visited\"\n visitedStates.append(currentState)\n\n # for each successor state, check whether they have already been visited. if not, add their coordinates to the frontier, and append their respective direction to the path list\n for coordinates, direction, cost in problem.getSuccessors(currentState):\n\n if coordinates not in visitedStates:\n \n frontier.push((coordinates, pathTaken + [direction]))\n\n\n util.raiseNotDefined()\n\ndef breadthFirstSearch(problem):\n \"\"\"\n Search the shallowest nodes in the search tree first.\n \"\"\"\n \"*** YOUR CODE HERE ***\"\n\n # BFS is identical to DFS, save for the data structure used to store the frontier\n\n # Frontier stored in a Queue\n frontier = util.Queue()\n\n # Visited states stored in a list\n visitedStates = []\n\n # Format of each element: (current coordinates, [path taken to get there])\n frontier.push((problem.getStartState(), []))\n\n # while there are still states to explore\n while not frontier.isEmpty():\n\n # store the current state and path in separate variables\n currentState, pathTaken = frontier.pop()\n\n # for skipping states that have already been visited\n if currentState in visitedStates:\n continue\n\n # for returning the correct path to the goal state upon discovering it\n if problem.isGoalState(currentState):\n return pathTaken\n\n # count the current state as \"visited\"\n visitedStates.append(currentState)\n\n # for each successor state, check whether they have already been visited. if not, add their coordinates to the frontier, and append their respective direction to the path list\n for coordinates, direction, cost in problem.getSuccessors(currentState):\n\n if coordinates not in visitedStates:\n\n frontier.push((coordinates, pathTaken + [direction]))\n\n util.raiseNotDefined()\n\ndef uniformCostSearch(problem):\n \"Search the node of least total cost first. \"\n \"*** YOUR CODE HERE ***\"\n\n #UCS is similar to DFS and BFS, save for a few key differences\n\n # Frontier stored in a Priority Queue\n frontier = util.PriorityQueue()\n\n # Visited states stored in a list\n visitedStates = []\n\n # Format of each element: ((current coordinates, [path taken to get there]), cost)\n frontier.push((problem.getStartState(), []), 0)\n\n # while there are still states to explore\n while not frontier.isEmpty():\n\n # store the current state and path in separate variables\n currentState, pathTaken = frontier.pop()\n\n # for skipping states that have already been visited\n if currentState in visitedStates:\n continue\n\n # for returning the correct path to the goal state upon discovering it\n if problem.isGoalState(currentState):\n return pathTaken\n\n # count the current state as \"visited\"\n visitedStates.append(currentState)\n\n # for each successor state, check whether they have already been visited. \n \n for coordinates, direction, cost in problem.getSuccessors(currentState):\n\n if coordinates not in visitedStates:\n # if not, re-calculate the cost to reach the given coordinates, and push the updated information to the frontier\n newCost = problem.getCostOfActions(pathTaken + [direction])\n\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n\n util.raiseNotDefined()\n\ndef nullHeuristic(state, problem=None):\n \"\"\"\n A heuristic function estimates the cost from the current state to the nearest\n goal in the provided SearchProblem. This heuristic is trivial.\n \"\"\"\n return 0\n\ndef aStarSearch(problem, heuristic=nullHeuristic):\n \"Search the node that has the lowest combined cost and heuristic first.\"\n \"*** YOUR CODE HERE ***\"\n\n # A* is different in that the heuristic argument provided is included in some parts\n\n # Frontier stored in a Priority Queue\n frontier = util.PriorityQueue()\n\n # Visited states stored in a list\n visitedStates = []\n\n # Format of each element: ((current coordinates, [path taken to get there]), heuristic function)\n frontier.push((problem.getStartState(), []), heuristic(problem.getStartState(), problem))\n\n # while there are still states to explore\n while not frontier.isEmpty():\n\n # store the current state and path in separate variables\n currentState, pathTaken = frontier.pop()\n\n # for skipping states that have already been visited\n if currentState in visitedStates:\n continue\n\n # for returning the correct path to the goal state upon discovering it\n if problem.isGoalState(currentState):\n return pathTaken\n\n # count the current state as \"visited\"\n visitedStates.append(currentState)\n\n # for each successor state, check whether they have already been visited.\n for coordinates, direction, cost in problem.getSuccessors(currentState):\n\n if coordinates not in visitedStates:\n # if not, re-calculate the cost to reach the given coordinates, and push the updated information to the frontier. Here, unlike UCS, the heuristic function is added to the newCost variable\n newCost = problem.getCostOfActions(pathTaken + [direction]) + heuristic(coordinates, problem)\n\n frontier.push((coordinates, pathTaken + [direction]), newCost)\n\n util.raiseNotDefined()\n\n# Abbreviations\nbfs = breadthFirstSearch\ndfs = depthFirstSearch\nastar = aStarSearch\nucs = uniformCostSearch\n", "step-ids": [ 8, 10, 12, 13, 15 ] }
[ 8, 10, 12, 13, 15 ]
<|reserved_special_token_0|> class Stop(object): """docstring for Stop""" def __init__(self, arg): self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon', 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina'] self.d = {} self.parse(arg) def __repr__(self): return str(self.d) def parse(self, dictParams): for k, v in dictParams.items(): if str(k) in 'stop_id': v = int(v) if type(v) is str: v = codecs.decode(v, 'utf-8') if k in self.fields: self.d.update({k: v}) def save(self, db): db.insert('stops', **self.d) def saveStops(stops): db = database.dbInterface('../database/cba-1.0.1.sqlite') for stop_id, stop in stops.items(): stop.save(db) db.close() def addFromFile(stops, filename): repeated = {} with open('../incoming/' + filename) as csvFile: reader = csv.DictReader(csvFile) for r in reader: stop_id = r['stop_id'] stop = Stop(r) if stop_id in stops: if stop.d != stops[stop_id].d: pass repeated[stop_id] = stop print('stop already in collection, skipping') print(r) print(stops[stop_id]) else: stops[stop_id] = stop return repeated <|reserved_special_token_0|> def main(): stops = {} repeated = addFromFile(stops, 'asf/stops.csv') repeated.update(addFromFile(stops, 'ccba/stops.csv')) repeated.update(addFromFile(stops, 'coniferal/stops.csv')) repeated.update(addFromFile(stops, 'ersa/stops.csv')) show(repeated) saveStops(stops) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Stop(object): """docstring for Stop""" def __init__(self, arg): self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon', 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina'] self.d = {} self.parse(arg) def __repr__(self): return str(self.d) def parse(self, dictParams): for k, v in dictParams.items(): if str(k) in 'stop_id': v = int(v) if type(v) is str: v = codecs.decode(v, 'utf-8') if k in self.fields: self.d.update({k: v}) def save(self, db): db.insert('stops', **self.d) def saveStops(stops): db = database.dbInterface('../database/cba-1.0.1.sqlite') for stop_id, stop in stops.items(): stop.save(db) db.close() def addFromFile(stops, filename): repeated = {} with open('../incoming/' + filename) as csvFile: reader = csv.DictReader(csvFile) for r in reader: stop_id = r['stop_id'] stop = Stop(r) if stop_id in stops: if stop.d != stops[stop_id].d: pass repeated[stop_id] = stop print('stop already in collection, skipping') print(r) print(stops[stop_id]) else: stops[stop_id] = stop return repeated def show(stops): for stop_id, stop in stops.items(): print(stop_id, stop) def main(): stops = {} repeated = addFromFile(stops, 'asf/stops.csv') repeated.update(addFromFile(stops, 'ccba/stops.csv')) repeated.update(addFromFile(stops, 'coniferal/stops.csv')) repeated.update(addFromFile(stops, 'ersa/stops.csv')) show(repeated) saveStops(stops) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> lgr = logging.getLogger(__name__) lgr.log('hello') <|reserved_special_token_0|> class Stop(object): """docstring for Stop""" def __init__(self, arg): self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon', 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina'] self.d = {} self.parse(arg) def __repr__(self): return str(self.d) def parse(self, dictParams): for k, v in dictParams.items(): if str(k) in 'stop_id': v = int(v) if type(v) is str: v = codecs.decode(v, 'utf-8') if k in self.fields: self.d.update({k: v}) def save(self, db): db.insert('stops', **self.d) def saveStops(stops): db = database.dbInterface('../database/cba-1.0.1.sqlite') for stop_id, stop in stops.items(): stop.save(db) db.close() def addFromFile(stops, filename): repeated = {} with open('../incoming/' + filename) as csvFile: reader = csv.DictReader(csvFile) for r in reader: stop_id = r['stop_id'] stop = Stop(r) if stop_id in stops: if stop.d != stops[stop_id].d: pass repeated[stop_id] = stop print('stop already in collection, skipping') print(r) print(stops[stop_id]) else: stops[stop_id] = stop return repeated def show(stops): for stop_id, stop in stops.items(): print(stop_id, stop) def main(): stops = {} repeated = addFromFile(stops, 'asf/stops.csv') repeated.update(addFromFile(stops, 'ccba/stops.csv')) repeated.update(addFromFile(stops, 'coniferal/stops.csv')) repeated.update(addFromFile(stops, 'ersa/stops.csv')) show(repeated) saveStops(stops) if __name__ == '__main__': main() <|reserved_special_token_1|> import logging lgr = logging.getLogger(__name__) lgr.log('hello') import database import csv import codecs class Stop(object): """docstring for Stop""" def __init__(self, arg): self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon', 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina'] self.d = {} self.parse(arg) def __repr__(self): return str(self.d) def parse(self, dictParams): for k, v in dictParams.items(): if str(k) in 'stop_id': v = int(v) if type(v) is str: v = codecs.decode(v, 'utf-8') if k in self.fields: self.d.update({k: v}) def save(self, db): db.insert('stops', **self.d) def saveStops(stops): db = database.dbInterface('../database/cba-1.0.1.sqlite') for stop_id, stop in stops.items(): stop.save(db) db.close() def addFromFile(stops, filename): repeated = {} with open('../incoming/' + filename) as csvFile: reader = csv.DictReader(csvFile) for r in reader: stop_id = r['stop_id'] stop = Stop(r) if stop_id in stops: if stop.d != stops[stop_id].d: pass repeated[stop_id] = stop print('stop already in collection, skipping') print(r) print(stops[stop_id]) else: stops[stop_id] = stop return repeated def show(stops): for stop_id, stop in stops.items(): print(stop_id, stop) def main(): stops = {} repeated = addFromFile(stops, 'asf/stops.csv') repeated.update(addFromFile(stops, 'ccba/stops.csv')) repeated.update(addFromFile(stops, 'coniferal/stops.csv')) repeated.update(addFromFile(stops, 'ersa/stops.csv')) show(repeated) saveStops(stops) if __name__ == '__main__': main() <|reserved_special_token_1|> #!/usr/bin/env python # -*- coding: utf-8 -*- import logging lgr = logging.getLogger(__name__) lgr.log("hello") import database import csv import codecs class Stop(object): """docstring for Stop""" def __init__(self, arg): self.fields = [ 'stop_id', 'stop_name', 'stop_lat', 'stop_lon', 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina' ] self.d = {} self.parse(arg) def __repr__(self): return str(self.d) def parse(self, dictParams): for k,v in dictParams.items(): if str(k) in 'stop_id': v = int(v) if type(v) is str: v = codecs.decode(v, 'utf-8') if k in self.fields: self.d.update({k:v}) def save(self, db): db.insert('stops', **self.d) def saveStops(stops): db = database.dbInterface('../database/cba-1.0.1.sqlite') for stop_id, stop in stops.items(): stop.save(db) db.close() def addFromFile(stops, filename): repeated = {} with open('../incoming/'+ filename) as csvFile: reader = csv.DictReader(csvFile) for r in reader: stop_id = r['stop_id'] stop = Stop(r) if stop_id in stops: if stop.d != stops[stop_id].d: pass repeated[stop_id] = stop print("stop already in collection, skipping") print(r) print(stops[stop_id]) else: stops[stop_id] = stop return repeated def show(stops): for stop_id, stop in stops.items(): print(stop_id, stop) def main(): stops = {} repeated = addFromFile(stops, 'asf/stops.csv') repeated.update(addFromFile(stops, 'ccba/stops.csv')) repeated.update(addFromFile(stops, 'coniferal/stops.csv')) repeated.update(addFromFile(stops, 'ersa/stops.csv')) # show(stops) show(repeated) saveStops(stops) if __name__ == '__main__': main()
flexible
{ "blob_id": "39ecbf914b0b2b25ce4290eac4198199b90f95e0", "index": 5384, "step-1": "<mask token>\n\n\nclass Stop(object):\n \"\"\"docstring for Stop\"\"\"\n\n def __init__(self, arg):\n self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon',\n 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina']\n self.d = {}\n self.parse(arg)\n\n def __repr__(self):\n return str(self.d)\n\n def parse(self, dictParams):\n for k, v in dictParams.items():\n if str(k) in 'stop_id':\n v = int(v)\n if type(v) is str:\n v = codecs.decode(v, 'utf-8')\n if k in self.fields:\n self.d.update({k: v})\n\n def save(self, db):\n db.insert('stops', **self.d)\n\n\ndef saveStops(stops):\n db = database.dbInterface('../database/cba-1.0.1.sqlite')\n for stop_id, stop in stops.items():\n stop.save(db)\n db.close()\n\n\ndef addFromFile(stops, filename):\n repeated = {}\n with open('../incoming/' + filename) as csvFile:\n reader = csv.DictReader(csvFile)\n for r in reader:\n stop_id = r['stop_id']\n stop = Stop(r)\n if stop_id in stops:\n if stop.d != stops[stop_id].d:\n pass\n repeated[stop_id] = stop\n print('stop already in collection, skipping')\n print(r)\n print(stops[stop_id])\n else:\n stops[stop_id] = stop\n return repeated\n\n\n<mask token>\n\n\ndef main():\n stops = {}\n repeated = addFromFile(stops, 'asf/stops.csv')\n repeated.update(addFromFile(stops, 'ccba/stops.csv'))\n repeated.update(addFromFile(stops, 'coniferal/stops.csv'))\n repeated.update(addFromFile(stops, 'ersa/stops.csv'))\n show(repeated)\n saveStops(stops)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Stop(object):\n \"\"\"docstring for Stop\"\"\"\n\n def __init__(self, arg):\n self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon',\n 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina']\n self.d = {}\n self.parse(arg)\n\n def __repr__(self):\n return str(self.d)\n\n def parse(self, dictParams):\n for k, v in dictParams.items():\n if str(k) in 'stop_id':\n v = int(v)\n if type(v) is str:\n v = codecs.decode(v, 'utf-8')\n if k in self.fields:\n self.d.update({k: v})\n\n def save(self, db):\n db.insert('stops', **self.d)\n\n\ndef saveStops(stops):\n db = database.dbInterface('../database/cba-1.0.1.sqlite')\n for stop_id, stop in stops.items():\n stop.save(db)\n db.close()\n\n\ndef addFromFile(stops, filename):\n repeated = {}\n with open('../incoming/' + filename) as csvFile:\n reader = csv.DictReader(csvFile)\n for r in reader:\n stop_id = r['stop_id']\n stop = Stop(r)\n if stop_id in stops:\n if stop.d != stops[stop_id].d:\n pass\n repeated[stop_id] = stop\n print('stop already in collection, skipping')\n print(r)\n print(stops[stop_id])\n else:\n stops[stop_id] = stop\n return repeated\n\n\ndef show(stops):\n for stop_id, stop in stops.items():\n print(stop_id, stop)\n\n\ndef main():\n stops = {}\n repeated = addFromFile(stops, 'asf/stops.csv')\n repeated.update(addFromFile(stops, 'ccba/stops.csv'))\n repeated.update(addFromFile(stops, 'coniferal/stops.csv'))\n repeated.update(addFromFile(stops, 'ersa/stops.csv'))\n show(repeated)\n saveStops(stops)\n\n\n<mask token>\n", "step-3": "<mask token>\nlgr = logging.getLogger(__name__)\nlgr.log('hello')\n<mask token>\n\n\nclass Stop(object):\n \"\"\"docstring for Stop\"\"\"\n\n def __init__(self, arg):\n self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon',\n 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina']\n self.d = {}\n self.parse(arg)\n\n def __repr__(self):\n return str(self.d)\n\n def parse(self, dictParams):\n for k, v in dictParams.items():\n if str(k) in 'stop_id':\n v = int(v)\n if type(v) is str:\n v = codecs.decode(v, 'utf-8')\n if k in self.fields:\n self.d.update({k: v})\n\n def save(self, db):\n db.insert('stops', **self.d)\n\n\ndef saveStops(stops):\n db = database.dbInterface('../database/cba-1.0.1.sqlite')\n for stop_id, stop in stops.items():\n stop.save(db)\n db.close()\n\n\ndef addFromFile(stops, filename):\n repeated = {}\n with open('../incoming/' + filename) as csvFile:\n reader = csv.DictReader(csvFile)\n for r in reader:\n stop_id = r['stop_id']\n stop = Stop(r)\n if stop_id in stops:\n if stop.d != stops[stop_id].d:\n pass\n repeated[stop_id] = stop\n print('stop already in collection, skipping')\n print(r)\n print(stops[stop_id])\n else:\n stops[stop_id] = stop\n return repeated\n\n\ndef show(stops):\n for stop_id, stop in stops.items():\n print(stop_id, stop)\n\n\ndef main():\n stops = {}\n repeated = addFromFile(stops, 'asf/stops.csv')\n repeated.update(addFromFile(stops, 'ccba/stops.csv'))\n repeated.update(addFromFile(stops, 'coniferal/stops.csv'))\n repeated.update(addFromFile(stops, 'ersa/stops.csv'))\n show(repeated)\n saveStops(stops)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import logging\nlgr = logging.getLogger(__name__)\nlgr.log('hello')\nimport database\nimport csv\nimport codecs\n\n\nclass Stop(object):\n \"\"\"docstring for Stop\"\"\"\n\n def __init__(self, arg):\n self.fields = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon',\n 'stop_calle', 'stop_numero', 'stop_entre', 'stop_esquina']\n self.d = {}\n self.parse(arg)\n\n def __repr__(self):\n return str(self.d)\n\n def parse(self, dictParams):\n for k, v in dictParams.items():\n if str(k) in 'stop_id':\n v = int(v)\n if type(v) is str:\n v = codecs.decode(v, 'utf-8')\n if k in self.fields:\n self.d.update({k: v})\n\n def save(self, db):\n db.insert('stops', **self.d)\n\n\ndef saveStops(stops):\n db = database.dbInterface('../database/cba-1.0.1.sqlite')\n for stop_id, stop in stops.items():\n stop.save(db)\n db.close()\n\n\ndef addFromFile(stops, filename):\n repeated = {}\n with open('../incoming/' + filename) as csvFile:\n reader = csv.DictReader(csvFile)\n for r in reader:\n stop_id = r['stop_id']\n stop = Stop(r)\n if stop_id in stops:\n if stop.d != stops[stop_id].d:\n pass\n repeated[stop_id] = stop\n print('stop already in collection, skipping')\n print(r)\n print(stops[stop_id])\n else:\n stops[stop_id] = stop\n return repeated\n\n\ndef show(stops):\n for stop_id, stop in stops.items():\n print(stop_id, stop)\n\n\ndef main():\n stops = {}\n repeated = addFromFile(stops, 'asf/stops.csv')\n repeated.update(addFromFile(stops, 'ccba/stops.csv'))\n repeated.update(addFromFile(stops, 'coniferal/stops.csv'))\n repeated.update(addFromFile(stops, 'ersa/stops.csv'))\n show(repeated)\n saveStops(stops)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\nimport logging\nlgr = logging.getLogger(__name__)\nlgr.log(\"hello\")\nimport database\nimport csv\nimport codecs\nclass Stop(object):\n \"\"\"docstring for Stop\"\"\"\n def __init__(self, arg):\n self.fields = [\n 'stop_id',\n 'stop_name',\n 'stop_lat',\n 'stop_lon',\n 'stop_calle',\n 'stop_numero',\n 'stop_entre',\n 'stop_esquina'\n ]\n self.d = {}\n self.parse(arg)\n\n def __repr__(self):\n return str(self.d)\n\n def parse(self, dictParams):\n for k,v in dictParams.items():\n if str(k) in 'stop_id':\n v = int(v)\n if type(v) is str:\n v = codecs.decode(v, 'utf-8')\n if k in self.fields:\n self.d.update({k:v})\n def save(self, db):\n db.insert('stops', **self.d)\n\ndef saveStops(stops):\n db = database.dbInterface('../database/cba-1.0.1.sqlite')\n for stop_id, stop in stops.items():\n stop.save(db)\n db.close()\n\ndef addFromFile(stops, filename):\n repeated = {}\n with open('../incoming/'+ filename) as csvFile:\n reader = csv.DictReader(csvFile)\n for r in reader:\n stop_id = r['stop_id']\n stop = Stop(r)\n if stop_id in stops:\n if stop.d != stops[stop_id].d:\n pass\n repeated[stop_id] = stop\n print(\"stop already in collection, skipping\")\n print(r)\n print(stops[stop_id])\n else:\n stops[stop_id] = stop\n return repeated\n\ndef show(stops):\n for stop_id, stop in stops.items():\n print(stop_id, stop)\n \ndef main():\n stops = {}\n repeated = addFromFile(stops, 'asf/stops.csv')\n repeated.update(addFromFile(stops, 'ccba/stops.csv'))\n repeated.update(addFromFile(stops, 'coniferal/stops.csv'))\n repeated.update(addFromFile(stops, 'ersa/stops.csv'))\n\n \n # show(stops)\n show(repeated)\n\n saveStops(stops)\n\n\nif __name__ == '__main__':\n main()", "step-ids": [ 9, 10, 12, 13, 14 ] }
[ 9, 10, 12, 13, 14 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> for i in range(1, 11): encabezado = 'Tabla del {}' print(encabezado.format(i)) print() for j in range(1, 11): salida = '{} x {} = {}' print(salida.format(i, j, i * j)) else: print() <|reserved_special_token_1|> # Autor : Kevin Oswaldo Palacios Jimenez # Fecha de creacion: 16/09/19 # Se genera un bucle con for # al no tener argumento print no genera ningun cambio # mas que continuar a la siguiente linea for i in range (1,11): encabezado="Tabla del {}" print(encabezado.format(i)) print() # Usaremos un for dentro de otro generando un bucle mas for j in range(1,11): # en donde i tendremos la base # con j tendriamos el elemento salida="{} x {} = {}" print(salida.format(i,j,i*j)) else: # con el bucle teniendo su proceso iterativo # se saltaran las linea pero ejecutando el codigo print()
flexible
{ "blob_id": "86f365612e9f15e7658160ecab1d3d9970ca364e", "index": 9699, "step-1": "<mask token>\n", "step-2": "for i in range(1, 11):\n encabezado = 'Tabla del {}'\n print(encabezado.format(i))\n print()\n for j in range(1, 11):\n salida = '{} x {} = {}'\n print(salida.format(i, j, i * j))\n else:\n print()\n", "step-3": "# Autor : Kevin Oswaldo Palacios Jimenez\r\n# Fecha de creacion: 16/09/19 \r\n\r\n# Se genera un bucle con for \r\n# al no tener argumento print no genera ningun cambio \r\n# mas que continuar a la siguiente linea\r\nfor i in range (1,11): \r\n encabezado=\"Tabla del {}\" \r\n print(encabezado.format(i))\r\n\r\n print() \r\n # Usaremos un for dentro de otro generando un bucle mas\r\n for j in range(1,11): \r\n # en donde i tendremos la base \r\n # con j tendriamos el elemento\r\n salida=\"{} x {} = {}\" \r\n print(salida.format(i,j,i*j)) \r\n else: \r\n # con el bucle teniendo su proceso iterativo \r\n # se saltaran las linea pero ejecutando el codigo \r\n print() ", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import configparser import sqlite3 import time import uuid from duoquest.tsq import TableSketchQuery def input_db_name(conn): while True: db_name = input('Database name (default: concert_singer) > ') if not db_name: db_name = 'concert_singer' cur = conn.cursor() cur.execute('SELECT 1 FROM databases WHERE name = ?', (db_name,)) if cur.fetchone(): break else: print(f'<{db_name}> is not a valid database.') return db_name def input_nlq(): nlq = input('NLQ (default: How many singers are there?)> ') if not nlq: nlq = 'How many singers are there?' return nlq def input_num_cols(): while True: num_cols = input('Number of columns > ') try: num_cols = int(num_cols) break except Exception as e: print('Number of columns should be integer!') return num_cols def input_order(): ordered = False while True: order_input = input('Should results be ordered? (y/n) > ') if order_input == 'y': ordered = True break elif order_input == 'n': break else: print('y/n only!') return ordered def input_limit(): limit = None while True: limit_input = input('Limit results to n tuples? (int or blank) > ') if not limit_input: break try: limit = int(limit_input) break except Exception as e: print('int or blank only!') return limit def input_tsq_types(num_cols): while True: types_input = input('Types (`text` or `number`, comma separated)> ') types = list(map(lambda x: x.strip(), types_input.split(','))) if any(map(lambda x: x not in ('text', 'number'), types)): print('Types must be `text` or `number`') continue if len(types) != num_cols: print('Number of types must match number of columns.') continue break return types def input_tsq_row_count(): tsq_row_count = 0 while True: tsq_row_count_input = input('Number of TSQ rows (int) > ') try: tsq_row_count = int(tsq_row_count_input) break except Exception as e: print('int only!') return tsq_row_count def input_tsq_row(row_num, tsq_types): while True: row_input = input(f'Row {row_num} (semicolon-separated values) > ') tsq_row = list(map(lambda x: x.strip(), row_input.split(';'))) validated = True for i, cell in enumerate(tsq_row): if tsq_types[i] == 'number': try: float(cell) except Exception as e: print('At least one cell value is invalid.') validated = False break if validated: break return tsq_row def main(): config = configparser.ConfigParser() config.read('config.ini') db_path = config['db']['path'] conn = sqlite3.connect(db_path) db_name = input_db_name(conn) nlq = input_nlq() num_cols = input_num_cols() tsq = TableSketchQuery(num_cols) tsq.types = input_tsq_types(num_cols) tsq_row_count = input_tsq_row_count() for i in range(tsq_row_count): tsq.values.append(input_tsq_row(i+1, tsq.types)) tsq.order = input_order() tsq.limit = input_limit() print(tsq.to_proto()) cur = conn.cursor() cur.execute('''INSERT INTO tasks (tid, db, nlq, tsq_proto, status, time) VALUES (?, ?, ?, ?, ?, ?)''', (str(uuid.uuid4()), db_name, nlq, tsq.to_proto().SerializeToString(), 'waiting', int(time.time()))) conn.commit() conn.close() if __name__ == '__main__': main()
normal
{ "blob_id": "54ec1961f4835f575e7129bd0b2fcdeb97be2f03", "index": 93, "step-1": "<mask token>\n\n\ndef input_db_name(conn):\n while True:\n db_name = input('Database name (default: concert_singer) > ')\n if not db_name:\n db_name = 'concert_singer'\n cur = conn.cursor()\n cur.execute('SELECT 1 FROM databases WHERE name = ?', (db_name,))\n if cur.fetchone():\n break\n else:\n print(f'<{db_name}> is not a valid database.')\n return db_name\n\n\ndef input_nlq():\n nlq = input('NLQ (default: How many singers are there?)> ')\n if not nlq:\n nlq = 'How many singers are there?'\n return nlq\n\n\ndef input_num_cols():\n while True:\n num_cols = input('Number of columns > ')\n try:\n num_cols = int(num_cols)\n break\n except Exception as e:\n print('Number of columns should be integer!')\n return num_cols\n\n\n<mask token>\n\n\ndef input_limit():\n limit = None\n while True:\n limit_input = input('Limit results to n tuples? (int or blank) > ')\n if not limit_input:\n break\n try:\n limit = int(limit_input)\n break\n except Exception as e:\n print('int or blank only!')\n return limit\n\n\ndef input_tsq_types(num_cols):\n while True:\n types_input = input('Types (`text` or `number`, comma separated)> ')\n types = list(map(lambda x: x.strip(), types_input.split(',')))\n if any(map(lambda x: x not in ('text', 'number'), types)):\n print('Types must be `text` or `number`')\n continue\n if len(types) != num_cols:\n print('Number of types must match number of columns.')\n continue\n break\n return types\n\n\ndef input_tsq_row_count():\n tsq_row_count = 0\n while True:\n tsq_row_count_input = input('Number of TSQ rows (int) > ')\n try:\n tsq_row_count = int(tsq_row_count_input)\n break\n except Exception as e:\n print('int only!')\n return tsq_row_count\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef input_db_name(conn):\n while True:\n db_name = input('Database name (default: concert_singer) > ')\n if not db_name:\n db_name = 'concert_singer'\n cur = conn.cursor()\n cur.execute('SELECT 1 FROM databases WHERE name = ?', (db_name,))\n if cur.fetchone():\n break\n else:\n print(f'<{db_name}> is not a valid database.')\n return db_name\n\n\ndef input_nlq():\n nlq = input('NLQ (default: How many singers are there?)> ')\n if not nlq:\n nlq = 'How many singers are there?'\n return nlq\n\n\ndef input_num_cols():\n while True:\n num_cols = input('Number of columns > ')\n try:\n num_cols = int(num_cols)\n break\n except Exception as e:\n print('Number of columns should be integer!')\n return num_cols\n\n\n<mask token>\n\n\ndef input_limit():\n limit = None\n while True:\n limit_input = input('Limit results to n tuples? (int or blank) > ')\n if not limit_input:\n break\n try:\n limit = int(limit_input)\n break\n except Exception as e:\n print('int or blank only!')\n return limit\n\n\ndef input_tsq_types(num_cols):\n while True:\n types_input = input('Types (`text` or `number`, comma separated)> ')\n types = list(map(lambda x: x.strip(), types_input.split(',')))\n if any(map(lambda x: x not in ('text', 'number'), types)):\n print('Types must be `text` or `number`')\n continue\n if len(types) != num_cols:\n print('Number of types must match number of columns.')\n continue\n break\n return types\n\n\ndef input_tsq_row_count():\n tsq_row_count = 0\n while True:\n tsq_row_count_input = input('Number of TSQ rows (int) > ')\n try:\n tsq_row_count = int(tsq_row_count_input)\n break\n except Exception as e:\n print('int only!')\n return tsq_row_count\n\n\ndef input_tsq_row(row_num, tsq_types):\n while True:\n row_input = input(f'Row {row_num} (semicolon-separated values) > ')\n tsq_row = list(map(lambda x: x.strip(), row_input.split(';')))\n validated = True\n for i, cell in enumerate(tsq_row):\n if tsq_types[i] == 'number':\n try:\n float(cell)\n except Exception as e:\n print('At least one cell value is invalid.')\n validated = False\n break\n if validated:\n break\n return tsq_row\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef input_db_name(conn):\n while True:\n db_name = input('Database name (default: concert_singer) > ')\n if not db_name:\n db_name = 'concert_singer'\n cur = conn.cursor()\n cur.execute('SELECT 1 FROM databases WHERE name = ?', (db_name,))\n if cur.fetchone():\n break\n else:\n print(f'<{db_name}> is not a valid database.')\n return db_name\n\n\ndef input_nlq():\n nlq = input('NLQ (default: How many singers are there?)> ')\n if not nlq:\n nlq = 'How many singers are there?'\n return nlq\n\n\ndef input_num_cols():\n while True:\n num_cols = input('Number of columns > ')\n try:\n num_cols = int(num_cols)\n break\n except Exception as e:\n print('Number of columns should be integer!')\n return num_cols\n\n\ndef input_order():\n ordered = False\n while True:\n order_input = input('Should results be ordered? (y/n) > ')\n if order_input == 'y':\n ordered = True\n break\n elif order_input == 'n':\n break\n else:\n print('y/n only!')\n return ordered\n\n\ndef input_limit():\n limit = None\n while True:\n limit_input = input('Limit results to n tuples? (int or blank) > ')\n if not limit_input:\n break\n try:\n limit = int(limit_input)\n break\n except Exception as e:\n print('int or blank only!')\n return limit\n\n\ndef input_tsq_types(num_cols):\n while True:\n types_input = input('Types (`text` or `number`, comma separated)> ')\n types = list(map(lambda x: x.strip(), types_input.split(',')))\n if any(map(lambda x: x not in ('text', 'number'), types)):\n print('Types must be `text` or `number`')\n continue\n if len(types) != num_cols:\n print('Number of types must match number of columns.')\n continue\n break\n return types\n\n\ndef input_tsq_row_count():\n tsq_row_count = 0\n while True:\n tsq_row_count_input = input('Number of TSQ rows (int) > ')\n try:\n tsq_row_count = int(tsq_row_count_input)\n break\n except Exception as e:\n print('int only!')\n return tsq_row_count\n\n\ndef input_tsq_row(row_num, tsq_types):\n while True:\n row_input = input(f'Row {row_num} (semicolon-separated values) > ')\n tsq_row = list(map(lambda x: x.strip(), row_input.split(';')))\n validated = True\n for i, cell in enumerate(tsq_row):\n if tsq_types[i] == 'number':\n try:\n float(cell)\n except Exception as e:\n print('At least one cell value is invalid.')\n validated = False\n break\n if validated:\n break\n return tsq_row\n\n\n<mask token>\n", "step-4": "import configparser\nimport sqlite3\nimport time\nimport uuid\nfrom duoquest.tsq import TableSketchQuery\n\n\ndef input_db_name(conn):\n while True:\n db_name = input('Database name (default: concert_singer) > ')\n if not db_name:\n db_name = 'concert_singer'\n cur = conn.cursor()\n cur.execute('SELECT 1 FROM databases WHERE name = ?', (db_name,))\n if cur.fetchone():\n break\n else:\n print(f'<{db_name}> is not a valid database.')\n return db_name\n\n\ndef input_nlq():\n nlq = input('NLQ (default: How many singers are there?)> ')\n if not nlq:\n nlq = 'How many singers are there?'\n return nlq\n\n\ndef input_num_cols():\n while True:\n num_cols = input('Number of columns > ')\n try:\n num_cols = int(num_cols)\n break\n except Exception as e:\n print('Number of columns should be integer!')\n return num_cols\n\n\ndef input_order():\n ordered = False\n while True:\n order_input = input('Should results be ordered? (y/n) > ')\n if order_input == 'y':\n ordered = True\n break\n elif order_input == 'n':\n break\n else:\n print('y/n only!')\n return ordered\n\n\ndef input_limit():\n limit = None\n while True:\n limit_input = input('Limit results to n tuples? (int or blank) > ')\n if not limit_input:\n break\n try:\n limit = int(limit_input)\n break\n except Exception as e:\n print('int or blank only!')\n return limit\n\n\ndef input_tsq_types(num_cols):\n while True:\n types_input = input('Types (`text` or `number`, comma separated)> ')\n types = list(map(lambda x: x.strip(), types_input.split(',')))\n if any(map(lambda x: x not in ('text', 'number'), types)):\n print('Types must be `text` or `number`')\n continue\n if len(types) != num_cols:\n print('Number of types must match number of columns.')\n continue\n break\n return types\n\n\ndef input_tsq_row_count():\n tsq_row_count = 0\n while True:\n tsq_row_count_input = input('Number of TSQ rows (int) > ')\n try:\n tsq_row_count = int(tsq_row_count_input)\n break\n except Exception as e:\n print('int only!')\n return tsq_row_count\n\n\ndef input_tsq_row(row_num, tsq_types):\n while True:\n row_input = input(f'Row {row_num} (semicolon-separated values) > ')\n tsq_row = list(map(lambda x: x.strip(), row_input.split(';')))\n validated = True\n for i, cell in enumerate(tsq_row):\n if tsq_types[i] == 'number':\n try:\n float(cell)\n except Exception as e:\n print('At least one cell value is invalid.')\n validated = False\n break\n if validated:\n break\n return tsq_row\n\n\ndef main():\n config = configparser.ConfigParser()\n config.read('config.ini')\n db_path = config['db']['path']\n conn = sqlite3.connect(db_path)\n db_name = input_db_name(conn)\n nlq = input_nlq()\n num_cols = input_num_cols()\n tsq = TableSketchQuery(num_cols)\n tsq.types = input_tsq_types(num_cols)\n tsq_row_count = input_tsq_row_count()\n for i in range(tsq_row_count):\n tsq.values.append(input_tsq_row(i + 1, tsq.types))\n tsq.order = input_order()\n tsq.limit = input_limit()\n print(tsq.to_proto())\n cur = conn.cursor()\n cur.execute(\n \"\"\"INSERT INTO tasks (tid, db, nlq, tsq_proto, status, time)\n VALUES (?, ?, ?, ?, ?, ?)\"\"\"\n , (str(uuid.uuid4()), db_name, nlq, tsq.to_proto().\n SerializeToString(), 'waiting', int(time.time())))\n conn.commit()\n conn.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "import configparser\nimport sqlite3\nimport time\nimport uuid\n\nfrom duoquest.tsq import TableSketchQuery\n\ndef input_db_name(conn):\n while True:\n db_name = input('Database name (default: concert_singer) > ')\n if not db_name:\n db_name = 'concert_singer'\n cur = conn.cursor()\n\n cur.execute('SELECT 1 FROM databases WHERE name = ?', (db_name,))\n if cur.fetchone():\n break\n else:\n print(f'<{db_name}> is not a valid database.')\n return db_name\n\ndef input_nlq():\n nlq = input('NLQ (default: How many singers are there?)> ')\n if not nlq:\n nlq = 'How many singers are there?'\n return nlq\n\ndef input_num_cols():\n while True:\n num_cols = input('Number of columns > ')\n try:\n num_cols = int(num_cols)\n break\n except Exception as e:\n print('Number of columns should be integer!')\n return num_cols\n\ndef input_order():\n ordered = False\n while True:\n order_input = input('Should results be ordered? (y/n) > ')\n if order_input == 'y':\n ordered = True\n break\n elif order_input == 'n':\n break\n else:\n print('y/n only!')\n return ordered\n\ndef input_limit():\n limit = None\n while True:\n limit_input = input('Limit results to n tuples? (int or blank) > ')\n if not limit_input:\n break\n try:\n limit = int(limit_input)\n break\n except Exception as e:\n print('int or blank only!')\n return limit\n\ndef input_tsq_types(num_cols):\n while True:\n types_input = input('Types (`text` or `number`, comma separated)> ')\n types = list(map(lambda x: x.strip(), types_input.split(',')))\n\n if any(map(lambda x: x not in ('text', 'number'), types)):\n print('Types must be `text` or `number`')\n continue\n\n if len(types) != num_cols:\n print('Number of types must match number of columns.')\n continue\n break\n\n return types\n\ndef input_tsq_row_count():\n tsq_row_count = 0\n while True:\n tsq_row_count_input = input('Number of TSQ rows (int) > ')\n try:\n tsq_row_count = int(tsq_row_count_input)\n break\n except Exception as e:\n print('int only!')\n return tsq_row_count\n\ndef input_tsq_row(row_num, tsq_types):\n while True:\n row_input = input(f'Row {row_num} (semicolon-separated values) > ')\n tsq_row = list(map(lambda x: x.strip(), row_input.split(';')))\n\n validated = True\n for i, cell in enumerate(tsq_row):\n if tsq_types[i] == 'number':\n try:\n float(cell)\n except Exception as e:\n print('At least one cell value is invalid.')\n validated = False\n break\n if validated:\n break\n\n return tsq_row\n\ndef main():\n config = configparser.ConfigParser()\n config.read('config.ini')\n db_path = config['db']['path']\n\n conn = sqlite3.connect(db_path)\n\n db_name = input_db_name(conn)\n nlq = input_nlq()\n num_cols = input_num_cols()\n\n tsq = TableSketchQuery(num_cols)\n\n tsq.types = input_tsq_types(num_cols)\n\n tsq_row_count = input_tsq_row_count()\n for i in range(tsq_row_count):\n tsq.values.append(input_tsq_row(i+1, tsq.types))\n\n tsq.order = input_order()\n tsq.limit = input_limit()\n\n print(tsq.to_proto())\n\n cur = conn.cursor()\n cur.execute('''INSERT INTO tasks (tid, db, nlq, tsq_proto, status, time)\n VALUES (?, ?, ?, ?, ?, ?)''',\n (str(uuid.uuid4()), db_name, nlq,\n tsq.to_proto().SerializeToString(), 'waiting',\n int(time.time())))\n conn.commit()\n conn.close()\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 6, 7, 8, 11, 12 ] }
[ 6, 7, 8, 11, 12 ]
<|reserved_special_token_0|> def openfile(name): f = open(name, 'r', encoding='utf-8') text = f.readlines() f.close() return text def makedict(text): A = [] for line in text: if 'lex:' in line: a = [] a.append(line[6:].replace('\n', '')) elif 'gramm:' in line: a.append(line[8:].replace('\n', '')) elif 'trans_ru:' in line: a.append(line[11:].replace('\n', '')) A.append(a) return A <|reserved_special_token_0|> def dictionary(): A = [] for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V' ]: A += makedict(openfile('udm_lexemes_{}.txt'.format(i))) transl = [] for el in A: a = [] a.append(convert_input(el[0], 'cyr')) a += el transl.append(a) return transl def dict_split(transl): D = {k: [] for k in ['N', 'IMIT', 'V']} row = '%s\t%s\t%s\t%s\n' for line in dictionary(): parts = [] if line[2] == 'N' or 'ADJ' in line[2]: parts.append(line[2]) elif 'N-persn' in line[2] or 'N,' in line[2]: parts.append('N') elif 'V,' in line[2]: parts.append('V') if 'ADV' in line[2]: parts.append('ADV') if 'POST' in line[2]: parts.append('POST') if 'PRO' in line[2]: parts.append('PRO') if 'NUM' in line[2]: parts.append('NUM') if 'INTRJ' in line[2]: parts.append('INTRJ') if 'CNJ' in line[2]: parts.append('CNJ') if 'IMIT' in line[2]: parts.append('IMIT') if 'PART' in line[2]: parts.append('PART') if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts): D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'V' in parts or 'PRAED' in parts: D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'IMIT' in parts: D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3])) return D def main(): D = dict_split(dictionary()) for k in D: D[k] = set(D[k]) fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8') fw.write(''.join(D[k])) fw.close() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def openfile(name): f = open(name, 'r', encoding='utf-8') text = f.readlines() f.close() return text def makedict(text): A = [] for line in text: if 'lex:' in line: a = [] a.append(line[6:].replace('\n', '')) elif 'gramm:' in line: a.append(line[8:].replace('\n', '')) elif 'trans_ru:' in line: a.append(line[11:].replace('\n', '')) A.append(a) return A def writefile(name, text): fw = open(name, 'w', encoding='utf-8') fw.write(text) fw.close() def dictionary(): A = [] for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V' ]: A += makedict(openfile('udm_lexemes_{}.txt'.format(i))) transl = [] for el in A: a = [] a.append(convert_input(el[0], 'cyr')) a += el transl.append(a) return transl def dict_split(transl): D = {k: [] for k in ['N', 'IMIT', 'V']} row = '%s\t%s\t%s\t%s\n' for line in dictionary(): parts = [] if line[2] == 'N' or 'ADJ' in line[2]: parts.append(line[2]) elif 'N-persn' in line[2] or 'N,' in line[2]: parts.append('N') elif 'V,' in line[2]: parts.append('V') if 'ADV' in line[2]: parts.append('ADV') if 'POST' in line[2]: parts.append('POST') if 'PRO' in line[2]: parts.append('PRO') if 'NUM' in line[2]: parts.append('NUM') if 'INTRJ' in line[2]: parts.append('INTRJ') if 'CNJ' in line[2]: parts.append('CNJ') if 'IMIT' in line[2]: parts.append('IMIT') if 'PART' in line[2]: parts.append('PART') if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts): D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'V' in parts or 'PRAED' in parts: D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'IMIT' in parts: D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3])) return D def main(): D = dict_split(dictionary()) for k in D: D[k] = set(D[k]) fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8') fw.write(''.join(D[k])) fw.close() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def openfile(name): f = open(name, 'r', encoding='utf-8') text = f.readlines() f.close() return text def makedict(text): A = [] for line in text: if 'lex:' in line: a = [] a.append(line[6:].replace('\n', '')) elif 'gramm:' in line: a.append(line[8:].replace('\n', '')) elif 'trans_ru:' in line: a.append(line[11:].replace('\n', '')) A.append(a) return A def writefile(name, text): fw = open(name, 'w', encoding='utf-8') fw.write(text) fw.close() def dictionary(): A = [] for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V' ]: A += makedict(openfile('udm_lexemes_{}.txt'.format(i))) transl = [] for el in A: a = [] a.append(convert_input(el[0], 'cyr')) a += el transl.append(a) return transl def dict_split(transl): D = {k: [] for k in ['N', 'IMIT', 'V']} row = '%s\t%s\t%s\t%s\n' for line in dictionary(): parts = [] if line[2] == 'N' or 'ADJ' in line[2]: parts.append(line[2]) elif 'N-persn' in line[2] or 'N,' in line[2]: parts.append('N') elif 'V,' in line[2]: parts.append('V') if 'ADV' in line[2]: parts.append('ADV') if 'POST' in line[2]: parts.append('POST') if 'PRO' in line[2]: parts.append('PRO') if 'NUM' in line[2]: parts.append('NUM') if 'INTRJ' in line[2]: parts.append('INTRJ') if 'CNJ' in line[2]: parts.append('CNJ') if 'IMIT' in line[2]: parts.append('IMIT') if 'PART' in line[2]: parts.append('PART') if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts): D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'V' in parts or 'PRAED' in parts: D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'IMIT' in parts: D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3])) return D def main(): D = dict_split(dictionary()) for k in D: D[k] = set(D[k]) fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8') fw.write(''.join(D[k])) fw.close() if __name__ == '__main__': main() <|reserved_special_token_1|> from translit import convert_input def openfile(name): f = open(name, 'r', encoding='utf-8') text = f.readlines() f.close() return text def makedict(text): A = [] for line in text: if 'lex:' in line: a = [] a.append(line[6:].replace('\n', '')) elif 'gramm:' in line: a.append(line[8:].replace('\n', '')) elif 'trans_ru:' in line: a.append(line[11:].replace('\n', '')) A.append(a) return A def writefile(name, text): fw = open(name, 'w', encoding='utf-8') fw.write(text) fw.close() def dictionary(): A = [] for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V' ]: A += makedict(openfile('udm_lexemes_{}.txt'.format(i))) transl = [] for el in A: a = [] a.append(convert_input(el[0], 'cyr')) a += el transl.append(a) return transl def dict_split(transl): D = {k: [] for k in ['N', 'IMIT', 'V']} row = '%s\t%s\t%s\t%s\n' for line in dictionary(): parts = [] if line[2] == 'N' or 'ADJ' in line[2]: parts.append(line[2]) elif 'N-persn' in line[2] or 'N,' in line[2]: parts.append('N') elif 'V,' in line[2]: parts.append('V') if 'ADV' in line[2]: parts.append('ADV') if 'POST' in line[2]: parts.append('POST') if 'PRO' in line[2]: parts.append('PRO') if 'NUM' in line[2]: parts.append('NUM') if 'INTRJ' in line[2]: parts.append('INTRJ') if 'CNJ' in line[2]: parts.append('CNJ') if 'IMIT' in line[2]: parts.append('IMIT') if 'PART' in line[2]: parts.append('PART') if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts): D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'V' in parts or 'PRAED' in parts: D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'IMIT' in parts: D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3])) return D def main(): D = dict_split(dictionary()) for k in D: D[k] = set(D[k]) fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8') fw.write(''.join(D[k])) fw.close() if __name__ == '__main__': main() <|reserved_special_token_1|> from translit import convert_input def openfile(name): f = open(name, 'r', encoding = 'utf-8') text = f.readlines() f.close() return text def makedict(text): A = [] for line in text: if 'lex:' in line: a = [] a.append(line[6:].replace('\n','')) elif 'gramm:' in line: a.append(line[8:].replace('\n','')) elif 'trans_ru:' in line: a.append(line[11:].replace('\n','')) A.append(a) return A def writefile(name, text): fw = open(name, 'w', encoding = 'utf-8') fw.write(text) fw.close() #alf = 'абвгдежзийклмнопрстуфхцчшыьёюяӧӝӟӵ' #trans = list('abvgdežzijklmnoprstufxcčšə') #trans.append('ə̂') #trans.append('ə̈əɤ') def dictionary(): A = [] for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V']: A += makedict(openfile('udm_lexemes_{}.txt'.format(i))) transl = [] for el in A: a = [] a.append(convert_input(el[0], 'cyr')) a += el transl.append(a) return transl def dict_split(transl): D = {k:[] for k in ['N', 'IMIT', 'V']} row = '%s\t%s\t%s\t%s\n' for line in dictionary(): parts = [] if line[2] == 'N' or 'ADJ' in line[2]: parts.append(line[2]) elif 'N-persn' in line[2] or 'N,' in line[2]: parts.append('N') elif 'V,' in line[2]: parts.append('V') if 'ADV' in line[2]: parts.append('ADV') if 'POST' in line[2]: parts.append('POST') if 'PRO' in line[2]: parts.append('PRO') if 'NUM' in line[2]: parts.append('NUM') if 'INTRJ' in line[2]: parts.append('INTRJ') if 'CNJ' in line[2]: parts.append('CNJ') if 'IMIT' in line[2]: parts.append('IMIT') if 'PART' in line[2]: parts.append('PART') if 'N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts: D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'V' in parts or 'PRAED' in parts: D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3])) if 'IMIT' in parts: D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3])) return D def main(): D = dict_split(dictionary()) for k in D: D[k] = set(D[k]) fw = open('udmlex_' + k + '.tsv', 'w', encoding = 'utf-8') fw.write(''.join(D[k])) fw.close() if __name__ == '__main__': main()
flexible
{ "blob_id": "29e54a9ec0d65965645ac4aabf8c247a8857a25f", "index": 3778, "step-1": "<mask token>\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\n<mask token>\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\ndef writefile(name, text):\n fw = open(name, 'w', encoding='utf-8')\n fw.write(text)\n fw.close()\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\ndef writefile(name, text):\n fw = open(name, 'w', encoding='utf-8')\n fw.write(text)\n fw.close()\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from translit import convert_input\n\n\ndef openfile(name):\n f = open(name, 'r', encoding='utf-8')\n text = f.readlines()\n f.close()\n return text\n\n\ndef makedict(text):\n A = []\n for line in text:\n if 'lex:' in line:\n a = []\n a.append(line[6:].replace('\\n', ''))\n elif 'gramm:' in line:\n a.append(line[8:].replace('\\n', ''))\n elif 'trans_ru:' in line:\n a.append(line[11:].replace('\\n', ''))\n A.append(a)\n return A\n\n\ndef writefile(name, text):\n fw = open(name, 'w', encoding='utf-8')\n fw.write(text)\n fw.close()\n\n\ndef dictionary():\n A = []\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V'\n ]:\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\n transl = []\n for el in A:\n a = []\n a.append(convert_input(el[0], 'cyr'))\n a += el\n transl.append(a)\n return transl\n\n\ndef dict_split(transl):\n D = {k: [] for k in ['N', 'IMIT', 'V']}\n row = '%s\\t%s\\t%s\\t%s\\n'\n for line in dictionary():\n parts = []\n if line[2] == 'N' or 'ADJ' in line[2]:\n parts.append(line[2])\n elif 'N-persn' in line[2] or 'N,' in line[2]:\n parts.append('N')\n elif 'V,' in line[2]:\n parts.append('V')\n if 'ADV' in line[2]:\n parts.append('ADV')\n if 'POST' in line[2]:\n parts.append('POST')\n if 'PRO' in line[2]:\n parts.append('PRO')\n if 'NUM' in line[2]:\n parts.append('NUM')\n if 'INTRJ' in line[2]:\n parts.append('INTRJ')\n if 'CNJ' in line[2]:\n parts.append('CNJ')\n if 'IMIT' in line[2]:\n parts.append('IMIT')\n if 'PART' in line[2]:\n parts.append('PART')\n if ('N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in\n parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or\n 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts):\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'V' in parts or 'PRAED' in parts:\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\n if 'IMIT' in parts:\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts),\n line[3]))\n return D\n\n\ndef main():\n D = dict_split(dictionary())\n for k in D:\n D[k] = set(D[k])\n fw = open('udmlex_' + k + '.tsv', 'w', encoding='utf-8')\n fw.write(''.join(D[k]))\n fw.close()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from translit import convert_input\r\n\r\ndef openfile(name):\r\n f = open(name, 'r', encoding = 'utf-8')\r\n text = f.readlines()\r\n f.close()\r\n return text\r\n\r\ndef makedict(text):\r\n A = []\r\n for line in text:\r\n if 'lex:' in line:\r\n a = []\r\n a.append(line[6:].replace('\\n',''))\r\n elif 'gramm:' in line:\r\n a.append(line[8:].replace('\\n',''))\r\n elif 'trans_ru:' in line:\r\n a.append(line[11:].replace('\\n',''))\r\n A.append(a)\r\n return A\r\n\r\ndef writefile(name, text):\r\n fw = open(name, 'w', encoding = 'utf-8')\r\n fw.write(text) \r\n fw.close()\r\n\r\n#alf = 'абвгдежзийклмнопрстуфхцчшыьёюяӧӝӟӵ'\r\n#trans = list('abvgdežzijklmnoprstufxcčšə')\r\n#trans.append('ə̂')\r\n#trans.append('ə̈əɤ')\r\n\r\ndef dictionary():\r\n A = []\r\n for i in ['ADJ', 'IMIT', 'N', 'N_persn', 'NRel', 'PRO', 'unchangeable', 'V']:\r\n A += makedict(openfile('udm_lexemes_{}.txt'.format(i)))\r\n transl = []\r\n for el in A:\r\n a = []\r\n a.append(convert_input(el[0], 'cyr'))\r\n a += el\r\n transl.append(a)\r\n return transl\r\n\r\ndef dict_split(transl):\r\n D = {k:[] for k in ['N', 'IMIT', 'V']}\r\n row = '%s\\t%s\\t%s\\t%s\\n'\r\n for line in dictionary():\r\n parts = []\r\n if line[2] == 'N' or 'ADJ' in line[2]:\r\n parts.append(line[2])\r\n elif 'N-persn' in line[2] or 'N,' in line[2]:\r\n parts.append('N')\r\n elif 'V,' in line[2]: \r\n parts.append('V')\r\n if 'ADV' in line[2]:\r\n parts.append('ADV')\r\n if 'POST' in line[2]:\r\n parts.append('POST')\r\n if 'PRO' in line[2]:\r\n parts.append('PRO')\r\n if 'NUM' in line[2]:\r\n parts.append('NUM')\r\n if 'INTRJ' in line[2]:\r\n parts.append('INTRJ')\r\n if 'CNJ' in line[2]:\r\n parts.append('CNJ')\r\n if 'IMIT' in line[2]:\r\n parts.append('IMIT')\r\n if 'PART' in line[2]:\r\n parts.append('PART')\r\n if 'N' in parts or 'ADJ' in parts or 'ADV' in parts or 'POST' in parts or 'PRO' in parts or 'NUM' in parts or 'PRAED' in parts or 'INTRJ' in parts or 'CNJ' in parts or 'PART' in parts:\r\n D['N'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\r\n if 'V' in parts or 'PRAED' in parts:\r\n D['V'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\r\n if 'IMIT' in parts:\r\n D['IMIT'].append(row % (line[0], line[1], ', '.join(parts), line[3]))\r\n return D\r\n\r\ndef main():\r\n D = dict_split(dictionary()) \r\n for k in D:\r\n D[k] = set(D[k])\r\n fw = open('udmlex_' + k + '.tsv', 'w', encoding = 'utf-8')\r\n fw.write(''.join(D[k]))\r\n fw.close()\r\n\r\nif __name__ == '__main__':\r\n main()\r\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
#!/usr/bin/python # -*- coding: utf-8 -*- from fieldsets import getSingleField, SortAsc from sqlalchemy import func from ladderdb import ElementNotFoundException, EmptyRankingListException from db_entities import Player, Result from bottle import route,request from globe import db,env @route('/player') def output( ): player_name = getSingleField( 'player', request ) order = getSingleField( 'order', request , 'nick') ladder_id = getSingleField( 'ladder', request ) try: s = db.sessionmaker() if player_name: player = db.GetPlayer( player_name ) ladders = db.GetLadderByPlayer( player.id ) played = dict() positions = dict() for ladder in ladders: positions[ladder.id] = db.GetPlayerPosition( ladder.id, player.id ) played[ladder.id] = s.query( Result.id ).filter( Result.ladder_id == ladder.id ).filter( Result.player_id == player.id ).count() results = s.query( Result ).filter( Result.player_id == player.id).order_by(Result.date.desc())[0:5] matches = [] for r in results: matches.append( r.match ) template = env.get_template('viewplayer.html') s.close() return template.render(player=player,ladders=ladders, positions=positions,played=played,matches=matches ) else: asc = getSingleField( 'asc', request, 'False' ) if not asc: asc = 'False' q = s.query( Player, func.count(Result.id).label('played')).outerjoin( (Result, Result.player_id == Player.id ) )\ .filter( Player.id.in_(s.query( Result.player_id ).filter( Player.id == Result.player_id ) ) ) \ .filter( Result.player_id == Player.id ).group_by( Player.id ) if ladder_id: q = q.filter( Player.id.in_( s.query( Result.player_id ).filter( Result.ladder_id == ladder_id ) ) ) if order == 'nick': q = q.order_by( SortAsc( Player.nick, asc ) ) elif order == 'id' : q = q.order_by( SortAsc( Player.id, asc ) ) else: order = 'played' q = q.order_by( SortAsc( func.count(Result.id), asc ) ) limit = int(getSingleField( 'limit', request, q.count() )) offset = int(getSingleField( 'offset', request, 0 )) players = q[offset:offset+limit-1] template = env.get_template('viewplayerlist.html') s.close() return template.render(players=players,offset=offset,limit=limit,order=order,asc=asc ) except ElementNotFoundException, e: err_msg="player %s not found"%(str(player_name)) except EmptyRankingListException, m: err_msg=(str(m)) if s: s.close() template = env.get_template('error.html') return template.render( err_msg=err_msg )
normal
{ "blob_id": "97d128694709c4fe0d9ec2b2749d8e4ec5df7322", "index": 8812, "step-1": "#!/usr/bin/python\n# -*- coding: utf-8 -*-\n\nfrom fieldsets import getSingleField, SortAsc\nfrom sqlalchemy import func\nfrom ladderdb import ElementNotFoundException, EmptyRankingListException\nfrom db_entities import Player, Result\nfrom bottle import route,request\nfrom globe import db,env\n\n@route('/player')\ndef output( ):\n\tplayer_name = getSingleField( 'player', request )\n\torder = getSingleField( 'order', request , 'nick')\n\tladder_id = getSingleField( 'ladder', request )\n\ttry:\n\t\ts = db.sessionmaker()\n\t\tif player_name:\n\t\t\tplayer = db.GetPlayer( player_name )\n\t\t\tladders = db.GetLadderByPlayer( player.id )\n\t\t\tplayed = dict()\n\t\t\tpositions = dict()\n\t\t\tfor ladder in ladders:\n\t\t\t\tpositions[ladder.id] = db.GetPlayerPosition( ladder.id, player.id )\n\t\t\t\tplayed[ladder.id] = s.query( Result.id ).filter( Result.ladder_id == ladder.id ).filter( Result.player_id == player.id ).count()\n\n\t\t\tresults = s.query( Result ).filter( Result.player_id == player.id).order_by(Result.date.desc())[0:5]\n\t\t\tmatches = []\n\t\t\tfor r in results:\n\t\t\t\tmatches.append( r.match )\n\n\t\t\ttemplate = env.get_template('viewplayer.html')\n\t\t\ts.close()\n\t\t\treturn template.render(player=player,ladders=ladders, positions=positions,played=played,matches=matches )\n\t\telse:\n\t\t\tasc = getSingleField( 'asc', request, 'False' )\n\t\t\tif not asc:\n\t\t\t\tasc = 'False'\n\t\t\tq = s.query( Player, func.count(Result.id).label('played')).outerjoin( (Result, Result.player_id == Player.id ) )\\\n\t\t\t\t.filter( Player.id.in_(s.query( Result.player_id ).filter( Player.id == Result.player_id ) ) ) \\\n\t\t\t\t.filter( Result.player_id == Player.id ).group_by( Player.id )\n\t\t\tif ladder_id:\n\t\t\t\tq = q.filter( Player.id.in_( s.query( Result.player_id ).filter( Result.ladder_id == ladder_id ) ) )\n\t\t\tif order == 'nick':\n\t\t\t\tq = q.order_by( SortAsc( Player.nick, asc ) )\n\t\t\telif order == 'id' :\n\t\t\t\tq = q.order_by( SortAsc( Player.id, asc ) )\n\t\t\telse:\n\t\t\t\torder = 'played'\n\t\t\t\tq = q.order_by( SortAsc( func.count(Result.id), asc ) )\n\n\t\t\tlimit = int(getSingleField( 'limit', request, q.count() ))\n\t\t\toffset = int(getSingleField( 'offset', request, 0 ))\n\t\t\tplayers = q[offset:offset+limit-1]\n\t\t\ttemplate = env.get_template('viewplayerlist.html')\n\t\t\ts.close()\n\t\t\treturn template.render(players=players,offset=offset,limit=limit,order=order,asc=asc )\n\n\texcept ElementNotFoundException, e:\n\t\terr_msg=\"player %s not found\"%(str(player_name))\n\n\texcept EmptyRankingListException, m:\n\t\terr_msg=(str(m))\n\tif s:\n\t\ts.close()\n\ttemplate = env.get_template('error.html')\n\treturn template.render( err_msg=err_msg )", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from flask import Flask, flash, abort, redirect, url_for, request, render_template, make_response, json, Response import os, sys import config import boto.ec2.elb import boto from boto.ec2 import * app = Flask(__name__) @app.route('/') def index(): list = [] creds = config.get_ec2_conf() for region in config.region_list(): conn = connect_to_region(region, aws_access_key_id=creds[ 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) zones = conn.get_all_zones() instances = conn.get_all_instance_status() instance_count = len(instances) ebs = conn.get_all_volumes() ebscount = len(ebs) unattached_ebs = 0 unattached_eli = 0 event_count = 0 for instance in instances: events = instance.events if events: event_count = event_count + 1 for vol in ebs: state = vol.attachment_state() if state == None: unattached_ebs = unattached_ebs + 1 elis = conn.get_all_addresses() eli_count = len(elis) for eli in elis: instance_id = eli.instance_id if not instance_id: unattached_eli = unattached_eli + 1 connelb = boto.ec2.elb.connect_to_region(region, aws_access_key_id= creds['AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) elb = connelb.get_all_load_balancers() elb_count = len(elb) list.append({'region': region, 'zones': zones, 'instance_count': instance_count, 'ebscount': ebscount, 'unattached_ebs': unattached_ebs, 'eli_count': eli_count, 'unattached_eli': unattached_eli, 'elb_count': elb_count, 'event_count': event_count} ) return render_template('index.html', list=list) @app.route('/ebs_volumes/<region>/') def ebs_volumes(region=None): creds = config.get_ec2_conf() conn = connect_to_region(region, aws_access_key_id=creds[ 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) ebs = conn.get_all_volumes() ebs_vol = [] for vol in ebs: state = vol.attachment_state() if state == None: ebs_info = {'id': vol.id, 'size': vol.size, 'iops': vol.iops, 'status': vol.status} ebs_vol.append(ebs_info) return render_template('ebs_volume.html', ebs_vol=ebs_vol, region=region) @app.route('/ebs_volumes/<region>/delete/<vol_id>') def delete_ebs_vol(region=None, vol_id=None): creds = config.get_ec2_conf() conn = connect_to_region(region, aws_access_key_id=creds[ 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) vol_id = vol_id.encode('ascii') vol_ids = conn.get_all_volumes(volume_ids=vol_id) for vol in vol_ids: vol.delete() return redirect(url_for('ebs_volumes', region=region)) @app.route('/elastic_ips/<region>/') def elastic_ips(region=None): creds = config.get_ec2_conf() conn = connect_to_region(region, aws_access_key_id=creds[ 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) elis = conn.get_all_addresses() un_eli = [] for eli in elis: instance_id = eli.instance_id if not instance_id: eli_info = {'public_ip': eli.public_ip, 'domain': eli.domain} un_eli.append(eli_info) return render_template('elastic_ip.html', un_eli=un_eli, region=region) @app.route('/elastic_ips/<region>/delete/<ip>') def delete_elastic_ip(region=None, ip=None): creds = config.get_ec2_conf() conn = connect_to_region(region, aws_access_key_id=creds[ 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) ip = ip.encode('ascii') elis = conn.get_all_addresses(addresses=ip) for eli in elis: eli.release() return redirect(url_for('elastic_ips', region=region)) @app.route('/instance_events/<region>/') def instance_events(region=None): creds = config.get_ec2_conf() conn = connect_to_region(region, aws_access_key_id=creds[ 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[ 'AWS_SECRET_ACCESS_KEY']) instances = conn.get_all_instance_status() instance_event_list = [] for instance in instances: event = instance.events if event: event_info = {'instance_id': instance.id, 'event': instance. events[0].code, 'description': instance.events[0]. description, 'event_before': instance.events[0].not_before, 'event_after': instance.events[0].not_after} instance_event_list.append(event_info) return render_template('instance_events.html', instance_event_list= instance_event_list) if __name__ == '__main__': app.debug = True app.run(host='0.0.0.0')
normal
{ "blob_id": "22c2425f1dc14b6b0005ebf2231af8abf43aa2e1", "index": 5273, "step-1": "<mask token>\n\n\[email protected]('/')\ndef index():\n list = []\n creds = config.get_ec2_conf()\n for region in config.region_list():\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n zones = conn.get_all_zones()\n instances = conn.get_all_instance_status()\n instance_count = len(instances)\n ebs = conn.get_all_volumes()\n ebscount = len(ebs)\n unattached_ebs = 0\n unattached_eli = 0\n event_count = 0\n for instance in instances:\n events = instance.events\n if events:\n event_count = event_count + 1\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n unattached_ebs = unattached_ebs + 1\n elis = conn.get_all_addresses()\n eli_count = len(elis)\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n unattached_eli = unattached_eli + 1\n connelb = boto.ec2.elb.connect_to_region(region, aws_access_key_id=\n creds['AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elb = connelb.get_all_load_balancers()\n elb_count = len(elb)\n list.append({'region': region, 'zones': zones, 'instance_count':\n instance_count, 'ebscount': ebscount, 'unattached_ebs':\n unattached_ebs, 'eli_count': eli_count, 'unattached_eli':\n unattached_eli, 'elb_count': elb_count, 'event_count': event_count}\n )\n return render_template('index.html', list=list)\n\n\[email protected]('/ebs_volumes/<region>/')\ndef ebs_volumes(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ebs = conn.get_all_volumes()\n ebs_vol = []\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n ebs_info = {'id': vol.id, 'size': vol.size, 'iops': vol.iops,\n 'status': vol.status}\n ebs_vol.append(ebs_info)\n return render_template('ebs_volume.html', ebs_vol=ebs_vol, region=region)\n\n\[email protected]('/ebs_volumes/<region>/delete/<vol_id>')\ndef delete_ebs_vol(region=None, vol_id=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n vol_id = vol_id.encode('ascii')\n vol_ids = conn.get_all_volumes(volume_ids=vol_id)\n for vol in vol_ids:\n vol.delete()\n return redirect(url_for('ebs_volumes', region=region))\n\n\[email protected]('/elastic_ips/<region>/')\ndef elastic_ips(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elis = conn.get_all_addresses()\n un_eli = []\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n eli_info = {'public_ip': eli.public_ip, 'domain': eli.domain}\n un_eli.append(eli_info)\n return render_template('elastic_ip.html', un_eli=un_eli, region=region)\n\n\[email protected]('/elastic_ips/<region>/delete/<ip>')\ndef delete_elastic_ip(region=None, ip=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ip = ip.encode('ascii')\n elis = conn.get_all_addresses(addresses=ip)\n for eli in elis:\n eli.release()\n return redirect(url_for('elastic_ips', region=region))\n\n\[email protected]('/instance_events/<region>/')\ndef instance_events(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n instances = conn.get_all_instance_status()\n instance_event_list = []\n for instance in instances:\n event = instance.events\n if event:\n event_info = {'instance_id': instance.id, 'event': instance.\n events[0].code, 'description': instance.events[0].\n description, 'event_before': instance.events[0].not_before,\n 'event_after': instance.events[0].not_after}\n instance_event_list.append(event_info)\n return render_template('instance_events.html', instance_event_list=\n instance_event_list)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/')\ndef index():\n list = []\n creds = config.get_ec2_conf()\n for region in config.region_list():\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n zones = conn.get_all_zones()\n instances = conn.get_all_instance_status()\n instance_count = len(instances)\n ebs = conn.get_all_volumes()\n ebscount = len(ebs)\n unattached_ebs = 0\n unattached_eli = 0\n event_count = 0\n for instance in instances:\n events = instance.events\n if events:\n event_count = event_count + 1\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n unattached_ebs = unattached_ebs + 1\n elis = conn.get_all_addresses()\n eli_count = len(elis)\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n unattached_eli = unattached_eli + 1\n connelb = boto.ec2.elb.connect_to_region(region, aws_access_key_id=\n creds['AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elb = connelb.get_all_load_balancers()\n elb_count = len(elb)\n list.append({'region': region, 'zones': zones, 'instance_count':\n instance_count, 'ebscount': ebscount, 'unattached_ebs':\n unattached_ebs, 'eli_count': eli_count, 'unattached_eli':\n unattached_eli, 'elb_count': elb_count, 'event_count': event_count}\n )\n return render_template('index.html', list=list)\n\n\[email protected]('/ebs_volumes/<region>/')\ndef ebs_volumes(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ebs = conn.get_all_volumes()\n ebs_vol = []\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n ebs_info = {'id': vol.id, 'size': vol.size, 'iops': vol.iops,\n 'status': vol.status}\n ebs_vol.append(ebs_info)\n return render_template('ebs_volume.html', ebs_vol=ebs_vol, region=region)\n\n\[email protected]('/ebs_volumes/<region>/delete/<vol_id>')\ndef delete_ebs_vol(region=None, vol_id=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n vol_id = vol_id.encode('ascii')\n vol_ids = conn.get_all_volumes(volume_ids=vol_id)\n for vol in vol_ids:\n vol.delete()\n return redirect(url_for('ebs_volumes', region=region))\n\n\[email protected]('/elastic_ips/<region>/')\ndef elastic_ips(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elis = conn.get_all_addresses()\n un_eli = []\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n eli_info = {'public_ip': eli.public_ip, 'domain': eli.domain}\n un_eli.append(eli_info)\n return render_template('elastic_ip.html', un_eli=un_eli, region=region)\n\n\[email protected]('/elastic_ips/<region>/delete/<ip>')\ndef delete_elastic_ip(region=None, ip=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ip = ip.encode('ascii')\n elis = conn.get_all_addresses(addresses=ip)\n for eli in elis:\n eli.release()\n return redirect(url_for('elastic_ips', region=region))\n\n\[email protected]('/instance_events/<region>/')\ndef instance_events(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n instances = conn.get_all_instance_status()\n instance_event_list = []\n for instance in instances:\n event = instance.events\n if event:\n event_info = {'instance_id': instance.id, 'event': instance.\n events[0].code, 'description': instance.events[0].\n description, 'event_before': instance.events[0].not_before,\n 'event_after': instance.events[0].not_after}\n instance_event_list.append(event_info)\n return render_template('instance_events.html', instance_event_list=\n instance_event_list)\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run(host='0.0.0.0')\n", "step-3": "<mask token>\napp = Flask(__name__)\n\n\[email protected]('/')\ndef index():\n list = []\n creds = config.get_ec2_conf()\n for region in config.region_list():\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n zones = conn.get_all_zones()\n instances = conn.get_all_instance_status()\n instance_count = len(instances)\n ebs = conn.get_all_volumes()\n ebscount = len(ebs)\n unattached_ebs = 0\n unattached_eli = 0\n event_count = 0\n for instance in instances:\n events = instance.events\n if events:\n event_count = event_count + 1\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n unattached_ebs = unattached_ebs + 1\n elis = conn.get_all_addresses()\n eli_count = len(elis)\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n unattached_eli = unattached_eli + 1\n connelb = boto.ec2.elb.connect_to_region(region, aws_access_key_id=\n creds['AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elb = connelb.get_all_load_balancers()\n elb_count = len(elb)\n list.append({'region': region, 'zones': zones, 'instance_count':\n instance_count, 'ebscount': ebscount, 'unattached_ebs':\n unattached_ebs, 'eli_count': eli_count, 'unattached_eli':\n unattached_eli, 'elb_count': elb_count, 'event_count': event_count}\n )\n return render_template('index.html', list=list)\n\n\[email protected]('/ebs_volumes/<region>/')\ndef ebs_volumes(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ebs = conn.get_all_volumes()\n ebs_vol = []\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n ebs_info = {'id': vol.id, 'size': vol.size, 'iops': vol.iops,\n 'status': vol.status}\n ebs_vol.append(ebs_info)\n return render_template('ebs_volume.html', ebs_vol=ebs_vol, region=region)\n\n\[email protected]('/ebs_volumes/<region>/delete/<vol_id>')\ndef delete_ebs_vol(region=None, vol_id=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n vol_id = vol_id.encode('ascii')\n vol_ids = conn.get_all_volumes(volume_ids=vol_id)\n for vol in vol_ids:\n vol.delete()\n return redirect(url_for('ebs_volumes', region=region))\n\n\[email protected]('/elastic_ips/<region>/')\ndef elastic_ips(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elis = conn.get_all_addresses()\n un_eli = []\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n eli_info = {'public_ip': eli.public_ip, 'domain': eli.domain}\n un_eli.append(eli_info)\n return render_template('elastic_ip.html', un_eli=un_eli, region=region)\n\n\[email protected]('/elastic_ips/<region>/delete/<ip>')\ndef delete_elastic_ip(region=None, ip=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ip = ip.encode('ascii')\n elis = conn.get_all_addresses(addresses=ip)\n for eli in elis:\n eli.release()\n return redirect(url_for('elastic_ips', region=region))\n\n\[email protected]('/instance_events/<region>/')\ndef instance_events(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n instances = conn.get_all_instance_status()\n instance_event_list = []\n for instance in instances:\n event = instance.events\n if event:\n event_info = {'instance_id': instance.id, 'event': instance.\n events[0].code, 'description': instance.events[0].\n description, 'event_before': instance.events[0].not_before,\n 'event_after': instance.events[0].not_after}\n instance_event_list.append(event_info)\n return render_template('instance_events.html', instance_event_list=\n instance_event_list)\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run(host='0.0.0.0')\n", "step-4": "from flask import Flask, flash, abort, redirect, url_for, request, render_template, make_response, json, Response\nimport os, sys\nimport config\nimport boto.ec2.elb\nimport boto\nfrom boto.ec2 import *\napp = Flask(__name__)\n\n\[email protected]('/')\ndef index():\n list = []\n creds = config.get_ec2_conf()\n for region in config.region_list():\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n zones = conn.get_all_zones()\n instances = conn.get_all_instance_status()\n instance_count = len(instances)\n ebs = conn.get_all_volumes()\n ebscount = len(ebs)\n unattached_ebs = 0\n unattached_eli = 0\n event_count = 0\n for instance in instances:\n events = instance.events\n if events:\n event_count = event_count + 1\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n unattached_ebs = unattached_ebs + 1\n elis = conn.get_all_addresses()\n eli_count = len(elis)\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n unattached_eli = unattached_eli + 1\n connelb = boto.ec2.elb.connect_to_region(region, aws_access_key_id=\n creds['AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elb = connelb.get_all_load_balancers()\n elb_count = len(elb)\n list.append({'region': region, 'zones': zones, 'instance_count':\n instance_count, 'ebscount': ebscount, 'unattached_ebs':\n unattached_ebs, 'eli_count': eli_count, 'unattached_eli':\n unattached_eli, 'elb_count': elb_count, 'event_count': event_count}\n )\n return render_template('index.html', list=list)\n\n\[email protected]('/ebs_volumes/<region>/')\ndef ebs_volumes(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ebs = conn.get_all_volumes()\n ebs_vol = []\n for vol in ebs:\n state = vol.attachment_state()\n if state == None:\n ebs_info = {'id': vol.id, 'size': vol.size, 'iops': vol.iops,\n 'status': vol.status}\n ebs_vol.append(ebs_info)\n return render_template('ebs_volume.html', ebs_vol=ebs_vol, region=region)\n\n\[email protected]('/ebs_volumes/<region>/delete/<vol_id>')\ndef delete_ebs_vol(region=None, vol_id=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n vol_id = vol_id.encode('ascii')\n vol_ids = conn.get_all_volumes(volume_ids=vol_id)\n for vol in vol_ids:\n vol.delete()\n return redirect(url_for('ebs_volumes', region=region))\n\n\[email protected]('/elastic_ips/<region>/')\ndef elastic_ips(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n elis = conn.get_all_addresses()\n un_eli = []\n for eli in elis:\n instance_id = eli.instance_id\n if not instance_id:\n eli_info = {'public_ip': eli.public_ip, 'domain': eli.domain}\n un_eli.append(eli_info)\n return render_template('elastic_ip.html', un_eli=un_eli, region=region)\n\n\[email protected]('/elastic_ips/<region>/delete/<ip>')\ndef delete_elastic_ip(region=None, ip=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n ip = ip.encode('ascii')\n elis = conn.get_all_addresses(addresses=ip)\n for eli in elis:\n eli.release()\n return redirect(url_for('elastic_ips', region=region))\n\n\[email protected]('/instance_events/<region>/')\ndef instance_events(region=None):\n creds = config.get_ec2_conf()\n conn = connect_to_region(region, aws_access_key_id=creds[\n 'AWS_ACCESS_KEY_ID'], aws_secret_access_key=creds[\n 'AWS_SECRET_ACCESS_KEY'])\n instances = conn.get_all_instance_status()\n instance_event_list = []\n for instance in instances:\n event = instance.events\n if event:\n event_info = {'instance_id': instance.id, 'event': instance.\n events[0].code, 'description': instance.events[0].\n description, 'event_before': instance.events[0].not_before,\n 'event_after': instance.events[0].not_after}\n instance_event_list.append(event_info)\n return render_template('instance_events.html', instance_event_list=\n instance_event_list)\n\n\nif __name__ == '__main__':\n app.debug = True\n app.run(host='0.0.0.0')\n", "step-5": null, "step-ids": [ 6, 7, 8, 9 ] }
[ 6, 7, 8, 9 ]
# -*- coding: utf-8 -*- from .base import BaseSchema from marshmallow import fields class BaseTickSchema(BaseSchema): """ Time : 时间 High : 最高价 Low : 最低价 Volume : 交易量 Last : 最新价 """ Time = fields.String() High = fields.String() Low = fields.String() Volume = fields.String() Last = fields.String()
normal
{ "blob_id": "6cc23a3e2fa3b1baddf05b30a1054a7faf0371a6", "index": 5528, "step-1": "<mask token>\n\n\nclass BaseTickSchema(BaseSchema):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass BaseTickSchema(BaseSchema):\n <mask token>\n Time = fields.String()\n High = fields.String()\n Low = fields.String()\n Volume = fields.String()\n Last = fields.String()\n", "step-3": "<mask token>\n\n\nclass BaseTickSchema(BaseSchema):\n \"\"\"\n Time : 时间\n High : 最高价\n Low : 最低价\n Volume : 交易量\n Last : 最新价\n \"\"\"\n Time = fields.String()\n High = fields.String()\n Low = fields.String()\n Volume = fields.String()\n Last = fields.String()\n", "step-4": "from .base import BaseSchema\nfrom marshmallow import fields\n\n\nclass BaseTickSchema(BaseSchema):\n \"\"\"\n Time : 时间\n High : 最高价\n Low : 最低价\n Volume : 交易量\n Last : 最新价\n \"\"\"\n Time = fields.String()\n High = fields.String()\n Low = fields.String()\n Volume = fields.String()\n Last = fields.String()\n", "step-5": "# -*- coding: utf-8 -*-\nfrom .base import BaseSchema\nfrom marshmallow import fields\n\n\nclass BaseTickSchema(BaseSchema):\n \"\"\"\n Time : 时间\n High : 最高价\n Low : 最低价\n Volume : 交易量\n Last : 最新价\n \"\"\"\n\n Time = fields.String()\n High = fields.String()\n Low = fields.String()\n Volume = fields.String()\n Last = fields.String()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/env python # coding: utf-8 # # PyCity School Analysis # 1. Charter school types show better performace than District School types in all the scores. # 2. Overall students are performing better in english between (80 to 84%), than math (76 to 84%) # ### Note # * Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. # In[1]: # Dependencies and Setup import pandas as pd import numpy as np # File to Load (Remember to Change These) school_data_to_load = "Resources/schools_complete.csv" student_data_to_load = "Resources/students_complete.csv" # Read School and Student Data File and store into Pandas Data Frames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset school_data_complete = pd.merge(student_data, school_data, how="left", on=["school_name", "school_name"]) # ## District Summary # # * Calculate the total number of schools # # * Calculate the total number of students # # * Calculate the total budget # # * Calculate the average math score # # * Calculate the average reading score # # * Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2 # # * Calculate the percentage of students with a passing math score (70 or greater) # # * Calculate the percentage of students with a passing reading score (70 or greater) # # * Create a dataframe to hold the above results # # * Optional: give the displayed data cleaner formatting # In[2]: #Calculate the total number of schools total_schools = len(school_data) #Calculate the total number of students total_students = len(student_data) #Calculate the total budget total_buget = school_data['budget'].sum() #Calculate the average math score avg_math_score = student_data['math_score'].mean() #Calculate the average reading score avg_reading_score = student_data['reading_score'].mean() #Calculate the overall passing rate (overall average score) overall_avg_score = ((avg_math_score + avg_reading_score)/2) #Calculate the percentage of students with a passing math score (70 or greater) passsing_math_score = (student_data['math_score'] >= 70).sum() percent_math_passing = (passsing_math_score/len(student_data['math_score']))*100 #Calculate the percentage of students with a passing reading score (70 or greater) passsing_reading_score = (student_data['reading_score'] >= 70).sum() percent_reading_passing = (passsing_reading_score/len(student_data['reading_score']))*100 #Create a dataframe to hold the above results District_Summary_df = pd.DataFrame({'Total Schools' : [total_schools], 'Total Students' : [total_students], 'Total Budget' :[total_buget], 'Average Math Score' : [avg_math_score], 'Average Reading Score':[avg_reading_score], '% Passing Math' : [percent_math_passing], '% Passing Reading' : [percent_reading_passing], '% Overall Passing Rate' : [overall_avg_score]}) District_Summary_df # ## School Summary # * Create an overview table that summarizes key metrics about each school, including: # * School Name # * School Type # * Total Students # * Total School Budget # * Per Student Budget # * Average Math Score # * Average Reading Score # * % Passing Math # * % Passing Reading # * Overall Passing Rate (Average of the above two) # # * Create a dataframe to hold the above results # ## Top Performing Schools (By Passing Rate) # * Sort and display the top five schools in overall passing rate # In[3]: #group by School Name school_groups = school_data_complete.set_index('school_name').groupby(['school_name']) #find School type school_type = school_data.set_index('school_name')['type'] #Calculate total students in each school total_student = school_groups['Student ID'].count() #Calculate total budget in each school school_total_budget = school_data.set_index('school_name')['budget'] #Calculate budget per student in each school per_stu_budget = school_total_budget/school_data.set_index('school_name')['size'] #Calculate average math score total_math_score = school_data_complete.groupby(['school_name'])['math_score'].sum() avg_math = total_math_score/total_student #Calculate average reading score total_reading_score = school_data_complete.groupby(['school_name'])['reading_score'].sum() avg_reading = total_reading_score/total_student #Calculate math score >= 70 pass_math_score = school_data_complete[school_data_complete['math_score'] >= 70].groupby('school_name')['math_score'].count() pass_math_percent = (pass_math_score/total_student)*100 ##Calculate reading score >= 70 pass_reading_score = school_data_complete[school_data_complete['reading_score'] >= 70].groupby('school_name')['reading_score'].count() pass_reading_percent = (pass_reading_score/total_student)*100 #Calculate overall passing rate overall_reading_rate = (pass_math_percent + pass_reading_percent)/2 #Adding all the calculated columns in dataframe school_summary_df = pd.DataFrame({'School Type' : school_type, 'Total Students' : total_student, 'Total School Budget' : total_buget, 'Per Student Budget' : per_stu_budget, 'Average Math Score' : avg_math, 'Average Reading Score' : avg_reading, '% Passing Math' : pass_math_percent, '% Passing Reading' : pass_reading_percent, '% Overall Passing Rate' : overall_reading_rate}) school_summary_df #Sort and display the top five schools in overall passing rate top_performing = school_summary_df.sort_values('% Overall Passing Rate', ascending = False) top_performing.head() # ## Bottom Performing Schools (By Passing Rate) # * Sort and display the five worst-performing schools # In[4]: #Sort and display the five worst-performing schools top_performing = school_summary_df.sort_values('% Overall Passing Rate') top_performing.head() # ## Math Scores by Grade # * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school. # # * Create a pandas series for each grade. Hint: use a conditional statement. # # * Group each series by school # # * Combine the series into a dataframe # # * Optional: give the displayed data cleaner formatting # In[5]: #Create dataframe to hold average math score grade_math_score = pd.DataFrame() #Calclulate average math score for 9th grade_math_score['9th'] = school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')['math_score'].mean() #Calclulate average math score for 10th grade_math_score['10th'] = school_data_complete[school_data_complete['grade'] == '10th'].groupby('school_name')['math_score'].mean() #Calclulate average math score for 11th grade_math_score['11th'] = school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')['math_score'].mean() #Calclulate average math score for 12th grade_math_score['12th'] = school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')['math_score'].mean() #formatting by setting index name blank grade_math_score.index.name = '' grade_math_score # ## Reading Score by Grade # * Perform the same operations as above for reading scores # In[6]: #Create dataframe to hold average reading score grade_reading_score = pd.DataFrame() #Calclulate average reading score for 9th grade_reading_score['9th'] = school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')['reading_score'].mean() #Calclulate average reading score for 10th grade_reading_score['10th'] = school_data_complete[school_data_complete['grade'] == '10th'].groupby('school_name')['reading_score'].mean() #Calclulate average reading score for 11th grade_reading_score['11th'] = school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')['reading_score'].mean() #Calclulate average reading score for 12th grade_reading_score['12th'] = school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')['reading_score'].mean() #formatting by setting index name blank grade_reading_score.index.name = '' grade_reading_score # ## Scores by School Spending # * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following: # * Average Math Score # * Average Reading Score # * % Passing Math # * % Passing Reading # * Overall Passing Rate (Average of the above two) # In[7]: # Sample bins. Feel free to create your own bins. spending_bins = [0, 585, 615, 645, 675] group_names = ["<$585", "$585-615", "$615-645", "$645-675"] # In[8]: # create dataframe with needed columns school_spending_ranges = school_summary_df.loc[:, ['Average Math Score', 'Average Reading Score','% Passing Math', '% Passing Reading','% Overall Passing Rate']] #Calculate average score based on spending_bins school_spending_ranges['Spending Ranges (Per Student)'] = pd.cut(school_summary_df['Per Student Budget'], spending_bins, labels = group_names) school_spending_ranges = school_spending_ranges.groupby('Spending Ranges (Per Student)').mean() school_spending_ranges # ## Scores by School Size # * Perform the same operations as above, based on school size. # In[9]: # Sample bins. Feel free to create your own bins. size_bins = [0, 1000, 2000, 5000] group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-5000)"] # In[10]: # create dataframe with needed columns school_size_score = school_summary_df.loc[:, ['Average Math Score', 'Average Reading Score','% Passing Math', '% Passing Reading','% Overall Passing Rate']] #Calculate average score as per size_bins school_size_score['School Size'] = pd.cut(school_summary_df['Total Students'], size_bins, labels = group_names) school_size_score = school_size_score.groupby('School Size').mean() school_size_score # ## Scores by School Type # * Perform the same operations as above, based on school type. # In[11]: # create dataframe with needed columns scores_School_type = school_summary_df[['School Type','Average Math Score', 'Average Reading Score','% Passing Math', '% Passing Reading','% Overall Passing Rate',]] #create a group based on school type scores_School_type = scores_School_type.groupby('School Type').mean() scores_School_type # In[ ]:
normal
{ "blob_id": "8488fdd216c30c3cb4b0060305af6708d890bc86", "index": 8203, "step-1": "<mask token>\n", "step-2": "<mask token>\nDistrict_Summary_df\n<mask token>\nschool_summary_df\n<mask token>\ntop_performing.head()\n<mask token>\ntop_performing.head()\n<mask token>\ngrade_math_score\n<mask token>\ngrade_reading_score\n<mask token>\nschool_spending_ranges\n<mask token>\nschool_size_score\n<mask token>\nscores_School_type\n", "step-3": "<mask token>\nschool_data_to_load = 'Resources/schools_complete.csv'\nstudent_data_to_load = 'Resources/students_complete.csv'\nschool_data = pd.read_csv(school_data_to_load)\nstudent_data = pd.read_csv(student_data_to_load)\nschool_data_complete = pd.merge(student_data, school_data, how='left', on=[\n 'school_name', 'school_name'])\ntotal_schools = len(school_data)\ntotal_students = len(student_data)\ntotal_buget = school_data['budget'].sum()\navg_math_score = student_data['math_score'].mean()\navg_reading_score = student_data['reading_score'].mean()\noverall_avg_score = (avg_math_score + avg_reading_score) / 2\npasssing_math_score = (student_data['math_score'] >= 70).sum()\npercent_math_passing = passsing_math_score / len(student_data['math_score']\n ) * 100\npasssing_reading_score = (student_data['reading_score'] >= 70).sum()\npercent_reading_passing = passsing_reading_score / len(student_data[\n 'reading_score']) * 100\nDistrict_Summary_df = pd.DataFrame({'Total Schools': [total_schools],\n 'Total Students': [total_students], 'Total Budget': [total_buget],\n 'Average Math Score': [avg_math_score], 'Average Reading Score': [\n avg_reading_score], '% Passing Math': [percent_math_passing],\n '% Passing Reading': [percent_reading_passing],\n '% Overall Passing Rate': [overall_avg_score]})\nDistrict_Summary_df\nschool_groups = school_data_complete.set_index('school_name').groupby([\n 'school_name'])\nschool_type = school_data.set_index('school_name')['type']\ntotal_student = school_groups['Student ID'].count()\nschool_total_budget = school_data.set_index('school_name')['budget']\nper_stu_budget = school_total_budget / school_data.set_index('school_name')[\n 'size']\ntotal_math_score = school_data_complete.groupby(['school_name'])['math_score'\n ].sum()\navg_math = total_math_score / total_student\ntotal_reading_score = school_data_complete.groupby(['school_name'])[\n 'reading_score'].sum()\navg_reading = total_reading_score / total_student\npass_math_score = school_data_complete[school_data_complete['math_score'] >= 70\n ].groupby('school_name')['math_score'].count()\npass_math_percent = pass_math_score / total_student * 100\npass_reading_score = school_data_complete[school_data_complete[\n 'reading_score'] >= 70].groupby('school_name')['reading_score'].count()\npass_reading_percent = pass_reading_score / total_student * 100\noverall_reading_rate = (pass_math_percent + pass_reading_percent) / 2\nschool_summary_df = pd.DataFrame({'School Type': school_type,\n 'Total Students': total_student, 'Total School Budget': total_buget,\n 'Per Student Budget': per_stu_budget, 'Average Math Score': avg_math,\n 'Average Reading Score': avg_reading, '% Passing Math':\n pass_math_percent, '% Passing Reading': pass_reading_percent,\n '% Overall Passing Rate': overall_reading_rate})\nschool_summary_df\ntop_performing = school_summary_df.sort_values('% Overall Passing Rate',\n ascending=False)\ntop_performing.head()\ntop_performing = school_summary_df.sort_values('% Overall Passing Rate')\ntop_performing.head()\ngrade_math_score = pd.DataFrame()\ngrade_math_score['9th'] = school_data_complete[school_data_complete['grade'\n ] == '9th'].groupby('school_name')['math_score'].mean()\ngrade_math_score['10th'] = school_data_complete[school_data_complete[\n 'grade'] == '10th'].groupby('school_name')['math_score'].mean()\ngrade_math_score['11th'] = school_data_complete[school_data_complete[\n 'grade'] == '11th'].groupby('school_name')['math_score'].mean()\ngrade_math_score['12th'] = school_data_complete[school_data_complete[\n 'grade'] == '12th'].groupby('school_name')['math_score'].mean()\ngrade_math_score.index.name = ''\ngrade_math_score\ngrade_reading_score = pd.DataFrame()\ngrade_reading_score['9th'] = school_data_complete[school_data_complete[\n 'grade'] == '9th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score['10th'] = school_data_complete[school_data_complete[\n 'grade'] == '10th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score['11th'] = school_data_complete[school_data_complete[\n 'grade'] == '11th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score['12th'] = school_data_complete[school_data_complete[\n 'grade'] == '12th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score.index.name = ''\ngrade_reading_score\nspending_bins = [0, 585, 615, 645, 675]\ngroup_names = ['<$585', '$585-615', '$615-645', '$645-675']\nschool_spending_ranges = school_summary_df.loc[:, ['Average Math Score',\n 'Average Reading Score', '% Passing Math', '% Passing Reading',\n '% Overall Passing Rate']]\nschool_spending_ranges['Spending Ranges (Per Student)'] = pd.cut(\n school_summary_df['Per Student Budget'], spending_bins, labels=group_names)\nschool_spending_ranges = school_spending_ranges.groupby(\n 'Spending Ranges (Per Student)').mean()\nschool_spending_ranges\nsize_bins = [0, 1000, 2000, 5000]\ngroup_names = ['Small (<1000)', 'Medium (1000-2000)', 'Large (2000-5000)']\nschool_size_score = school_summary_df.loc[:, ['Average Math Score',\n 'Average Reading Score', '% Passing Math', '% Passing Reading',\n '% Overall Passing Rate']]\nschool_size_score['School Size'] = pd.cut(school_summary_df[\n 'Total Students'], size_bins, labels=group_names)\nschool_size_score = school_size_score.groupby('School Size').mean()\nschool_size_score\nscores_School_type = school_summary_df[['School Type', 'Average Math Score',\n 'Average Reading Score', '% Passing Math', '% Passing Reading',\n '% Overall Passing Rate']]\nscores_School_type = scores_School_type.groupby('School Type').mean()\nscores_School_type\n", "step-4": "import pandas as pd\nimport numpy as np\nschool_data_to_load = 'Resources/schools_complete.csv'\nstudent_data_to_load = 'Resources/students_complete.csv'\nschool_data = pd.read_csv(school_data_to_load)\nstudent_data = pd.read_csv(student_data_to_load)\nschool_data_complete = pd.merge(student_data, school_data, how='left', on=[\n 'school_name', 'school_name'])\ntotal_schools = len(school_data)\ntotal_students = len(student_data)\ntotal_buget = school_data['budget'].sum()\navg_math_score = student_data['math_score'].mean()\navg_reading_score = student_data['reading_score'].mean()\noverall_avg_score = (avg_math_score + avg_reading_score) / 2\npasssing_math_score = (student_data['math_score'] >= 70).sum()\npercent_math_passing = passsing_math_score / len(student_data['math_score']\n ) * 100\npasssing_reading_score = (student_data['reading_score'] >= 70).sum()\npercent_reading_passing = passsing_reading_score / len(student_data[\n 'reading_score']) * 100\nDistrict_Summary_df = pd.DataFrame({'Total Schools': [total_schools],\n 'Total Students': [total_students], 'Total Budget': [total_buget],\n 'Average Math Score': [avg_math_score], 'Average Reading Score': [\n avg_reading_score], '% Passing Math': [percent_math_passing],\n '% Passing Reading': [percent_reading_passing],\n '% Overall Passing Rate': [overall_avg_score]})\nDistrict_Summary_df\nschool_groups = school_data_complete.set_index('school_name').groupby([\n 'school_name'])\nschool_type = school_data.set_index('school_name')['type']\ntotal_student = school_groups['Student ID'].count()\nschool_total_budget = school_data.set_index('school_name')['budget']\nper_stu_budget = school_total_budget / school_data.set_index('school_name')[\n 'size']\ntotal_math_score = school_data_complete.groupby(['school_name'])['math_score'\n ].sum()\navg_math = total_math_score / total_student\ntotal_reading_score = school_data_complete.groupby(['school_name'])[\n 'reading_score'].sum()\navg_reading = total_reading_score / total_student\npass_math_score = school_data_complete[school_data_complete['math_score'] >= 70\n ].groupby('school_name')['math_score'].count()\npass_math_percent = pass_math_score / total_student * 100\npass_reading_score = school_data_complete[school_data_complete[\n 'reading_score'] >= 70].groupby('school_name')['reading_score'].count()\npass_reading_percent = pass_reading_score / total_student * 100\noverall_reading_rate = (pass_math_percent + pass_reading_percent) / 2\nschool_summary_df = pd.DataFrame({'School Type': school_type,\n 'Total Students': total_student, 'Total School Budget': total_buget,\n 'Per Student Budget': per_stu_budget, 'Average Math Score': avg_math,\n 'Average Reading Score': avg_reading, '% Passing Math':\n pass_math_percent, '% Passing Reading': pass_reading_percent,\n '% Overall Passing Rate': overall_reading_rate})\nschool_summary_df\ntop_performing = school_summary_df.sort_values('% Overall Passing Rate',\n ascending=False)\ntop_performing.head()\ntop_performing = school_summary_df.sort_values('% Overall Passing Rate')\ntop_performing.head()\ngrade_math_score = pd.DataFrame()\ngrade_math_score['9th'] = school_data_complete[school_data_complete['grade'\n ] == '9th'].groupby('school_name')['math_score'].mean()\ngrade_math_score['10th'] = school_data_complete[school_data_complete[\n 'grade'] == '10th'].groupby('school_name')['math_score'].mean()\ngrade_math_score['11th'] = school_data_complete[school_data_complete[\n 'grade'] == '11th'].groupby('school_name')['math_score'].mean()\ngrade_math_score['12th'] = school_data_complete[school_data_complete[\n 'grade'] == '12th'].groupby('school_name')['math_score'].mean()\ngrade_math_score.index.name = ''\ngrade_math_score\ngrade_reading_score = pd.DataFrame()\ngrade_reading_score['9th'] = school_data_complete[school_data_complete[\n 'grade'] == '9th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score['10th'] = school_data_complete[school_data_complete[\n 'grade'] == '10th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score['11th'] = school_data_complete[school_data_complete[\n 'grade'] == '11th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score['12th'] = school_data_complete[school_data_complete[\n 'grade'] == '12th'].groupby('school_name')['reading_score'].mean()\ngrade_reading_score.index.name = ''\ngrade_reading_score\nspending_bins = [0, 585, 615, 645, 675]\ngroup_names = ['<$585', '$585-615', '$615-645', '$645-675']\nschool_spending_ranges = school_summary_df.loc[:, ['Average Math Score',\n 'Average Reading Score', '% Passing Math', '% Passing Reading',\n '% Overall Passing Rate']]\nschool_spending_ranges['Spending Ranges (Per Student)'] = pd.cut(\n school_summary_df['Per Student Budget'], spending_bins, labels=group_names)\nschool_spending_ranges = school_spending_ranges.groupby(\n 'Spending Ranges (Per Student)').mean()\nschool_spending_ranges\nsize_bins = [0, 1000, 2000, 5000]\ngroup_names = ['Small (<1000)', 'Medium (1000-2000)', 'Large (2000-5000)']\nschool_size_score = school_summary_df.loc[:, ['Average Math Score',\n 'Average Reading Score', '% Passing Math', '% Passing Reading',\n '% Overall Passing Rate']]\nschool_size_score['School Size'] = pd.cut(school_summary_df[\n 'Total Students'], size_bins, labels=group_names)\nschool_size_score = school_size_score.groupby('School Size').mean()\nschool_size_score\nscores_School_type = school_summary_df[['School Type', 'Average Math Score',\n 'Average Reading Score', '% Passing Math', '% Passing Reading',\n '% Overall Passing Rate']]\nscores_School_type = scores_School_type.groupby('School Type').mean()\nscores_School_type\n", "step-5": "#!/usr/bin/env python\n# coding: utf-8\n\n# # PyCity School Analysis\n# 1. Charter school types show better performace than District School types in all the scores. \n# 2. Overall students are performing better in english between (80 to 84%), than math (76 to 84%)\n\n# ### Note\n# * Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.\n\n# In[1]:\n\n\n# Dependencies and Setup\nimport pandas as pd\nimport numpy as np\n\n# File to Load (Remember to Change These)\nschool_data_to_load = \"Resources/schools_complete.csv\"\nstudent_data_to_load = \"Resources/students_complete.csv\"\n\n# Read School and Student Data File and store into Pandas Data Frames\nschool_data = pd.read_csv(school_data_to_load)\nstudent_data = pd.read_csv(student_data_to_load)\n\n# Combine the data into a single dataset\nschool_data_complete = pd.merge(student_data, school_data, how=\"left\", on=[\"school_name\", \"school_name\"])\n\n\n# ## District Summary\n# \n# * Calculate the total number of schools\n# \n# * Calculate the total number of students\n# \n# * Calculate the total budget\n# \n# * Calculate the average math score \n# \n# * Calculate the average reading score\n# \n# * Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2\n# \n# * Calculate the percentage of students with a passing math score (70 or greater)\n# \n# * Calculate the percentage of students with a passing reading score (70 or greater)\n# \n# * Create a dataframe to hold the above results\n# \n# * Optional: give the displayed data cleaner formatting\n\n# In[2]:\n\n\n#Calculate the total number of schools\ntotal_schools = len(school_data)\n#Calculate the total number of students\ntotal_students = len(student_data)\n#Calculate the total budget\ntotal_buget = school_data['budget'].sum()\n#Calculate the average math score\navg_math_score = student_data['math_score'].mean()\n#Calculate the average reading score\navg_reading_score = student_data['reading_score'].mean()\n#Calculate the overall passing rate (overall average score)\noverall_avg_score = ((avg_math_score + avg_reading_score)/2)\n#Calculate the percentage of students with a passing math score (70 or greater)\npasssing_math_score = (student_data['math_score'] >= 70).sum()\npercent_math_passing = (passsing_math_score/len(student_data['math_score']))*100\n#Calculate the percentage of students with a passing reading score (70 or greater)\npasssing_reading_score = (student_data['reading_score'] >= 70).sum()\npercent_reading_passing = (passsing_reading_score/len(student_data['reading_score']))*100\n\n#Create a dataframe to hold the above results\nDistrict_Summary_df = pd.DataFrame({'Total Schools' : [total_schools], 'Total Students' : [total_students], 'Total Budget' :[total_buget], 'Average Math Score' : [avg_math_score], 'Average Reading Score':[avg_reading_score], '% Passing Math' : [percent_math_passing], '% Passing Reading' : [percent_reading_passing], '% Overall Passing Rate' : [overall_avg_score]})\n\nDistrict_Summary_df\n\n\n# ## School Summary\n\n# * Create an overview table that summarizes key metrics about each school, including:\n# * School Name\n# * School Type\n# * Total Students\n# * Total School Budget\n# * Per Student Budget\n# * Average Math Score\n# * Average Reading Score\n# * % Passing Math\n# * % Passing Reading\n# * Overall Passing Rate (Average of the above two)\n# \n# * Create a dataframe to hold the above results\n\n# ## Top Performing Schools (By Passing Rate)\n\n# * Sort and display the top five schools in overall passing rate\n\n# In[3]:\n\n\n#group by School Name\nschool_groups = school_data_complete.set_index('school_name').groupby(['school_name'])\n#find School type\nschool_type = school_data.set_index('school_name')['type']\n#Calculate total students in each school\ntotal_student = school_groups['Student ID'].count()\n#Calculate total budget in each school\nschool_total_budget = school_data.set_index('school_name')['budget']\n#Calculate budget per student in each school\nper_stu_budget = school_total_budget/school_data.set_index('school_name')['size']\n#Calculate average math score\ntotal_math_score = school_data_complete.groupby(['school_name'])['math_score'].sum()\navg_math = total_math_score/total_student\n#Calculate average reading score\ntotal_reading_score = school_data_complete.groupby(['school_name'])['reading_score'].sum()\navg_reading = total_reading_score/total_student\n#Calculate math score >= 70\npass_math_score = school_data_complete[school_data_complete['math_score'] >= 70].groupby('school_name')['math_score'].count()\npass_math_percent = (pass_math_score/total_student)*100\n##Calculate reading score >= 70\npass_reading_score = school_data_complete[school_data_complete['reading_score'] >= 70].groupby('school_name')['reading_score'].count()\npass_reading_percent = (pass_reading_score/total_student)*100\n#Calculate overall passing rate\noverall_reading_rate = (pass_math_percent + pass_reading_percent)/2\n\n#Adding all the calculated columns in dataframe\nschool_summary_df = pd.DataFrame({'School Type' : school_type, 'Total Students' : total_student, 'Total School Budget' : total_buget, 'Per Student Budget' : per_stu_budget, 'Average Math Score' : avg_math, 'Average Reading Score' : avg_reading, '% Passing Math' : pass_math_percent, '% Passing Reading' : pass_reading_percent, '% Overall Passing Rate' : overall_reading_rate})\nschool_summary_df\n\n#Sort and display the top five schools in overall passing rate\ntop_performing = school_summary_df.sort_values('% Overall Passing Rate', ascending = False)\ntop_performing.head()\n\n\n# ## Bottom Performing Schools (By Passing Rate)\n\n# * Sort and display the five worst-performing schools\n\n# In[4]:\n\n\n#Sort and display the five worst-performing schools\ntop_performing = school_summary_df.sort_values('% Overall Passing Rate')\ntop_performing.head()\n\n\n# ## Math Scores by Grade\n\n# * Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.\n# \n# * Create a pandas series for each grade. Hint: use a conditional statement.\n# \n# * Group each series by school\n# \n# * Combine the series into a dataframe\n# \n# * Optional: give the displayed data cleaner formatting\n\n# In[5]:\n\n\n#Create dataframe to hold average math score\ngrade_math_score = pd.DataFrame()\n#Calclulate average math score for 9th\ngrade_math_score['9th'] = school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')['math_score'].mean()\n#Calclulate average math score for 10th\ngrade_math_score['10th'] = school_data_complete[school_data_complete['grade'] == '10th'].groupby('school_name')['math_score'].mean()\n#Calclulate average math score for 11th\ngrade_math_score['11th'] = school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')['math_score'].mean()\n#Calclulate average math score for 12th\ngrade_math_score['12th'] = school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')['math_score'].mean()\n\n#formatting by setting index name blank\ngrade_math_score.index.name = ''\ngrade_math_score\n\n\n# ## Reading Score by Grade \n\n# * Perform the same operations as above for reading scores\n\n# In[6]:\n\n\n#Create dataframe to hold average reading score\ngrade_reading_score = pd.DataFrame()\n#Calclulate average reading score for 9th\ngrade_reading_score['9th'] = school_data_complete[school_data_complete['grade'] == '9th'].groupby('school_name')['reading_score'].mean()\n#Calclulate average reading score for 10th\ngrade_reading_score['10th'] = school_data_complete[school_data_complete['grade'] == '10th'].groupby('school_name')['reading_score'].mean()\n#Calclulate average reading score for 11th\ngrade_reading_score['11th'] = school_data_complete[school_data_complete['grade'] == '11th'].groupby('school_name')['reading_score'].mean()\n#Calclulate average reading score for 12th\ngrade_reading_score['12th'] = school_data_complete[school_data_complete['grade'] == '12th'].groupby('school_name')['reading_score'].mean()\n\n#formatting by setting index name blank\ngrade_reading_score.index.name = ''\ngrade_reading_score\n\n\n# ## Scores by School Spending\n\n# * Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:\n# * Average Math Score\n# * Average Reading Score\n# * % Passing Math\n# * % Passing Reading\n# * Overall Passing Rate (Average of the above two)\n\n# In[7]:\n\n\n# Sample bins. Feel free to create your own bins.\nspending_bins = [0, 585, 615, 645, 675]\ngroup_names = [\"<$585\", \"$585-615\", \"$615-645\", \"$645-675\"]\n\n\n# In[8]:\n\n\n# create dataframe with needed columns\nschool_spending_ranges = school_summary_df.loc[:, ['Average Math Score',\n 'Average Reading Score','% Passing Math',\n '% Passing Reading','% Overall Passing Rate']]\n\n#Calculate average score based on spending_bins \nschool_spending_ranges['Spending Ranges (Per Student)'] = pd.cut(school_summary_df['Per Student Budget'], spending_bins, labels = group_names)\nschool_spending_ranges = school_spending_ranges.groupby('Spending Ranges (Per Student)').mean()\nschool_spending_ranges\n\n\n# ## Scores by School Size\n\n# * Perform the same operations as above, based on school size.\n\n# In[9]:\n\n\n# Sample bins. Feel free to create your own bins.\nsize_bins = [0, 1000, 2000, 5000]\ngroup_names = [\"Small (<1000)\", \"Medium (1000-2000)\", \"Large (2000-5000)\"]\n\n\n# In[10]:\n\n\n# create dataframe with needed columns\nschool_size_score = school_summary_df.loc[:, ['Average Math Score',\n 'Average Reading Score','% Passing Math',\n '% Passing Reading','% Overall Passing Rate']]\n\n#Calculate average score as per size_bins\nschool_size_score['School Size'] = pd.cut(school_summary_df['Total Students'], size_bins, labels = group_names)\nschool_size_score = school_size_score.groupby('School Size').mean()\nschool_size_score\n\n\n# ## Scores by School Type\n\n# * Perform the same operations as above, based on school type.\n\n# In[11]:\n\n\n# create dataframe with needed columns\nscores_School_type = school_summary_df[['School Type','Average Math Score',\n 'Average Reading Score','% Passing Math',\n '% Passing Reading','% Overall Passing Rate',]]\n#create a group based on school type\nscores_School_type = scores_School_type.groupby('School Type').mean()\nscores_School_type\n\n\n# In[ ]:\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- from django.db import models from django.contrib.auth.models import User # Create your models here. class Event(models.Model): name = models.CharField('Назва', max_length=200) date = models.DateField('Дата') address = models.CharField('Адреса', max_length=255, blank=True, null=True) attendents = models.ManyToManyField(User, through='Atendent', blank=True, null=True) description = models.TextField('Опис', blank=True, null=True) def __unicode__(self): return self.name class Atendent(models.Model): user = models.ForeignKey(User) event = models.ForeignKey(Event, null=True, blank=True) state = models.IntegerField(null=True, blank=True)
normal
{ "blob_id": "137f9310256f66ccd9fbe6626659c3c4daea0efc", "index": 8949, "step-1": "<mask token>\n\n\nclass Atendent(models.Model):\n user = models.ForeignKey(User)\n event = models.ForeignKey(Event, null=True, blank=True)\n state = models.IntegerField(null=True, blank=True)\n", "step-2": "<mask token>\n\n\nclass Event(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __unicode__(self):\n return self.name\n\n\nclass Atendent(models.Model):\n user = models.ForeignKey(User)\n event = models.ForeignKey(Event, null=True, blank=True)\n state = models.IntegerField(null=True, blank=True)\n", "step-3": "<mask token>\n\n\nclass Event(models.Model):\n name = models.CharField('Назва', max_length=200)\n date = models.DateField('Дата')\n address = models.CharField('Адреса', max_length=255, blank=True, null=True)\n attendents = models.ManyToManyField(User, through='Atendent', blank=\n True, null=True)\n description = models.TextField('Опис', blank=True, null=True)\n\n def __unicode__(self):\n return self.name\n\n\nclass Atendent(models.Model):\n user = models.ForeignKey(User)\n event = models.ForeignKey(Event, null=True, blank=True)\n state = models.IntegerField(null=True, blank=True)\n", "step-4": "from django.db import models\nfrom django.contrib.auth.models import User\n\n\nclass Event(models.Model):\n name = models.CharField('Назва', max_length=200)\n date = models.DateField('Дата')\n address = models.CharField('Адреса', max_length=255, blank=True, null=True)\n attendents = models.ManyToManyField(User, through='Atendent', blank=\n True, null=True)\n description = models.TextField('Опис', blank=True, null=True)\n\n def __unicode__(self):\n return self.name\n\n\nclass Atendent(models.Model):\n user = models.ForeignKey(User)\n event = models.ForeignKey(Event, null=True, blank=True)\n state = models.IntegerField(null=True, blank=True)\n", "step-5": "# -*- coding: utf-8 -*-\nfrom django.db import models\nfrom django.contrib.auth.models import User\n# Create your models here.\n\nclass Event(models.Model):\n name = models.CharField('Назва', max_length=200)\n date = models.DateField('Дата')\n address = models.CharField('Адреса', max_length=255, blank=True, null=True)\n attendents = models.ManyToManyField(User, through='Atendent', blank=True, null=True)\n description = models.TextField('Опис', blank=True, null=True)\n \n def __unicode__(self):\n return self.name\n\nclass Atendent(models.Model):\n user = models.ForeignKey(User)\n event = models.ForeignKey(Event, null=True, blank=True)\n state = models.IntegerField(null=True, blank=True)", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
<|reserved_special_token_0|> class ScoreLoop: def __init__(self): self.scores = fetch_scores() self.sprites = pygame.sprite.Group() self.get_score_sprites() self.space_cooldown = True <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ScoreLoop: def __init__(self): self.scores = fetch_scores() self.sprites = pygame.sprite.Group() self.get_score_sprites() self.space_cooldown = True def get_score_sprites(self): rank = 1 for score in self.scores: self.sprites.add(TextSprite(str(score), 256, 100 + 50 * rank, True) ) rank += 1 def increment(self): keys = pygame.key.get_pressed() if keys[pygame.K_SPACE]: if self.space_cooldown: return None return 'startloop' self.space_cooldown = False return None def get_sprites(self): """retruns sprites for the UI""" return self.sprites <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ScoreLoop: def __init__(self): self.scores = fetch_scores() self.sprites = pygame.sprite.Group() self.get_score_sprites() self.space_cooldown = True def get_score_sprites(self): rank = 1 for score in self.scores: self.sprites.add(TextSprite(str(score), 256, 100 + 50 * rank, True) ) rank += 1 def increment(self): keys = pygame.key.get_pressed() if keys[pygame.K_SPACE]: if self.space_cooldown: return None return 'startloop' self.space_cooldown = False return None def get_sprites(self): """retruns sprites for the UI""" return self.sprites if __name__ == '__main__': pass <|reserved_special_token_1|> <|reserved_special_token_0|> import pygame from score_fetcher import fetch_scores from entities.sprite_text import TextSprite class ScoreLoop: def __init__(self): self.scores = fetch_scores() self.sprites = pygame.sprite.Group() self.get_score_sprites() self.space_cooldown = True def get_score_sprites(self): rank = 1 for score in self.scores: self.sprites.add(TextSprite(str(score), 256, 100 + 50 * rank, True) ) rank += 1 def increment(self): keys = pygame.key.get_pressed() if keys[pygame.K_SPACE]: if self.space_cooldown: return None return 'startloop' self.space_cooldown = False return None def get_sprites(self): """retruns sprites for the UI""" return self.sprites if __name__ == '__main__': pass <|reserved_special_token_1|> """ This file contains the ScoreLoop which is used to show the user thw at most 10 highest scores made by the player """ import pygame from score_fetcher import fetch_scores from entities.sprite_text import TextSprite class ScoreLoop: def __init__(self): self.scores = fetch_scores() self.sprites = pygame.sprite.Group() self.get_score_sprites() self.space_cooldown = True def get_score_sprites(self): rank = 1 for score in self.scores: self.sprites.add( TextSprite(str(score), 256, 100+50*rank, True) ) rank += 1 def increment(self): keys = pygame.key.get_pressed() if keys[pygame.K_SPACE]: if self.space_cooldown: return None return "startloop" self.space_cooldown = False return None def get_sprites(self): """retruns sprites for the UI""" return self.sprites if __name__ == "__main__": pass
flexible
{ "blob_id": "047b3398a73c9e7d75d43eeeab85f52c05ff90c3", "index": 4534, "step-1": "<mask token>\n\n\nclass ScoreLoop:\n\n def __init__(self):\n self.scores = fetch_scores()\n self.sprites = pygame.sprite.Group()\n self.get_score_sprites()\n self.space_cooldown = True\n <mask token>\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ScoreLoop:\n\n def __init__(self):\n self.scores = fetch_scores()\n self.sprites = pygame.sprite.Group()\n self.get_score_sprites()\n self.space_cooldown = True\n\n def get_score_sprites(self):\n rank = 1\n for score in self.scores:\n self.sprites.add(TextSprite(str(score), 256, 100 + 50 * rank, True)\n )\n rank += 1\n\n def increment(self):\n keys = pygame.key.get_pressed()\n if keys[pygame.K_SPACE]:\n if self.space_cooldown:\n return None\n return 'startloop'\n self.space_cooldown = False\n return None\n\n def get_sprites(self):\n \"\"\"retruns sprites for the UI\"\"\"\n return self.sprites\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ScoreLoop:\n\n def __init__(self):\n self.scores = fetch_scores()\n self.sprites = pygame.sprite.Group()\n self.get_score_sprites()\n self.space_cooldown = True\n\n def get_score_sprites(self):\n rank = 1\n for score in self.scores:\n self.sprites.add(TextSprite(str(score), 256, 100 + 50 * rank, True)\n )\n rank += 1\n\n def increment(self):\n keys = pygame.key.get_pressed()\n if keys[pygame.K_SPACE]:\n if self.space_cooldown:\n return None\n return 'startloop'\n self.space_cooldown = False\n return None\n\n def get_sprites(self):\n \"\"\"retruns sprites for the UI\"\"\"\n return self.sprites\n\n\nif __name__ == '__main__':\n pass\n", "step-4": "<mask token>\nimport pygame\nfrom score_fetcher import fetch_scores\nfrom entities.sprite_text import TextSprite\n\n\nclass ScoreLoop:\n\n def __init__(self):\n self.scores = fetch_scores()\n self.sprites = pygame.sprite.Group()\n self.get_score_sprites()\n self.space_cooldown = True\n\n def get_score_sprites(self):\n rank = 1\n for score in self.scores:\n self.sprites.add(TextSprite(str(score), 256, 100 + 50 * rank, True)\n )\n rank += 1\n\n def increment(self):\n keys = pygame.key.get_pressed()\n if keys[pygame.K_SPACE]:\n if self.space_cooldown:\n return None\n return 'startloop'\n self.space_cooldown = False\n return None\n\n def get_sprites(self):\n \"\"\"retruns sprites for the UI\"\"\"\n return self.sprites\n\n\nif __name__ == '__main__':\n pass\n", "step-5": "\"\"\"\nThis file contains the ScoreLoop which is used to show\nthe user thw at most 10 highest scores made by the player\n\"\"\"\nimport pygame\nfrom score_fetcher import fetch_scores\nfrom entities.sprite_text import TextSprite\n\n\nclass ScoreLoop:\n\n def __init__(self):\n\n self.scores = fetch_scores()\n self.sprites = pygame.sprite.Group()\n self.get_score_sprites()\n\n self.space_cooldown = True\n\n def get_score_sprites(self):\n\n rank = 1\n\n for score in self.scores:\n self.sprites.add(\n TextSprite(str(score), 256, 100+50*rank, True)\n )\n rank += 1\n\n def increment(self):\n\n keys = pygame.key.get_pressed()\n\n if keys[pygame.K_SPACE]:\n if self.space_cooldown:\n return None\n return \"startloop\"\n self.space_cooldown = False\n return None\n\n def get_sprites(self):\n \"\"\"retruns sprites for the UI\"\"\"\n return self.sprites\n\n\nif __name__ == \"__main__\":\n\n pass\n", "step-ids": [ 2, 5, 6, 7, 8 ] }
[ 2, 5, 6, 7, 8 ]
<|reserved_special_token_0|> def train(epoch, model, dataloader, criterion, optimizer, scheduler): global global_train_step model.train() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='train', total=len(opensub_dataset) // opt.realbatch): tgt_input = tgt[:, :-1] tgt_gold = tgt[:, 1:] tgt_lens = tgt_lens - 1 decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths =src_lens, tgt_lengths=tgt_lens) decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1) out_seqs = torch.argmax(decoder_output_probs, dim=2) loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION loss.backward() total_loss += loss.item() bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens) distinct_1_score += distinct_1(out_seqs, tgt_lens) distinct_2_score += distinct_2(out_seqs, tgt_lens) global_train_step += 1 writer.log_loss(loss.item() * ACCUMULATION, mode='train') if (i + 1) % ACCUMULATION == 0: optimizer.step() optimizer.zero_grad() scheduler.step() if (i + 1) % opt.logstep == 0: avg_loss = total_loss / opt.logstep * ACCUMULATION avg_bleu = bleu_score / opt.logstep avg_distinct_1 = distinct_1_score / opt.logstep avg_distinct_2 = distinct_2_score / opt.logstep mylogger.log(i, epoch, model, value=avg_loss, is_train=True, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2], vocab_bulider, global_train_step, mode='train') <|reserved_special_token_0|> def run_model(model, train_loader, eval_loader, niter, criterion, optimizer, scheduler): mylogger.log_info('Running Model') for i in range(niter): mylogger.log_info( f"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}" ) train(i, model, train_loader, criterion, optimizer, scheduler) eval(i, model, eval_loader, criterion, beam_size=opt.beam) <|reserved_special_token_0|> def show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth, vocab_bulider, step, mode='train'): for in_id, out_id, out_len, gold_id in zip(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth): in_seq = convert_ids_to_seq(in_id, vocab_bulider) out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else out_id, vocab_bulider) gold_seq = convert_ids_to_seq(gold_id, vocab_bulider) writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[: get_index(in_seq, '<pad>')]), global_step=step) writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq), global_step=step) writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[: get_index(in_seq, '<pad>')]), global_step=step) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def train(epoch, model, dataloader, criterion, optimizer, scheduler): global global_train_step model.train() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='train', total=len(opensub_dataset) // opt.realbatch): tgt_input = tgt[:, :-1] tgt_gold = tgt[:, 1:] tgt_lens = tgt_lens - 1 decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths =src_lens, tgt_lengths=tgt_lens) decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1) out_seqs = torch.argmax(decoder_output_probs, dim=2) loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION loss.backward() total_loss += loss.item() bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens) distinct_1_score += distinct_1(out_seqs, tgt_lens) distinct_2_score += distinct_2(out_seqs, tgt_lens) global_train_step += 1 writer.log_loss(loss.item() * ACCUMULATION, mode='train') if (i + 1) % ACCUMULATION == 0: optimizer.step() optimizer.zero_grad() scheduler.step() if (i + 1) % opt.logstep == 0: avg_loss = total_loss / opt.logstep * ACCUMULATION avg_bleu = bleu_score / opt.logstep avg_distinct_1 = distinct_1_score / opt.logstep avg_distinct_2 = distinct_2_score / opt.logstep mylogger.log(i, epoch, model, value=avg_loss, is_train=True, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2], vocab_bulider, global_train_step, mode='train') def eval(epoch, model, dataloader, criterion, beam_size=2): global global_valid_step model.eval() criterion.eval() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' + str(epoch)), 'w', encoding='utf-8') with torch.no_grad(): for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='eval', total=len(imsdb_dataset)): tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device) tgt_gold = tgt[:, 1:] if beam_size > 1: output_seqs, output_probs = model.beam_search(src=src, tgt_begin=tgt_begin, src_length=src_lens, eos_token_id= vocab_bulider['<eos>'], beam_size=beam_size, max_length =tgt_lens.item()) else: output_seqs, output_probs = model.greedy(src=src, tgt_begin =tgt_begin, src_length=src_lens, eos_token_id= vocab_bulider['<eos>'], max_length=tgt_lens.item()) min_len = min(tgt_gold.shape[1], output_seqs.shape[1]) loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1), tgt_gold[:, :min_len]) total_loss += loss.item() out_lens = [min_len] bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens) distinct_1_score += distinct_1(output_seqs, out_lens) distinct_2_score += distinct_2(output_seqs, out_lens) global_valid_step += 1 fout.write(' '.join(convert_ids_to_seq(output_seqs[0], vocab_bulider)) + '\n') if (i + 1) % opt.logstep == 0: show_gen_seq(src, output_seqs, out_lens, tgt_gold, vocab_bulider, global_valid_step, mode='valid') avg_loss = total_loss / i avg_bleu = bleu_score / i avg_distinct_1 = distinct_1_score / i avg_distinct_2 = distinct_2_score / i writer.log_loss(avg_loss, mode='valid') mylogger.log(i, epoch, model, value=avg_bleu, is_train=False, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) fout.close() def run_model(model, train_loader, eval_loader, niter, criterion, optimizer, scheduler): mylogger.log_info('Running Model') for i in range(niter): mylogger.log_info( f"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}" ) train(i, model, train_loader, criterion, optimizer, scheduler) eval(i, model, eval_loader, criterion, beam_size=opt.beam) <|reserved_special_token_0|> def show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth, vocab_bulider, step, mode='train'): for in_id, out_id, out_len, gold_id in zip(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth): in_seq = convert_ids_to_seq(in_id, vocab_bulider) out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else out_id, vocab_bulider) gold_seq = convert_ids_to_seq(gold_id, vocab_bulider) writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[: get_index(in_seq, '<pad>')]), global_step=step) writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq), global_step=step) writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[: get_index(in_seq, '<pad>')]), global_step=step) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def train(epoch, model, dataloader, criterion, optimizer, scheduler): global global_train_step model.train() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='train', total=len(opensub_dataset) // opt.realbatch): tgt_input = tgt[:, :-1] tgt_gold = tgt[:, 1:] tgt_lens = tgt_lens - 1 decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths =src_lens, tgt_lengths=tgt_lens) decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1) out_seqs = torch.argmax(decoder_output_probs, dim=2) loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION loss.backward() total_loss += loss.item() bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens) distinct_1_score += distinct_1(out_seqs, tgt_lens) distinct_2_score += distinct_2(out_seqs, tgt_lens) global_train_step += 1 writer.log_loss(loss.item() * ACCUMULATION, mode='train') if (i + 1) % ACCUMULATION == 0: optimizer.step() optimizer.zero_grad() scheduler.step() if (i + 1) % opt.logstep == 0: avg_loss = total_loss / opt.logstep * ACCUMULATION avg_bleu = bleu_score / opt.logstep avg_distinct_1 = distinct_1_score / opt.logstep avg_distinct_2 = distinct_2_score / opt.logstep mylogger.log(i, epoch, model, value=avg_loss, is_train=True, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2], vocab_bulider, global_train_step, mode='train') def eval(epoch, model, dataloader, criterion, beam_size=2): global global_valid_step model.eval() criterion.eval() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' + str(epoch)), 'w', encoding='utf-8') with torch.no_grad(): for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='eval', total=len(imsdb_dataset)): tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device) tgt_gold = tgt[:, 1:] if beam_size > 1: output_seqs, output_probs = model.beam_search(src=src, tgt_begin=tgt_begin, src_length=src_lens, eos_token_id= vocab_bulider['<eos>'], beam_size=beam_size, max_length =tgt_lens.item()) else: output_seqs, output_probs = model.greedy(src=src, tgt_begin =tgt_begin, src_length=src_lens, eos_token_id= vocab_bulider['<eos>'], max_length=tgt_lens.item()) min_len = min(tgt_gold.shape[1], output_seqs.shape[1]) loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1), tgt_gold[:, :min_len]) total_loss += loss.item() out_lens = [min_len] bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens) distinct_1_score += distinct_1(output_seqs, out_lens) distinct_2_score += distinct_2(output_seqs, out_lens) global_valid_step += 1 fout.write(' '.join(convert_ids_to_seq(output_seqs[0], vocab_bulider)) + '\n') if (i + 1) % opt.logstep == 0: show_gen_seq(src, output_seqs, out_lens, tgt_gold, vocab_bulider, global_valid_step, mode='valid') avg_loss = total_loss / i avg_bleu = bleu_score / i avg_distinct_1 = distinct_1_score / i avg_distinct_2 = distinct_2_score / i writer.log_loss(avg_loss, mode='valid') mylogger.log(i, epoch, model, value=avg_bleu, is_train=False, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) fout.close() def run_model(model, train_loader, eval_loader, niter, criterion, optimizer, scheduler): mylogger.log_info('Running Model') for i in range(niter): mylogger.log_info( f"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}" ) train(i, model, train_loader, criterion, optimizer, scheduler) eval(i, model, eval_loader, criterion, beam_size=opt.beam) def convert_ids_to_seq(id_seq, vocab_bulider): return [vocab_bulider.id_to_word(idx) for idx in id_seq] def show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth, vocab_bulider, step, mode='train'): for in_id, out_id, out_len, gold_id in zip(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth): in_seq = convert_ids_to_seq(in_id, vocab_bulider) out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else out_id, vocab_bulider) gold_seq = convert_ids_to_seq(gold_id, vocab_bulider) writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[: get_index(in_seq, '<pad>')]), global_step=step) writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq), global_step=step) writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[: get_index(in_seq, '<pad>')]), global_step=step) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def train(epoch, model, dataloader, criterion, optimizer, scheduler): global global_train_step model.train() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='train', total=len(opensub_dataset) // opt.realbatch): tgt_input = tgt[:, :-1] tgt_gold = tgt[:, 1:] tgt_lens = tgt_lens - 1 decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths =src_lens, tgt_lengths=tgt_lens) decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1) out_seqs = torch.argmax(decoder_output_probs, dim=2) loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION loss.backward() total_loss += loss.item() bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens) distinct_1_score += distinct_1(out_seqs, tgt_lens) distinct_2_score += distinct_2(out_seqs, tgt_lens) global_train_step += 1 writer.log_loss(loss.item() * ACCUMULATION, mode='train') if (i + 1) % ACCUMULATION == 0: optimizer.step() optimizer.zero_grad() scheduler.step() if (i + 1) % opt.logstep == 0: avg_loss = total_loss / opt.logstep * ACCUMULATION avg_bleu = bleu_score / opt.logstep avg_distinct_1 = distinct_1_score / opt.logstep avg_distinct_2 = distinct_2_score / opt.logstep mylogger.log(i, epoch, model, value=avg_loss, is_train=True, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2], vocab_bulider, global_train_step, mode='train') def eval(epoch, model, dataloader, criterion, beam_size=2): global global_valid_step model.eval() criterion.eval() total_loss = 0.0 bleu_score = 0.0 distinct_1_score, distinct_2_score = 0.0, 0.0 fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' + str(epoch)), 'w', encoding='utf-8') with torch.no_grad(): for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='eval', total=len(imsdb_dataset)): tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device) tgt_gold = tgt[:, 1:] if beam_size > 1: output_seqs, output_probs = model.beam_search(src=src, tgt_begin=tgt_begin, src_length=src_lens, eos_token_id= vocab_bulider['<eos>'], beam_size=beam_size, max_length =tgt_lens.item()) else: output_seqs, output_probs = model.greedy(src=src, tgt_begin =tgt_begin, src_length=src_lens, eos_token_id= vocab_bulider['<eos>'], max_length=tgt_lens.item()) min_len = min(tgt_gold.shape[1], output_seqs.shape[1]) loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1), tgt_gold[:, :min_len]) total_loss += loss.item() out_lens = [min_len] bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens) distinct_1_score += distinct_1(output_seqs, out_lens) distinct_2_score += distinct_2(output_seqs, out_lens) global_valid_step += 1 fout.write(' '.join(convert_ids_to_seq(output_seqs[0], vocab_bulider)) + '\n') if (i + 1) % opt.logstep == 0: show_gen_seq(src, output_seqs, out_lens, tgt_gold, vocab_bulider, global_valid_step, mode='valid') avg_loss = total_loss / i avg_bleu = bleu_score / i avg_distinct_1 = distinct_1_score / i avg_distinct_2 = distinct_2_score / i writer.log_loss(avg_loss, mode='valid') mylogger.log(i, epoch, model, value=avg_bleu, is_train=False, info= f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}' ) fout.close() def run_model(model, train_loader, eval_loader, niter, criterion, optimizer, scheduler): mylogger.log_info('Running Model') for i in range(niter): mylogger.log_info( f"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}" ) train(i, model, train_loader, criterion, optimizer, scheduler) eval(i, model, eval_loader, criterion, beam_size=opt.beam) def convert_ids_to_seq(id_seq, vocab_bulider): return [vocab_bulider.id_to_word(idx) for idx in id_seq] def show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth, vocab_bulider, step, mode='train'): for in_id, out_id, out_len, gold_id in zip(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth): in_seq = convert_ids_to_seq(in_id, vocab_bulider) out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else out_id, vocab_bulider) gold_seq = convert_ids_to_seq(gold_id, vocab_bulider) writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[: get_index(in_seq, '<pad>')]), global_step=step) writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq), global_step=step) writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[: get_index(in_seq, '<pad>')]), global_step=step) if __name__ == '__main__': begin_time = time.strftime('%H%M%S', time.localtime()) model_name = 'transformer' + begin_time opt = parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' torch.cuda.set_device(opt.gpuid) init_seed(opt.manualSeed) ACCUMULATION = opt.batchsize // opt.realbatch mylogger = LogManager(checkpoint_step=10, save_dir='./save', model_name =model_name, log_file_name=model_name + '.log', mode='max', device= device) mylogger.save_args(opt) writer = SummaryHelper(save_dir='./save', model_name=model_name) train_data_dir = './data/opensubtitles' vocab_file_list = ['dialogue_length3_6.post'] vocab_bulider = VocabBulider(train_data_dir, src_files=vocab_file_list, ignore_unk_error=True, vocab_file='vocab.txt', min_count=opt. mincount, update=opt.update) print('most common 50:', vocab_bulider.most_common(50)) mylogger.log_info('vocab size: %d' % len(vocab_bulider)) bleu_metirc = BLEUMetric(vocab_bulider.id2vocab, ignore_smoothing_error =True) distinct_1 = DistinctNGram(ngram=1) distinct_2 = DistinctNGram(ngram=2) if opt.cotk: opensub_file_name_list = ['opensub_pair_dev', 'opensub_pair_test', 'opensub_pair_train'] unk_token = None else: opensub_file_name_list = ['dialogue_length3_6'] unk_token = 'UNknown' opensub_dataset = OpenSubDataset(data_dir=train_data_dir, vocab_bulider =vocab_bulider, file_name_list=opensub_file_name_list, unk_token= 'UNknown', save_process=False, samples=opt.trainsamples, add_bos= True, add_eos=True) print(opensub_dataset.sample()) opensub_dataloader = DataLoader(opensub_dataset, batch_size=opt. realbatch, collate_fn=PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device), shuffle=True, num_workers=opt.workers, drop_last=True) dev_data_dir = './data/imsdb' imsdb_file_name_list = ['imsdb_lower'] imsdb_dataset = IMSDBDataset(data_dir=dev_data_dir, vocab_bulider= vocab_bulider, file_name_list=imsdb_file_name_list, save_process= False, samples=opt.validsamples, add_bos=True, add_eos=True) print(imsdb_dataset.sample()) imsdb_dataloader = DataLoader(imsdb_dataset, batch_size=1, collate_fn= PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device), shuffle=False, num_workers=opt.workers, drop_last=True) if opt.mine: model = Transformer(ntoken=len(vocab_bulider), d_model=opt. embedsize, nhead=opt.nhead, num_encoder_layers=opt.encoderlayer, num_decoder_layers=opt.decoderlayer, dim_feedforward=opt. feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt. gumbels, use_src_mask=False, use_tgt_mask=True, use_memory_mask =False, activation='relu', use_vocab_attn=False, use_pos_attn= False, relative_clip=0, highway=False, device=device, max_sent_length=32, share_input_output_embedding=False, share_encoder_decoder_embedding=True, share_vocab_embedding= True, fix_pos_encoding=opt.fix).to(device) else: model = TransformerTorch(ntoken=len(vocab_bulider), d_model=opt. embedsize, nhead=opt.nhead, num_encoder_layers=opt.encoderlayer, num_decoder_layers=opt.decoderlayer, dim_feedforward=opt. feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt. gumbels, use_src_mask=False, use_tgt_mask=False, use_memory_mask=False, activation='relu', use_vocab_attn=False, use_pos_attn=False, relative_clip=0, highway=False, device= device, max_sent_length=32, share_input_output_embedding=False, share_encoder_decoder_embedding=True, share_vocab_embedding= True, fix_pos_encoding=opt.fix).to(device) model.show_graph() if opt.half: model = model.half() if opt.ft: model = restore_best_state(model, opt.ckpt, save_dir='./save', device=model.device) if opt.warmup: optimizer = RAdam(filter(lambda p: p.requires_grad, model. parameters()), lr=1.0, betas=(opt.beta1, opt.beta2), eps=opt.eps) rate_ratio = 1.0 / math.sqrt(opt.embedsize) scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: rate_ratio * min(1.0 / math.sqrt(step + 1), step * opt. warmup_step ** -1.5)) else: optimizer = RAdam(filter(lambda p: p.requires_grad, model. parameters()), lr=opt.lr, betas=(opt.beta1, opt.beta2), eps=opt .eps, weight_decay=opt.weight_decay) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=opt. schedulerstep, gamma=opt.gamma) criterion = LabelSmoothedCrossEntropyLoss(eps=0.1, ignore_index= vocab_bulider.padid) global_train_step, global_valid_step = 0, 0 run_model(model, opensub_dataloader, imsdb_dataloader, opt.niter, criterion, optimizer, scheduler) writer.close() <|reserved_special_token_1|> import os import math import time from tqdm import tqdm import torch from torch import nn import torch.optim as optim from torch.nn import functional as F from torch.nn.utils import clip_grad_norm_ from torch.utils.data import DataLoader from nag.modules import Transformer, TransformerTorch from nag.logger import LogManager, SummaryHelper from nag.metric import BLEUMetric, DistinctNGram from nag.vocab_helper import VocabBulider from nag.utils import PadCollate, get_index, restore_best_state, init_seed from nag.dataset import OpenSubDataset, IMSDBDataset from nag.optimizer import RAdam from nag.options import parse_args from nag.criterion import similarity_regularization, LabelSmoothedCrossEntropyLoss def train(epoch, model, dataloader, criterion, optimizer, scheduler): global global_train_step model.train() total_loss = 0. bleu_score = 0. distinct_1_score, distinct_2_score = 0., 0. for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='train', total=len(opensub_dataset)//opt.realbatch): tgt_input = tgt[:, :-1] tgt_gold = tgt[:, 1:] tgt_lens = tgt_lens - 1 decoder_output_probs, _ = model( src=src, tgt=tgt_input, src_lengths=src_lens, tgt_lengths=tgt_lens) decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1) out_seqs = torch.argmax(decoder_output_probs, dim=2) # loss loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION loss.backward() total_loss += loss.item() # calculate metrics bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens) distinct_1_score += distinct_1(out_seqs, tgt_lens) distinct_2_score += distinct_2(out_seqs, tgt_lens) # summary writer global_train_step += 1 writer.log_loss(loss.item()*ACCUMULATION, mode='train') if (i+1) % ACCUMULATION == 0: # clip_grad_norm_(model.parameters(), max_norm=5) optimizer.step() optimizer.zero_grad() scheduler.step() if (i+1) % opt.logstep == 0: avg_loss = (total_loss / opt.logstep) * ACCUMULATION avg_bleu = bleu_score / opt.logstep avg_distinct_1 = distinct_1_score / opt.logstep avg_distinct_2 = distinct_2_score / opt.logstep mylogger.log( i, epoch, model, value=avg_loss, is_train=True, info=f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}') total_loss = 0. bleu_score = 0. distinct_1_score, distinct_2_score = 0., 0. show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2], vocab_bulider, global_train_step, mode='train') def eval(epoch, model, dataloader, criterion, beam_size=2): global global_valid_step model.eval() criterion.eval() total_loss = 0. bleu_score = 0. distinct_1_score, distinct_2_score = 0., 0. fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' + str(epoch)), 'w', encoding='utf-8') with torch.no_grad(): for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='eval', total=len(imsdb_dataset)): tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device) tgt_gold = tgt[:, 1:] if beam_size > 1: output_seqs, output_probs = model.beam_search( src=src, tgt_begin=tgt_begin, src_length=src_lens, eos_token_id=vocab_bulider['<eos>'], beam_size=beam_size, max_length=tgt_lens.item()) else: output_seqs, output_probs = model.greedy( src=src, tgt_begin=tgt_begin, src_length=src_lens, eos_token_id=vocab_bulider['<eos>'], max_length=tgt_lens.item()) min_len = min(tgt_gold.shape[1], output_seqs.shape[1]) # loss loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1), tgt_gold[:, :min_len]) total_loss += loss.item() # calculate metrics out_lens = [min_len] bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens) distinct_1_score += distinct_1(output_seqs, out_lens) distinct_2_score += distinct_2(output_seqs, out_lens) # show sequence global_valid_step += 1 fout.write(' '.join(convert_ids_to_seq(output_seqs[0], vocab_bulider)) + '\n') if (i+1) % opt.logstep == 0: show_gen_seq(src, output_seqs, out_lens, tgt_gold, vocab_bulider, global_valid_step, mode='valid') # summary avg_loss = total_loss / i avg_bleu = bleu_score / i avg_distinct_1 = distinct_1_score / i avg_distinct_2 = distinct_2_score / i writer.log_loss(avg_loss, mode='valid') mylogger.log( i, epoch, model, value=avg_bleu, is_train=False, info=f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}') fout.close() def run_model(model, train_loader, eval_loader, niter, criterion, optimizer, scheduler): mylogger.log_info('Running Model') for i in range(niter): mylogger.log_info(f'EPOCH: {i}, lr: {optimizer.state_dict()["param_groups"][0]["lr"]}') train(i, model, train_loader, criterion, optimizer, scheduler) eval(i, model, eval_loader, criterion, beam_size=opt.beam) def convert_ids_to_seq(id_seq, vocab_bulider): return [vocab_bulider.id_to_word(idx) for idx in id_seq] def show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth, vocab_bulider, step, mode='train'): for in_id, out_id, out_len, gold_id in zip(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth): in_seq = convert_ids_to_seq(in_id, vocab_bulider) out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else out_id, vocab_bulider) gold_seq = convert_ids_to_seq(gold_id, vocab_bulider) writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[:get_index(in_seq, '<pad>')]), global_step=step) writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq), global_step=step) writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[:get_index(in_seq, '<pad>')]), global_step=step) if __name__ == '__main__': begin_time = time.strftime("%H%M%S", time.localtime()) model_name = 'transformer' + begin_time opt = parse_args() device = "cuda" if torch.cuda.is_available() else "cpu" torch.cuda.set_device(opt.gpuid) init_seed(opt.manualSeed) ACCUMULATION = opt.batchsize // opt.realbatch mylogger = LogManager(checkpoint_step=10, save_dir='./save', model_name=model_name, log_file_name=model_name + '.log', mode='max', device=device) mylogger.save_args(opt) writer = SummaryHelper(save_dir='./save', model_name=model_name) train_data_dir = './data/opensubtitles' # train_data_dir = './data/wmt15en-de' vocab_file_list = ['dialogue_length3_6.post'] # vocab_file_list = ['all_de-en.bpe.post', 'all_de-en.bpe.response'] vocab_bulider = VocabBulider( train_data_dir, src_files=vocab_file_list, ignore_unk_error=True, vocab_file='vocab.txt', min_count=opt.mincount, update=opt.update) print('most common 50:', vocab_bulider.most_common(50)) mylogger.log_info('vocab size: %d' % len(vocab_bulider)) # metircs bleu_metirc = BLEUMetric(vocab_bulider.id2vocab, ignore_smoothing_error=True) distinct_1 = DistinctNGram(ngram=1) distinct_2 = DistinctNGram(ngram=2) # train dataset and dataloader if opt.cotk: # use dataset in paper 'cotk' # opensub_file_name_list = ['all_de-en.bpe'] opensub_file_name_list = ['opensub_pair_dev', 'opensub_pair_test', 'opensub_pair_train'] unk_token = None else: # use dataset in paper 'Non-Autoregressive Neural Dialogue Generation' opensub_file_name_list = ['dialogue_length3_6'] unk_token = 'UNknown' opensub_dataset = OpenSubDataset( data_dir=train_data_dir, vocab_bulider=vocab_bulider, file_name_list=opensub_file_name_list, unk_token='UNknown', save_process=False, samples=opt.trainsamples, add_bos=True, add_eos=True) print(opensub_dataset.sample()) opensub_dataloader = DataLoader( opensub_dataset, batch_size=opt.realbatch, collate_fn=PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device), shuffle=True, num_workers=opt.workers, drop_last=True) # dev set dev_data_dir = './data/imsdb' imsdb_file_name_list = ['imsdb_lower'] # dev_data_dir = './data/wmt15en-de' # imsdb_file_name_list = ['newstest'] imsdb_dataset = IMSDBDataset( data_dir=dev_data_dir, vocab_bulider=vocab_bulider, file_name_list=imsdb_file_name_list, save_process=False, samples=opt.validsamples, add_bos=True, add_eos=True) print(imsdb_dataset.sample()) imsdb_dataloader = DataLoader( imsdb_dataset, batch_size=1, collate_fn=PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device), shuffle=False, num_workers=opt.workers, drop_last=True) # model definition if opt.mine: model = Transformer( ntoken=len(vocab_bulider), d_model=opt.embedsize, nhead=opt.nhead, num_encoder_layers=opt.encoderlayer, num_decoder_layers=opt.decoderlayer, dim_feedforward=opt.feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt.gumbels, use_src_mask=False, use_tgt_mask=True, use_memory_mask=False, activation='relu', use_vocab_attn=False, use_pos_attn=False, relative_clip=0, highway=False, device=device, max_sent_length=32, share_input_output_embedding=False, share_encoder_decoder_embedding=True, share_vocab_embedding=True, fix_pos_encoding=opt.fix).to(device) else: model = TransformerTorch( ntoken=len(vocab_bulider), d_model=opt.embedsize, nhead=opt.nhead, num_encoder_layers=opt.encoderlayer, num_decoder_layers=opt.decoderlayer, dim_feedforward=opt.feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt.gumbels, use_src_mask=False, use_tgt_mask=False, use_memory_mask=False, activation='relu', use_vocab_attn=False, use_pos_attn=False, relative_clip=0, highway=False, device=device, max_sent_length=32, share_input_output_embedding=False, share_encoder_decoder_embedding=True, share_vocab_embedding=True, fix_pos_encoding=opt.fix).to(device) model.show_graph() if opt.half: model = model.half() if opt.ft: model = restore_best_state(model, opt.ckpt, save_dir='./save', device=model.device) # optimizer and scheduler if opt.warmup: optimizer = RAdam( filter(lambda p: p.requires_grad, model.parameters()), lr=1., betas=(opt.beta1, opt.beta2), eps=opt.eps) rate_ratio = 1. / math.sqrt(opt.embedsize) # top_lr = 1 / sqrt(d_model * warmup_step) at step == warmup_step scheduler = optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=lambda step: rate_ratio * min(1. / math.sqrt(step+1), step*(opt.warmup_step**(-1.5)))) else: optimizer = RAdam( filter(lambda p: p.requires_grad, model.parameters()), lr=opt.lr, betas=(opt.beta1, opt.beta2), eps=opt.eps, weight_decay=opt.weight_decay) scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=opt.schedulerstep, gamma=opt.gamma) # loss function # criterion = nn.CrossEntropyLoss(ignore_index=vocab_bulider.padid) # for Transformer criterion = LabelSmoothedCrossEntropyLoss(eps=0.1, ignore_index=vocab_bulider.padid) # run model global_train_step, global_valid_step = 0, 0 run_model( model, opensub_dataloader, imsdb_dataloader, opt.niter, criterion, optimizer, scheduler) writer.close()
flexible
{ "blob_id": "bc6c3383684cbba775d17f81ead3346fe1a01f90", "index": 5102, "step-1": "<mask token>\n\n\ndef train(epoch, model, dataloader, criterion, optimizer, scheduler):\n global global_train_step\n model.train()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0),\n desc='train', total=len(opensub_dataset) // opt.realbatch):\n tgt_input = tgt[:, :-1]\n tgt_gold = tgt[:, 1:]\n tgt_lens = tgt_lens - 1\n decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths\n =src_lens, tgt_lengths=tgt_lens)\n decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1)\n out_seqs = torch.argmax(decoder_output_probs, dim=2)\n loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION\n loss.backward()\n total_loss += loss.item()\n bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens)\n distinct_1_score += distinct_1(out_seqs, tgt_lens)\n distinct_2_score += distinct_2(out_seqs, tgt_lens)\n global_train_step += 1\n writer.log_loss(loss.item() * ACCUMULATION, mode='train')\n if (i + 1) % ACCUMULATION == 0:\n optimizer.step()\n optimizer.zero_grad()\n scheduler.step()\n if (i + 1) % opt.logstep == 0:\n avg_loss = total_loss / opt.logstep * ACCUMULATION\n avg_bleu = bleu_score / opt.logstep\n avg_distinct_1 = distinct_1_score / opt.logstep\n avg_distinct_2 = distinct_2_score / opt.logstep\n mylogger.log(i, epoch, model, value=avg_loss, is_train=True,\n info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2],\n vocab_bulider, global_train_step, mode='train')\n\n\n<mask token>\n\n\ndef run_model(model, train_loader, eval_loader, niter, criterion, optimizer,\n scheduler):\n mylogger.log_info('Running Model')\n for i in range(niter):\n mylogger.log_info(\n f\"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}\"\n )\n train(i, model, train_loader, criterion, optimizer, scheduler)\n eval(i, model, eval_loader, criterion, beam_size=opt.beam)\n\n\n<mask token>\n\n\ndef show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth,\n vocab_bulider, step, mode='train'):\n for in_id, out_id, out_len, gold_id in zip(batch_in_seqs,\n batch_out_seqs, batch_out_lens, groud_truth):\n in_seq = convert_ids_to_seq(in_id, vocab_bulider)\n out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else\n out_id, vocab_bulider)\n gold_seq = convert_ids_to_seq(gold_id, vocab_bulider)\n writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq),\n global_step=step)\n writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef train(epoch, model, dataloader, criterion, optimizer, scheduler):\n global global_train_step\n model.train()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0),\n desc='train', total=len(opensub_dataset) // opt.realbatch):\n tgt_input = tgt[:, :-1]\n tgt_gold = tgt[:, 1:]\n tgt_lens = tgt_lens - 1\n decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths\n =src_lens, tgt_lengths=tgt_lens)\n decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1)\n out_seqs = torch.argmax(decoder_output_probs, dim=2)\n loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION\n loss.backward()\n total_loss += loss.item()\n bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens)\n distinct_1_score += distinct_1(out_seqs, tgt_lens)\n distinct_2_score += distinct_2(out_seqs, tgt_lens)\n global_train_step += 1\n writer.log_loss(loss.item() * ACCUMULATION, mode='train')\n if (i + 1) % ACCUMULATION == 0:\n optimizer.step()\n optimizer.zero_grad()\n scheduler.step()\n if (i + 1) % opt.logstep == 0:\n avg_loss = total_loss / opt.logstep * ACCUMULATION\n avg_bleu = bleu_score / opt.logstep\n avg_distinct_1 = distinct_1_score / opt.logstep\n avg_distinct_2 = distinct_2_score / opt.logstep\n mylogger.log(i, epoch, model, value=avg_loss, is_train=True,\n info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2],\n vocab_bulider, global_train_step, mode='train')\n\n\ndef eval(epoch, model, dataloader, criterion, beam_size=2):\n global global_valid_step\n model.eval()\n criterion.eval()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' +\n str(epoch)), 'w', encoding='utf-8')\n with torch.no_grad():\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader,\n 0), desc='eval', total=len(imsdb_dataset)):\n tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device)\n tgt_gold = tgt[:, 1:]\n if beam_size > 1:\n output_seqs, output_probs = model.beam_search(src=src,\n tgt_begin=tgt_begin, src_length=src_lens, eos_token_id=\n vocab_bulider['<eos>'], beam_size=beam_size, max_length\n =tgt_lens.item())\n else:\n output_seqs, output_probs = model.greedy(src=src, tgt_begin\n =tgt_begin, src_length=src_lens, eos_token_id=\n vocab_bulider['<eos>'], max_length=tgt_lens.item())\n min_len = min(tgt_gold.shape[1], output_seqs.shape[1])\n loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1),\n tgt_gold[:, :min_len])\n total_loss += loss.item()\n out_lens = [min_len]\n bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens)\n distinct_1_score += distinct_1(output_seqs, out_lens)\n distinct_2_score += distinct_2(output_seqs, out_lens)\n global_valid_step += 1\n fout.write(' '.join(convert_ids_to_seq(output_seqs[0],\n vocab_bulider)) + '\\n')\n if (i + 1) % opt.logstep == 0:\n show_gen_seq(src, output_seqs, out_lens, tgt_gold,\n vocab_bulider, global_valid_step, mode='valid')\n avg_loss = total_loss / i\n avg_bleu = bleu_score / i\n avg_distinct_1 = distinct_1_score / i\n avg_distinct_2 = distinct_2_score / i\n writer.log_loss(avg_loss, mode='valid')\n mylogger.log(i, epoch, model, value=avg_bleu, is_train=False, info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n fout.close()\n\n\ndef run_model(model, train_loader, eval_loader, niter, criterion, optimizer,\n scheduler):\n mylogger.log_info('Running Model')\n for i in range(niter):\n mylogger.log_info(\n f\"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}\"\n )\n train(i, model, train_loader, criterion, optimizer, scheduler)\n eval(i, model, eval_loader, criterion, beam_size=opt.beam)\n\n\n<mask token>\n\n\ndef show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth,\n vocab_bulider, step, mode='train'):\n for in_id, out_id, out_len, gold_id in zip(batch_in_seqs,\n batch_out_seqs, batch_out_lens, groud_truth):\n in_seq = convert_ids_to_seq(in_id, vocab_bulider)\n out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else\n out_id, vocab_bulider)\n gold_seq = convert_ids_to_seq(gold_id, vocab_bulider)\n writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq),\n global_step=step)\n writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef train(epoch, model, dataloader, criterion, optimizer, scheduler):\n global global_train_step\n model.train()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0),\n desc='train', total=len(opensub_dataset) // opt.realbatch):\n tgt_input = tgt[:, :-1]\n tgt_gold = tgt[:, 1:]\n tgt_lens = tgt_lens - 1\n decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths\n =src_lens, tgt_lengths=tgt_lens)\n decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1)\n out_seqs = torch.argmax(decoder_output_probs, dim=2)\n loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION\n loss.backward()\n total_loss += loss.item()\n bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens)\n distinct_1_score += distinct_1(out_seqs, tgt_lens)\n distinct_2_score += distinct_2(out_seqs, tgt_lens)\n global_train_step += 1\n writer.log_loss(loss.item() * ACCUMULATION, mode='train')\n if (i + 1) % ACCUMULATION == 0:\n optimizer.step()\n optimizer.zero_grad()\n scheduler.step()\n if (i + 1) % opt.logstep == 0:\n avg_loss = total_loss / opt.logstep * ACCUMULATION\n avg_bleu = bleu_score / opt.logstep\n avg_distinct_1 = distinct_1_score / opt.logstep\n avg_distinct_2 = distinct_2_score / opt.logstep\n mylogger.log(i, epoch, model, value=avg_loss, is_train=True,\n info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2],\n vocab_bulider, global_train_step, mode='train')\n\n\ndef eval(epoch, model, dataloader, criterion, beam_size=2):\n global global_valid_step\n model.eval()\n criterion.eval()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' +\n str(epoch)), 'w', encoding='utf-8')\n with torch.no_grad():\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader,\n 0), desc='eval', total=len(imsdb_dataset)):\n tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device)\n tgt_gold = tgt[:, 1:]\n if beam_size > 1:\n output_seqs, output_probs = model.beam_search(src=src,\n tgt_begin=tgt_begin, src_length=src_lens, eos_token_id=\n vocab_bulider['<eos>'], beam_size=beam_size, max_length\n =tgt_lens.item())\n else:\n output_seqs, output_probs = model.greedy(src=src, tgt_begin\n =tgt_begin, src_length=src_lens, eos_token_id=\n vocab_bulider['<eos>'], max_length=tgt_lens.item())\n min_len = min(tgt_gold.shape[1], output_seqs.shape[1])\n loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1),\n tgt_gold[:, :min_len])\n total_loss += loss.item()\n out_lens = [min_len]\n bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens)\n distinct_1_score += distinct_1(output_seqs, out_lens)\n distinct_2_score += distinct_2(output_seqs, out_lens)\n global_valid_step += 1\n fout.write(' '.join(convert_ids_to_seq(output_seqs[0],\n vocab_bulider)) + '\\n')\n if (i + 1) % opt.logstep == 0:\n show_gen_seq(src, output_seqs, out_lens, tgt_gold,\n vocab_bulider, global_valid_step, mode='valid')\n avg_loss = total_loss / i\n avg_bleu = bleu_score / i\n avg_distinct_1 = distinct_1_score / i\n avg_distinct_2 = distinct_2_score / i\n writer.log_loss(avg_loss, mode='valid')\n mylogger.log(i, epoch, model, value=avg_bleu, is_train=False, info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n fout.close()\n\n\ndef run_model(model, train_loader, eval_loader, niter, criterion, optimizer,\n scheduler):\n mylogger.log_info('Running Model')\n for i in range(niter):\n mylogger.log_info(\n f\"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}\"\n )\n train(i, model, train_loader, criterion, optimizer, scheduler)\n eval(i, model, eval_loader, criterion, beam_size=opt.beam)\n\n\ndef convert_ids_to_seq(id_seq, vocab_bulider):\n return [vocab_bulider.id_to_word(idx) for idx in id_seq]\n\n\ndef show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth,\n vocab_bulider, step, mode='train'):\n for in_id, out_id, out_len, gold_id in zip(batch_in_seqs,\n batch_out_seqs, batch_out_lens, groud_truth):\n in_seq = convert_ids_to_seq(in_id, vocab_bulider)\n out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else\n out_id, vocab_bulider)\n gold_seq = convert_ids_to_seq(gold_id, vocab_bulider)\n writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq),\n global_step=step)\n writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef train(epoch, model, dataloader, criterion, optimizer, scheduler):\n global global_train_step\n model.train()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0),\n desc='train', total=len(opensub_dataset) // opt.realbatch):\n tgt_input = tgt[:, :-1]\n tgt_gold = tgt[:, 1:]\n tgt_lens = tgt_lens - 1\n decoder_output_probs, _ = model(src=src, tgt=tgt_input, src_lengths\n =src_lens, tgt_lengths=tgt_lens)\n decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1)\n out_seqs = torch.argmax(decoder_output_probs, dim=2)\n loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION\n loss.backward()\n total_loss += loss.item()\n bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens)\n distinct_1_score += distinct_1(out_seqs, tgt_lens)\n distinct_2_score += distinct_2(out_seqs, tgt_lens)\n global_train_step += 1\n writer.log_loss(loss.item() * ACCUMULATION, mode='train')\n if (i + 1) % ACCUMULATION == 0:\n optimizer.step()\n optimizer.zero_grad()\n scheduler.step()\n if (i + 1) % opt.logstep == 0:\n avg_loss = total_loss / opt.logstep * ACCUMULATION\n avg_bleu = bleu_score / opt.logstep\n avg_distinct_1 = distinct_1_score / opt.logstep\n avg_distinct_2 = distinct_2_score / opt.logstep\n mylogger.log(i, epoch, model, value=avg_loss, is_train=True,\n info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2],\n vocab_bulider, global_train_step, mode='train')\n\n\ndef eval(epoch, model, dataloader, criterion, beam_size=2):\n global global_valid_step\n model.eval()\n criterion.eval()\n total_loss = 0.0\n bleu_score = 0.0\n distinct_1_score, distinct_2_score = 0.0, 0.0\n fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' +\n str(epoch)), 'w', encoding='utf-8')\n with torch.no_grad():\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader,\n 0), desc='eval', total=len(imsdb_dataset)):\n tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device)\n tgt_gold = tgt[:, 1:]\n if beam_size > 1:\n output_seqs, output_probs = model.beam_search(src=src,\n tgt_begin=tgt_begin, src_length=src_lens, eos_token_id=\n vocab_bulider['<eos>'], beam_size=beam_size, max_length\n =tgt_lens.item())\n else:\n output_seqs, output_probs = model.greedy(src=src, tgt_begin\n =tgt_begin, src_length=src_lens, eos_token_id=\n vocab_bulider['<eos>'], max_length=tgt_lens.item())\n min_len = min(tgt_gold.shape[1], output_seqs.shape[1])\n loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1),\n tgt_gold[:, :min_len])\n total_loss += loss.item()\n out_lens = [min_len]\n bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens)\n distinct_1_score += distinct_1(output_seqs, out_lens)\n distinct_2_score += distinct_2(output_seqs, out_lens)\n global_valid_step += 1\n fout.write(' '.join(convert_ids_to_seq(output_seqs[0],\n vocab_bulider)) + '\\n')\n if (i + 1) % opt.logstep == 0:\n show_gen_seq(src, output_seqs, out_lens, tgt_gold,\n vocab_bulider, global_valid_step, mode='valid')\n avg_loss = total_loss / i\n avg_bleu = bleu_score / i\n avg_distinct_1 = distinct_1_score / i\n avg_distinct_2 = distinct_2_score / i\n writer.log_loss(avg_loss, mode='valid')\n mylogger.log(i, epoch, model, value=avg_bleu, is_train=False, info=\n f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}'\n )\n fout.close()\n\n\ndef run_model(model, train_loader, eval_loader, niter, criterion, optimizer,\n scheduler):\n mylogger.log_info('Running Model')\n for i in range(niter):\n mylogger.log_info(\n f\"EPOCH: {i}, lr: {optimizer.state_dict()['param_groups'][0]['lr']}\"\n )\n train(i, model, train_loader, criterion, optimizer, scheduler)\n eval(i, model, eval_loader, criterion, beam_size=opt.beam)\n\n\ndef convert_ids_to_seq(id_seq, vocab_bulider):\n return [vocab_bulider.id_to_word(idx) for idx in id_seq]\n\n\ndef show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth,\n vocab_bulider, step, mode='train'):\n for in_id, out_id, out_len, gold_id in zip(batch_in_seqs,\n batch_out_seqs, batch_out_lens, groud_truth):\n in_seq = convert_ids_to_seq(in_id, vocab_bulider)\n out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else\n out_id, vocab_bulider)\n gold_seq = convert_ids_to_seq(gold_id, vocab_bulider)\n writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq),\n global_step=step)\n writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[:\n get_index(in_seq, '<pad>')]), global_step=step)\n\n\nif __name__ == '__main__':\n begin_time = time.strftime('%H%M%S', time.localtime())\n model_name = 'transformer' + begin_time\n opt = parse_args()\n device = 'cuda' if torch.cuda.is_available() else 'cpu'\n torch.cuda.set_device(opt.gpuid)\n init_seed(opt.manualSeed)\n ACCUMULATION = opt.batchsize // opt.realbatch\n mylogger = LogManager(checkpoint_step=10, save_dir='./save', model_name\n =model_name, log_file_name=model_name + '.log', mode='max', device=\n device)\n mylogger.save_args(opt)\n writer = SummaryHelper(save_dir='./save', model_name=model_name)\n train_data_dir = './data/opensubtitles'\n vocab_file_list = ['dialogue_length3_6.post']\n vocab_bulider = VocabBulider(train_data_dir, src_files=vocab_file_list,\n ignore_unk_error=True, vocab_file='vocab.txt', min_count=opt.\n mincount, update=opt.update)\n print('most common 50:', vocab_bulider.most_common(50))\n mylogger.log_info('vocab size: %d' % len(vocab_bulider))\n bleu_metirc = BLEUMetric(vocab_bulider.id2vocab, ignore_smoothing_error\n =True)\n distinct_1 = DistinctNGram(ngram=1)\n distinct_2 = DistinctNGram(ngram=2)\n if opt.cotk:\n opensub_file_name_list = ['opensub_pair_dev', 'opensub_pair_test',\n 'opensub_pair_train']\n unk_token = None\n else:\n opensub_file_name_list = ['dialogue_length3_6']\n unk_token = 'UNknown'\n opensub_dataset = OpenSubDataset(data_dir=train_data_dir, vocab_bulider\n =vocab_bulider, file_name_list=opensub_file_name_list, unk_token=\n 'UNknown', save_process=False, samples=opt.trainsamples, add_bos=\n True, add_eos=True)\n print(opensub_dataset.sample())\n opensub_dataloader = DataLoader(opensub_dataset, batch_size=opt.\n realbatch, collate_fn=PadCollate(dim=0, pad_id=vocab_bulider.padid,\n device=device), shuffle=True, num_workers=opt.workers, drop_last=True)\n dev_data_dir = './data/imsdb'\n imsdb_file_name_list = ['imsdb_lower']\n imsdb_dataset = IMSDBDataset(data_dir=dev_data_dir, vocab_bulider=\n vocab_bulider, file_name_list=imsdb_file_name_list, save_process=\n False, samples=opt.validsamples, add_bos=True, add_eos=True)\n print(imsdb_dataset.sample())\n imsdb_dataloader = DataLoader(imsdb_dataset, batch_size=1, collate_fn=\n PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device),\n shuffle=False, num_workers=opt.workers, drop_last=True)\n if opt.mine:\n model = Transformer(ntoken=len(vocab_bulider), d_model=opt.\n embedsize, nhead=opt.nhead, num_encoder_layers=opt.encoderlayer,\n num_decoder_layers=opt.decoderlayer, dim_feedforward=opt.\n feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt.\n gumbels, use_src_mask=False, use_tgt_mask=True, use_memory_mask\n =False, activation='relu', use_vocab_attn=False, use_pos_attn=\n False, relative_clip=0, highway=False, device=device,\n max_sent_length=32, share_input_output_embedding=False,\n share_encoder_decoder_embedding=True, share_vocab_embedding=\n True, fix_pos_encoding=opt.fix).to(device)\n else:\n model = TransformerTorch(ntoken=len(vocab_bulider), d_model=opt.\n embedsize, nhead=opt.nhead, num_encoder_layers=opt.encoderlayer,\n num_decoder_layers=opt.decoderlayer, dim_feedforward=opt.\n feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt.\n gumbels, use_src_mask=False, use_tgt_mask=False,\n use_memory_mask=False, activation='relu', use_vocab_attn=False,\n use_pos_attn=False, relative_clip=0, highway=False, device=\n device, max_sent_length=32, share_input_output_embedding=False,\n share_encoder_decoder_embedding=True, share_vocab_embedding=\n True, fix_pos_encoding=opt.fix).to(device)\n model.show_graph()\n if opt.half:\n model = model.half()\n if opt.ft:\n model = restore_best_state(model, opt.ckpt, save_dir='./save',\n device=model.device)\n if opt.warmup:\n optimizer = RAdam(filter(lambda p: p.requires_grad, model.\n parameters()), lr=1.0, betas=(opt.beta1, opt.beta2), eps=opt.eps)\n rate_ratio = 1.0 / math.sqrt(opt.embedsize)\n scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda\n step: rate_ratio * min(1.0 / math.sqrt(step + 1), step * opt.\n warmup_step ** -1.5))\n else:\n optimizer = RAdam(filter(lambda p: p.requires_grad, model.\n parameters()), lr=opt.lr, betas=(opt.beta1, opt.beta2), eps=opt\n .eps, weight_decay=opt.weight_decay)\n scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=opt.\n schedulerstep, gamma=opt.gamma)\n criterion = LabelSmoothedCrossEntropyLoss(eps=0.1, ignore_index=\n vocab_bulider.padid)\n global_train_step, global_valid_step = 0, 0\n run_model(model, opensub_dataloader, imsdb_dataloader, opt.niter,\n criterion, optimizer, scheduler)\n writer.close()\n", "step-5": "import os\r\nimport math\r\nimport time\r\nfrom tqdm import tqdm\r\nimport torch\r\nfrom torch import nn\r\nimport torch.optim as optim\r\nfrom torch.nn import functional as F\r\nfrom torch.nn.utils import clip_grad_norm_\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom nag.modules import Transformer, TransformerTorch\r\nfrom nag.logger import LogManager, SummaryHelper\r\nfrom nag.metric import BLEUMetric, DistinctNGram\r\nfrom nag.vocab_helper import VocabBulider\r\nfrom nag.utils import PadCollate, get_index, restore_best_state, init_seed\r\nfrom nag.dataset import OpenSubDataset, IMSDBDataset\r\nfrom nag.optimizer import RAdam\r\nfrom nag.options import parse_args\r\nfrom nag.criterion import similarity_regularization, LabelSmoothedCrossEntropyLoss\r\n\r\n\r\ndef train(epoch, model, dataloader, criterion, optimizer, scheduler):\r\n global global_train_step\r\n model.train()\r\n total_loss = 0.\r\n bleu_score = 0.\r\n distinct_1_score, distinct_2_score = 0., 0.\r\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='train', total=len(opensub_dataset)//opt.realbatch):\r\n tgt_input = tgt[:, :-1]\r\n tgt_gold = tgt[:, 1:]\r\n tgt_lens = tgt_lens - 1\r\n decoder_output_probs, _ = model(\r\n src=src, tgt=tgt_input, src_lengths=src_lens, tgt_lengths=tgt_lens)\r\n decoder_output_probs_T = decoder_output_probs.permute(0, 2, 1)\r\n out_seqs = torch.argmax(decoder_output_probs, dim=2)\r\n # loss\r\n loss = criterion(decoder_output_probs_T, tgt_gold) / ACCUMULATION\r\n loss.backward()\r\n total_loss += loss.item()\r\n # calculate metrics\r\n bleu_score += bleu_metirc(tgt_gold, out_seqs, tgt_lens)\r\n distinct_1_score += distinct_1(out_seqs, tgt_lens)\r\n distinct_2_score += distinct_2(out_seqs, tgt_lens)\r\n # summary writer\r\n global_train_step += 1\r\n writer.log_loss(loss.item()*ACCUMULATION, mode='train')\r\n if (i+1) % ACCUMULATION == 0:\r\n # clip_grad_norm_(model.parameters(), max_norm=5)\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n scheduler.step()\r\n if (i+1) % opt.logstep == 0:\r\n avg_loss = (total_loss / opt.logstep) * ACCUMULATION\r\n avg_bleu = bleu_score / opt.logstep\r\n avg_distinct_1 = distinct_1_score / opt.logstep\r\n avg_distinct_2 = distinct_2_score / opt.logstep\r\n mylogger.log(\r\n i, epoch, model, value=avg_loss, is_train=True,\r\n info=f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}')\r\n total_loss = 0.\r\n bleu_score = 0.\r\n distinct_1_score, distinct_2_score = 0., 0.\r\n show_gen_seq(src[:2], out_seqs[:2], tgt_lens[:2], tgt_gold[:2], vocab_bulider, global_train_step, mode='train')\r\n\r\n\r\ndef eval(epoch, model, dataloader, criterion, beam_size=2):\r\n global global_valid_step\r\n model.eval()\r\n criterion.eval()\r\n total_loss = 0.\r\n bleu_score = 0.\r\n distinct_1_score, distinct_2_score = 0., 0.\r\n fout = open(os.path.join('./save/' + model_name + '/', model_name + '_' + str(epoch)), 'w', encoding='utf-8')\r\n with torch.no_grad():\r\n for i, (src, tgt, src_lens, tgt_lens) in tqdm(enumerate(dataloader, 0), desc='eval', total=len(imsdb_dataset)):\r\n tgt_begin = torch.LongTensor([[vocab_bulider['<bos>']]]).to(device)\r\n tgt_gold = tgt[:, 1:]\r\n if beam_size > 1:\r\n output_seqs, output_probs = model.beam_search(\r\n src=src, tgt_begin=tgt_begin, src_length=src_lens,\r\n eos_token_id=vocab_bulider['<eos>'], beam_size=beam_size, max_length=tgt_lens.item())\r\n else:\r\n output_seqs, output_probs = model.greedy(\r\n src=src, tgt_begin=tgt_begin, src_length=src_lens,\r\n eos_token_id=vocab_bulider['<eos>'], max_length=tgt_lens.item())\r\n min_len = min(tgt_gold.shape[1], output_seqs.shape[1])\r\n # loss\r\n loss = criterion(output_probs[:, :min_len, :].permute(0, 2, 1), tgt_gold[:, :min_len])\r\n total_loss += loss.item()\r\n # calculate metrics\r\n out_lens = [min_len]\r\n bleu_score += bleu_metirc(tgt_gold, output_seqs, out_lens)\r\n distinct_1_score += distinct_1(output_seqs, out_lens)\r\n distinct_2_score += distinct_2(output_seqs, out_lens)\r\n # show sequence\r\n global_valid_step += 1\r\n fout.write(' '.join(convert_ids_to_seq(output_seqs[0], vocab_bulider)) + '\\n')\r\n if (i+1) % opt.logstep == 0:\r\n show_gen_seq(src, output_seqs, out_lens, tgt_gold, vocab_bulider, global_valid_step, mode='valid')\r\n # summary\r\n avg_loss = total_loss / i\r\n avg_bleu = bleu_score / i\r\n avg_distinct_1 = distinct_1_score / i\r\n avg_distinct_2 = distinct_2_score / i\r\n writer.log_loss(avg_loss, mode='valid')\r\n mylogger.log(\r\n i, epoch, model, value=avg_bleu, is_train=False,\r\n info=f'loss: {avg_loss:.4f} | ppl: {math.exp(avg_loss):.4f} | BLEU: {avg_bleu:.5f} | d1: {avg_distinct_1:.3f} | d2: {avg_distinct_2:.3f}')\r\n fout.close()\r\n\r\n\r\ndef run_model(model, train_loader, eval_loader, niter, criterion, optimizer, scheduler):\r\n mylogger.log_info('Running Model')\r\n for i in range(niter):\r\n mylogger.log_info(f'EPOCH: {i}, lr: {optimizer.state_dict()[\"param_groups\"][0][\"lr\"]}')\r\n train(i, model, train_loader, criterion, optimizer, scheduler)\r\n eval(i, model, eval_loader, criterion, beam_size=opt.beam)\r\n\r\n\r\ndef convert_ids_to_seq(id_seq, vocab_bulider):\r\n return [vocab_bulider.id_to_word(idx) for idx in id_seq]\r\n\r\n\r\ndef show_gen_seq(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth, vocab_bulider, step, mode='train'):\r\n for in_id, out_id, out_len, gold_id in zip(batch_in_seqs, batch_out_seqs, batch_out_lens, groud_truth):\r\n in_seq = convert_ids_to_seq(in_id, vocab_bulider)\r\n out_seq = convert_ids_to_seq(out_id[:out_len] if out_len > 0 else out_id, vocab_bulider)\r\n gold_seq = convert_ids_to_seq(gold_id, vocab_bulider)\r\n writer.add_text(tag=mode + '_post', sentence=' '.join(in_seq[:get_index(in_seq, '<pad>')]), global_step=step)\r\n writer.add_text(tag=mode + '_pred', sentence=' '.join(out_seq), global_step=step)\r\n writer.add_text(tag=mode + '_reps', sentence=' '.join(gold_seq[:get_index(in_seq, '<pad>')]), global_step=step)\r\n\r\n\r\nif __name__ == '__main__':\r\n begin_time = time.strftime(\"%H%M%S\", time.localtime())\r\n model_name = 'transformer' + begin_time\r\n opt = parse_args()\r\n device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\r\n torch.cuda.set_device(opt.gpuid)\r\n init_seed(opt.manualSeed)\r\n ACCUMULATION = opt.batchsize // opt.realbatch\r\n\r\n mylogger = LogManager(checkpoint_step=10,\r\n save_dir='./save',\r\n model_name=model_name,\r\n log_file_name=model_name + '.log',\r\n mode='max', device=device)\r\n mylogger.save_args(opt)\r\n writer = SummaryHelper(save_dir='./save', model_name=model_name)\r\n\r\n train_data_dir = './data/opensubtitles'\r\n # train_data_dir = './data/wmt15en-de'\r\n\r\n vocab_file_list = ['dialogue_length3_6.post']\r\n # vocab_file_list = ['all_de-en.bpe.post', 'all_de-en.bpe.response']\r\n vocab_bulider = VocabBulider(\r\n train_data_dir, src_files=vocab_file_list, ignore_unk_error=True,\r\n vocab_file='vocab.txt', min_count=opt.mincount, update=opt.update)\r\n print('most common 50:', vocab_bulider.most_common(50))\r\n mylogger.log_info('vocab size: %d' % len(vocab_bulider))\r\n\r\n # metircs\r\n bleu_metirc = BLEUMetric(vocab_bulider.id2vocab, ignore_smoothing_error=True)\r\n distinct_1 = DistinctNGram(ngram=1)\r\n distinct_2 = DistinctNGram(ngram=2)\r\n\r\n # train dataset and dataloader\r\n if opt.cotk: # use dataset in paper 'cotk'\r\n # opensub_file_name_list = ['all_de-en.bpe']\r\n opensub_file_name_list = ['opensub_pair_dev', 'opensub_pair_test', 'opensub_pair_train']\r\n unk_token = None\r\n else: # use dataset in paper 'Non-Autoregressive Neural Dialogue Generation'\r\n opensub_file_name_list = ['dialogue_length3_6']\r\n unk_token = 'UNknown'\r\n opensub_dataset = OpenSubDataset(\r\n data_dir=train_data_dir, vocab_bulider=vocab_bulider,\r\n file_name_list=opensub_file_name_list, unk_token='UNknown',\r\n save_process=False, samples=opt.trainsamples, add_bos=True, add_eos=True)\r\n print(opensub_dataset.sample())\r\n opensub_dataloader = DataLoader(\r\n opensub_dataset, batch_size=opt.realbatch,\r\n collate_fn=PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device),\r\n shuffle=True, num_workers=opt.workers, drop_last=True)\r\n\r\n # dev set\r\n dev_data_dir = './data/imsdb'\r\n imsdb_file_name_list = ['imsdb_lower']\r\n # dev_data_dir = './data/wmt15en-de'\r\n # imsdb_file_name_list = ['newstest']\r\n imsdb_dataset = IMSDBDataset(\r\n data_dir=dev_data_dir, vocab_bulider=vocab_bulider,\r\n file_name_list=imsdb_file_name_list, save_process=False,\r\n samples=opt.validsamples, add_bos=True, add_eos=True)\r\n print(imsdb_dataset.sample())\r\n imsdb_dataloader = DataLoader(\r\n imsdb_dataset, batch_size=1,\r\n collate_fn=PadCollate(dim=0, pad_id=vocab_bulider.padid, device=device),\r\n shuffle=False, num_workers=opt.workers, drop_last=True)\r\n\r\n # model definition\r\n if opt.mine:\r\n model = Transformer(\r\n ntoken=len(vocab_bulider), d_model=opt.embedsize, nhead=opt.nhead,\r\n num_encoder_layers=opt.encoderlayer, num_decoder_layers=opt.decoderlayer,\r\n dim_feedforward=opt.feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt.gumbels,\r\n use_src_mask=False, use_tgt_mask=True, use_memory_mask=False,\r\n activation='relu', use_vocab_attn=False, use_pos_attn=False,\r\n relative_clip=0, highway=False, device=device, max_sent_length=32,\r\n share_input_output_embedding=False, share_encoder_decoder_embedding=True,\r\n share_vocab_embedding=True, fix_pos_encoding=opt.fix).to(device)\r\n else:\r\n model = TransformerTorch(\r\n ntoken=len(vocab_bulider), d_model=opt.embedsize, nhead=opt.nhead,\r\n num_encoder_layers=opt.encoderlayer, num_decoder_layers=opt.decoderlayer,\r\n dim_feedforward=opt.feedforward, postnorm=True, dropout=opt.dropout, gumbels=opt.gumbels,\r\n use_src_mask=False, use_tgt_mask=False, use_memory_mask=False,\r\n activation='relu', use_vocab_attn=False, use_pos_attn=False,\r\n relative_clip=0, highway=False, device=device, max_sent_length=32,\r\n share_input_output_embedding=False, share_encoder_decoder_embedding=True,\r\n share_vocab_embedding=True, fix_pos_encoding=opt.fix).to(device)\r\n model.show_graph()\r\n if opt.half:\r\n model = model.half()\r\n if opt.ft:\r\n model = restore_best_state(model, opt.ckpt, save_dir='./save', device=model.device)\r\n\r\n # optimizer and scheduler\r\n if opt.warmup:\r\n optimizer = RAdam(\r\n filter(lambda p: p.requires_grad, model.parameters()),\r\n lr=1., betas=(opt.beta1, opt.beta2), eps=opt.eps)\r\n rate_ratio = 1. / math.sqrt(opt.embedsize)\r\n # top_lr = 1 / sqrt(d_model * warmup_step) at step == warmup_step\r\n scheduler = optim.lr_scheduler.LambdaLR(\r\n optimizer,\r\n lr_lambda=lambda step: rate_ratio * min(1. / math.sqrt(step+1), step*(opt.warmup_step**(-1.5))))\r\n else:\r\n optimizer = RAdam(\r\n filter(lambda p: p.requires_grad, model.parameters()),\r\n lr=opt.lr, betas=(opt.beta1, opt.beta2), eps=opt.eps,\r\n weight_decay=opt.weight_decay)\r\n scheduler = optim.lr_scheduler.StepLR(\r\n optimizer, step_size=opt.schedulerstep, gamma=opt.gamma)\r\n # loss function\r\n # criterion = nn.CrossEntropyLoss(ignore_index=vocab_bulider.padid) # for Transformer\r\n criterion = LabelSmoothedCrossEntropyLoss(eps=0.1, ignore_index=vocab_bulider.padid)\r\n\r\n # run model\r\n global_train_step, global_valid_step = 0, 0\r\n run_model(\r\n model, opensub_dataloader, imsdb_dataloader,\r\n opt.niter, criterion, optimizer, scheduler)\r\n writer.close()\r\n", "step-ids": [ 3, 4, 5, 6, 8 ] }
[ 3, 4, 5, 6, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> FIGURES_DIR.mkdir(exist_ok=True, parents=True) <|reserved_special_token_1|> <|reserved_special_token_0|> script_name = pathlib.Path(sys.argv[0]).stem FIGURES_DIR = pathlib.Path(__file__).parents[2 ] / 'figures' / 'simulations' / script_name FIGURES_DIR.mkdir(exist_ok=True, parents=True) <|reserved_special_token_1|> import sys import pathlib from matplotlib import pyplot as plt import matplotlib as mpl script_name = pathlib.Path(sys.argv[0]).stem FIGURES_DIR = pathlib.Path(__file__).parents[2 ] / 'figures' / 'simulations' / script_name FIGURES_DIR.mkdir(exist_ok=True, parents=True) <|reserved_special_token_1|> import sys import pathlib from matplotlib import pyplot as plt import matplotlib as mpl script_name = pathlib.Path(sys.argv[0]).stem FIGURES_DIR = pathlib.Path( __file__).parents[2] / "figures" / "simulations" / script_name FIGURES_DIR.mkdir(exist_ok=True, parents=True) # mpl.rc("text", usetex=True) # mpl.rc("font", family="serif") # mpl.rc( # "text.latex", # preamble=r"\usepackage{mathpazo} \usepackage{eulervm} \usepackage{amssymb}" # r"\usepackage{amsmath} \usepackage{bm} \usepackage{DejaVuSans}", # )
flexible
{ "blob_id": "fc26574ac8628d7e2896e3e6d055ac61264c7db0", "index": 1302, "step-1": "<mask token>\n", "step-2": "<mask token>\nFIGURES_DIR.mkdir(exist_ok=True, parents=True)\n", "step-3": "<mask token>\nscript_name = pathlib.Path(sys.argv[0]).stem\nFIGURES_DIR = pathlib.Path(__file__).parents[2\n ] / 'figures' / 'simulations' / script_name\nFIGURES_DIR.mkdir(exist_ok=True, parents=True)\n", "step-4": "import sys\nimport pathlib\nfrom matplotlib import pyplot as plt\nimport matplotlib as mpl\nscript_name = pathlib.Path(sys.argv[0]).stem\nFIGURES_DIR = pathlib.Path(__file__).parents[2\n ] / 'figures' / 'simulations' / script_name\nFIGURES_DIR.mkdir(exist_ok=True, parents=True)\n", "step-5": "import sys\nimport pathlib\n\nfrom matplotlib import pyplot as plt\nimport matplotlib as mpl\n\nscript_name = pathlib.Path(sys.argv[0]).stem\nFIGURES_DIR = pathlib.Path(\n __file__).parents[2] / \"figures\" / \"simulations\" / script_name\nFIGURES_DIR.mkdir(exist_ok=True, parents=True)\n\n# mpl.rc(\"text\", usetex=True)\n# mpl.rc(\"font\", family=\"serif\")\n# mpl.rc(\n# \"text.latex\",\n# preamble=r\"\\usepackage{mathpazo} \\usepackage{eulervm} \\usepackage{amssymb}\"\n# r\"\\usepackage{amsmath} \\usepackage{bm} \\usepackage{DejaVuSans}\",\n# )\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from .test_function import * from .support_funcs import * table_DIXMAAN = dict() table_DIXMAAN['A'] = (1, 0, 0.125, 0.125, 0, 0, 0, 0) table_DIXMAAN['B'] = (1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1) table_DIXMAAN['C'] = (1, 0.125, 0.125, 0.125, 0, 0, 0, 0) table_DIXMAAN['D'] = (1, 0.26, 0.26, 0.26, 0, 0, 0, 0) table_DIXMAAN['E'] = (1, 0, 0.125, 0.125, 1, 0, 0, 1) table_DIXMAAN['F'] = (1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1) table_DIXMAAN['G'] = (1, 0.125, 0.125, 0.125, 1, 0, 0, 1) table_DIXMAAN['H'] = (1, 0.26, 0.26, 0.26, 1, 0, 0, 1) table_DIXMAAN['I'] = (1, 0, 0.125, 0.125, 2, 0, 0, 2) table_DIXMAAN['J'] = (1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2) table_DIXMAAN['K'] = (1, 0.125, 0.125, 0.125, 2, 0, 0, 2) table_DIXMAAN['L'] = (1, 0.26, 0.26, 0.26, 2, 0, 0, 2) def DIXMAAN(type): def DIXMAAN_(n): name = "DIXMAAN%c function (CUTE)" % type alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type] m = n // 3 sm = lambda i: alpha * xi(i) ** 2 *(i / n) ** k1 sm2 = lambda i: beta * xi(i) ** 2 * (xi(i+1) + xi(i+1)**2) * (i / n) ** k2 sm3 = lambda i: gamma * xi(i)**2 * xi(i+m) ** 4 * (i / n) ** k3 sm4 = lambda i: sigma * xi(i) * xi(i+2*m) * (i / n) ** k4 f_1 = lambda: sum([sm2(i) for i in range(1, n)]) f_2 = lambda: sum([sm3(i) for i in range(1, 2 * m + 1)]) f_3 = lambda: sum([sm4(i) for i in range(1, m + 1)]) f = lambda: 1 + f_1() + f_2() + f_3() x0 = np.ones((n, 1)) * 2.0 return create_test_function(name, n, sm, x0, first=f, range_func=default_range_1) DIXMAAN_.__name__ += type return DIXMAAN_
normal
{ "blob_id": "7026f4549019c25cb736af556fe46fd360fba46f", "index": 2238, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef DIXMAAN(type):\n\n def DIXMAAN_(n):\n name = 'DIXMAAN%c function (CUTE)' % type\n alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type]\n m = n // 3\n sm = lambda i: alpha * xi(i) ** 2 * (i / n) ** k1\n sm2 = lambda i: beta * xi(i) ** 2 * (xi(i + 1) + xi(i + 1) ** 2) * (i /\n n) ** k2\n sm3 = lambda i: gamma * xi(i) ** 2 * xi(i + m) ** 4 * (i / n) ** k3\n sm4 = lambda i: sigma * xi(i) * xi(i + 2 * m) * (i / n) ** k4\n f_1 = lambda : sum([sm2(i) for i in range(1, n)])\n f_2 = lambda : sum([sm3(i) for i in range(1, 2 * m + 1)])\n f_3 = lambda : sum([sm4(i) for i in range(1, m + 1)])\n f = lambda : 1 + f_1() + f_2() + f_3()\n x0 = np.ones((n, 1)) * 2.0\n return create_test_function(name, n, sm, x0, first=f, range_func=\n default_range_1)\n DIXMAAN_.__name__ += type\n return DIXMAAN_\n", "step-3": "<mask token>\ntable_DIXMAAN = dict()\ntable_DIXMAAN['A'] = 1, 0, 0.125, 0.125, 0, 0, 0, 0\ntable_DIXMAAN['B'] = 1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1\ntable_DIXMAAN['C'] = 1, 0.125, 0.125, 0.125, 0, 0, 0, 0\ntable_DIXMAAN['D'] = 1, 0.26, 0.26, 0.26, 0, 0, 0, 0\ntable_DIXMAAN['E'] = 1, 0, 0.125, 0.125, 1, 0, 0, 1\ntable_DIXMAAN['F'] = 1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1\ntable_DIXMAAN['G'] = 1, 0.125, 0.125, 0.125, 1, 0, 0, 1\ntable_DIXMAAN['H'] = 1, 0.26, 0.26, 0.26, 1, 0, 0, 1\ntable_DIXMAAN['I'] = 1, 0, 0.125, 0.125, 2, 0, 0, 2\ntable_DIXMAAN['J'] = 1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2\ntable_DIXMAAN['K'] = 1, 0.125, 0.125, 0.125, 2, 0, 0, 2\ntable_DIXMAAN['L'] = 1, 0.26, 0.26, 0.26, 2, 0, 0, 2\n\n\ndef DIXMAAN(type):\n\n def DIXMAAN_(n):\n name = 'DIXMAAN%c function (CUTE)' % type\n alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type]\n m = n // 3\n sm = lambda i: alpha * xi(i) ** 2 * (i / n) ** k1\n sm2 = lambda i: beta * xi(i) ** 2 * (xi(i + 1) + xi(i + 1) ** 2) * (i /\n n) ** k2\n sm3 = lambda i: gamma * xi(i) ** 2 * xi(i + m) ** 4 * (i / n) ** k3\n sm4 = lambda i: sigma * xi(i) * xi(i + 2 * m) * (i / n) ** k4\n f_1 = lambda : sum([sm2(i) for i in range(1, n)])\n f_2 = lambda : sum([sm3(i) for i in range(1, 2 * m + 1)])\n f_3 = lambda : sum([sm4(i) for i in range(1, m + 1)])\n f = lambda : 1 + f_1() + f_2() + f_3()\n x0 = np.ones((n, 1)) * 2.0\n return create_test_function(name, n, sm, x0, first=f, range_func=\n default_range_1)\n DIXMAAN_.__name__ += type\n return DIXMAAN_\n", "step-4": "from .test_function import *\nfrom .support_funcs import *\ntable_DIXMAAN = dict()\ntable_DIXMAAN['A'] = 1, 0, 0.125, 0.125, 0, 0, 0, 0\ntable_DIXMAAN['B'] = 1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1\ntable_DIXMAAN['C'] = 1, 0.125, 0.125, 0.125, 0, 0, 0, 0\ntable_DIXMAAN['D'] = 1, 0.26, 0.26, 0.26, 0, 0, 0, 0\ntable_DIXMAAN['E'] = 1, 0, 0.125, 0.125, 1, 0, 0, 1\ntable_DIXMAAN['F'] = 1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1\ntable_DIXMAAN['G'] = 1, 0.125, 0.125, 0.125, 1, 0, 0, 1\ntable_DIXMAAN['H'] = 1, 0.26, 0.26, 0.26, 1, 0, 0, 1\ntable_DIXMAAN['I'] = 1, 0, 0.125, 0.125, 2, 0, 0, 2\ntable_DIXMAAN['J'] = 1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2\ntable_DIXMAAN['K'] = 1, 0.125, 0.125, 0.125, 2, 0, 0, 2\ntable_DIXMAAN['L'] = 1, 0.26, 0.26, 0.26, 2, 0, 0, 2\n\n\ndef DIXMAAN(type):\n\n def DIXMAAN_(n):\n name = 'DIXMAAN%c function (CUTE)' % type\n alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type]\n m = n // 3\n sm = lambda i: alpha * xi(i) ** 2 * (i / n) ** k1\n sm2 = lambda i: beta * xi(i) ** 2 * (xi(i + 1) + xi(i + 1) ** 2) * (i /\n n) ** k2\n sm3 = lambda i: gamma * xi(i) ** 2 * xi(i + m) ** 4 * (i / n) ** k3\n sm4 = lambda i: sigma * xi(i) * xi(i + 2 * m) * (i / n) ** k4\n f_1 = lambda : sum([sm2(i) for i in range(1, n)])\n f_2 = lambda : sum([sm3(i) for i in range(1, 2 * m + 1)])\n f_3 = lambda : sum([sm4(i) for i in range(1, m + 1)])\n f = lambda : 1 + f_1() + f_2() + f_3()\n x0 = np.ones((n, 1)) * 2.0\n return create_test_function(name, n, sm, x0, first=f, range_func=\n default_range_1)\n DIXMAAN_.__name__ += type\n return DIXMAAN_\n", "step-5": "from .test_function import *\nfrom .support_funcs import *\n\ntable_DIXMAAN = dict()\ntable_DIXMAAN['A'] = (1, 0, 0.125, 0.125, 0, 0, 0, 0)\ntable_DIXMAAN['B'] = (1, 0.0625, 0.0625, 0.0625, 0, 0, 0, 1)\ntable_DIXMAAN['C'] = (1, 0.125, 0.125, 0.125, 0, 0, 0, 0)\ntable_DIXMAAN['D'] = (1, 0.26, 0.26, 0.26, 0, 0, 0, 0)\ntable_DIXMAAN['E'] = (1, 0, 0.125, 0.125, 1, 0, 0, 1)\ntable_DIXMAAN['F'] = (1, 0.0625, 0.0625, 0.0625, 1, 0, 0, 1)\ntable_DIXMAAN['G'] = (1, 0.125, 0.125, 0.125, 1, 0, 0, 1)\ntable_DIXMAAN['H'] = (1, 0.26, 0.26, 0.26, 1, 0, 0, 1)\ntable_DIXMAAN['I'] = (1, 0, 0.125, 0.125, 2, 0, 0, 2)\ntable_DIXMAAN['J'] = (1, 0.0625, 0.0625, 0.0625, 2, 0, 0, 2)\ntable_DIXMAAN['K'] = (1, 0.125, 0.125, 0.125, 2, 0, 0, 2)\ntable_DIXMAAN['L'] = (1, 0.26, 0.26, 0.26, 2, 0, 0, 2)\n\n\ndef DIXMAAN(type):\n def DIXMAAN_(n):\n name = \"DIXMAAN%c function (CUTE)\" % type\n alpha, beta, gamma, sigma, k1, k2, k3, k4 = table_DIXMAAN[type]\n m = n // 3\n sm = lambda i: alpha * xi(i) ** 2 *(i / n) ** k1\n sm2 = lambda i: beta * xi(i) ** 2 * (xi(i+1) + xi(i+1)**2) * (i / n) ** k2\n sm3 = lambda i: gamma * xi(i)**2 * xi(i+m) ** 4 * (i / n) ** k3\n sm4 = lambda i: sigma * xi(i) * xi(i+2*m) * (i / n) ** k4\n f_1 = lambda: sum([sm2(i) for i in range(1, n)])\n f_2 = lambda: sum([sm3(i) for i in range(1, 2 * m + 1)])\n f_3 = lambda: sum([sm4(i) for i in range(1, m + 1)])\n f = lambda: 1 + f_1() + f_2() + f_3()\n x0 = np.ones((n, 1)) * 2.0\n return create_test_function(name, n, sm, x0, first=f, range_func=default_range_1)\n DIXMAAN_.__name__ += type\n return DIXMAAN_", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class Embedding(Module): def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'): super(Embedding, self).__init__(name=name) self.embed_nums = embed_nums self.embed_dims = embed_dims with utils.scope(name): self.weight = nn.Parameter(torch.empty(self.embed_nums, self. embed_dims)) self.add_name(self.weight, 'weight') if bias: self.bias = nn.Parameter(torch.zeros(self.embed_dims)) self.add_name(self.bias, 'bias') else: self.bias = None self.reset_parameters() <|reserved_special_token_0|> def forward(self, inputs): outputs = nn.functional.embedding(inputs, self.weight) if self.bias is not None: outputs = outputs + self.bias return outputs class UnifiedEmbedding(Module): def __init__(self, params, pos_embed=None, type_embed=False, layer_norm =False, dropout=0.0, scale=False, name='embedding'): super(UnifiedEmbedding, self).__init__(name=name) self.pos_embed = pos_embed self.type_embed = type_embed self.vocab_size = len(params.vocabulary['source']) self.embedding_size = params.embedding_size self.layer_norm = None self.out_dropout = None self.scale = scale if dropout > 0: self.out_dropout = nn.Dropout(p=dropout) with utils.scope(name): self.word_embeddings = Embedding(self.vocab_size, self. embedding_size, name='word_embedding') if self.pos_embed is not None: if self.pos_embed == 'learnable': self.pos_embeddings = Embedding(params.max_pos, self. embedding_size, name='pos_embedding') elif self.pos_embed == 'functional': self.pos_embeddings = PositionalEmbedding() else: raise ValueError('Unsupported position embedding: %s' % pos_embed) if self.type_embed: self.type_embeddings = Embedding(params.type_vocab_size, self.embedding_size, name='type_embedding') if layer_norm: self.layer_norm = LayerNorm(self.embedding_size, eps=params .layer_norm_eps) def resize_word_embedding(self, new_vocab_size): old_embeddings = self.word_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name= 'word_embedding').to(old_embeddings.weight) new_embeddings.reset_parameters() new_embeddings.weight.data[:old_num_tokens, : ] = old_embeddings.weight.data self.word_embeddings = new_embeddings self.vocab_size = new_vocab_size def forward(self, input_ids, token_type_ids=None, position_ids=None): inp_shape = input_ids.size() inp_length = inp_shape[1] inputs = self.word_embeddings(input_ids) if self.scale: inputs = inputs * self.embedding_size ** 0.5 if self.pos_embed is not None: if self.pos_embed == 'learnable': if position_ids is None: position_ids = torch.arange(inp_length).to(input_ids) position_ids = position_ids.unsqueeze(0).expand_as( input_ids) inputs = inputs + self.pos_embeddings(position_ids) elif self.pos_embed == 'functional': inputs = self.pos_embeddings(inputs) if self.type_embed: if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) inputs = inputs + self.type_embeddings(token_type_ids) if self.layer_norm is not None: inputs = self.layer_norm(inputs) if self.out_dropout is not None: inputs = self.out_dropout(inputs) return inputs <|reserved_special_token_1|> <|reserved_special_token_0|> class PositionalEmbedding(torch.nn.Module): <|reserved_special_token_0|> <|reserved_special_token_0|> class Embedding(Module): def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'): super(Embedding, self).__init__(name=name) self.embed_nums = embed_nums self.embed_dims = embed_dims with utils.scope(name): self.weight = nn.Parameter(torch.empty(self.embed_nums, self. embed_dims)) self.add_name(self.weight, 'weight') if bias: self.bias = nn.Parameter(torch.zeros(self.embed_dims)) self.add_name(self.bias, 'bias') else: self.bias = None self.reset_parameters() def reset_parameters(self): nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5) def forward(self, inputs): outputs = nn.functional.embedding(inputs, self.weight) if self.bias is not None: outputs = outputs + self.bias return outputs class UnifiedEmbedding(Module): def __init__(self, params, pos_embed=None, type_embed=False, layer_norm =False, dropout=0.0, scale=False, name='embedding'): super(UnifiedEmbedding, self).__init__(name=name) self.pos_embed = pos_embed self.type_embed = type_embed self.vocab_size = len(params.vocabulary['source']) self.embedding_size = params.embedding_size self.layer_norm = None self.out_dropout = None self.scale = scale if dropout > 0: self.out_dropout = nn.Dropout(p=dropout) with utils.scope(name): self.word_embeddings = Embedding(self.vocab_size, self. embedding_size, name='word_embedding') if self.pos_embed is not None: if self.pos_embed == 'learnable': self.pos_embeddings = Embedding(params.max_pos, self. embedding_size, name='pos_embedding') elif self.pos_embed == 'functional': self.pos_embeddings = PositionalEmbedding() else: raise ValueError('Unsupported position embedding: %s' % pos_embed) if self.type_embed: self.type_embeddings = Embedding(params.type_vocab_size, self.embedding_size, name='type_embedding') if layer_norm: self.layer_norm = LayerNorm(self.embedding_size, eps=params .layer_norm_eps) def resize_word_embedding(self, new_vocab_size): old_embeddings = self.word_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name= 'word_embedding').to(old_embeddings.weight) new_embeddings.reset_parameters() new_embeddings.weight.data[:old_num_tokens, : ] = old_embeddings.weight.data self.word_embeddings = new_embeddings self.vocab_size = new_vocab_size def forward(self, input_ids, token_type_ids=None, position_ids=None): inp_shape = input_ids.size() inp_length = inp_shape[1] inputs = self.word_embeddings(input_ids) if self.scale: inputs = inputs * self.embedding_size ** 0.5 if self.pos_embed is not None: if self.pos_embed == 'learnable': if position_ids is None: position_ids = torch.arange(inp_length).to(input_ids) position_ids = position_ids.unsqueeze(0).expand_as( input_ids) inputs = inputs + self.pos_embeddings(position_ids) elif self.pos_embed == 'functional': inputs = self.pos_embeddings(inputs) if self.type_embed: if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) inputs = inputs + self.type_embeddings(token_type_ids) if self.layer_norm is not None: inputs = self.layer_norm(inputs) if self.out_dropout is not None: inputs = self.out_dropout(inputs) return inputs <|reserved_special_token_1|> <|reserved_special_token_0|> class PositionalEmbedding(torch.nn.Module): <|reserved_special_token_0|> def forward(self, inputs): if inputs.dim() != 3: raise ValueError('The rank of input must be 3.') length = inputs.shape[1] channels = inputs.shape[2] half_dim = channels // 2 positions = torch.arange(length, dtype=inputs.dtype, device=inputs. device) dimensions = torch.arange(half_dim, dtype=inputs.dtype, device= inputs.device) scale = math.log(10000.0) / float(half_dim - 1) dimensions.mul_(-scale).exp_() scaled_time = positions.unsqueeze(1) * dimensions.unsqueeze(0) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) if channels % 2 == 1: pad = torch.zeros([signal.shape[0], 1], dtype=inputs.dtype, device=inputs.device) signal = torch.cat([signal, pad], axis=1) return inputs + torch.reshape(signal, [1, -1, channels]).to(inputs) class Embedding(Module): def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'): super(Embedding, self).__init__(name=name) self.embed_nums = embed_nums self.embed_dims = embed_dims with utils.scope(name): self.weight = nn.Parameter(torch.empty(self.embed_nums, self. embed_dims)) self.add_name(self.weight, 'weight') if bias: self.bias = nn.Parameter(torch.zeros(self.embed_dims)) self.add_name(self.bias, 'bias') else: self.bias = None self.reset_parameters() def reset_parameters(self): nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5) def forward(self, inputs): outputs = nn.functional.embedding(inputs, self.weight) if self.bias is not None: outputs = outputs + self.bias return outputs class UnifiedEmbedding(Module): def __init__(self, params, pos_embed=None, type_embed=False, layer_norm =False, dropout=0.0, scale=False, name='embedding'): super(UnifiedEmbedding, self).__init__(name=name) self.pos_embed = pos_embed self.type_embed = type_embed self.vocab_size = len(params.vocabulary['source']) self.embedding_size = params.embedding_size self.layer_norm = None self.out_dropout = None self.scale = scale if dropout > 0: self.out_dropout = nn.Dropout(p=dropout) with utils.scope(name): self.word_embeddings = Embedding(self.vocab_size, self. embedding_size, name='word_embedding') if self.pos_embed is not None: if self.pos_embed == 'learnable': self.pos_embeddings = Embedding(params.max_pos, self. embedding_size, name='pos_embedding') elif self.pos_embed == 'functional': self.pos_embeddings = PositionalEmbedding() else: raise ValueError('Unsupported position embedding: %s' % pos_embed) if self.type_embed: self.type_embeddings = Embedding(params.type_vocab_size, self.embedding_size, name='type_embedding') if layer_norm: self.layer_norm = LayerNorm(self.embedding_size, eps=params .layer_norm_eps) def resize_word_embedding(self, new_vocab_size): old_embeddings = self.word_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name= 'word_embedding').to(old_embeddings.weight) new_embeddings.reset_parameters() new_embeddings.weight.data[:old_num_tokens, : ] = old_embeddings.weight.data self.word_embeddings = new_embeddings self.vocab_size = new_vocab_size def forward(self, input_ids, token_type_ids=None, position_ids=None): inp_shape = input_ids.size() inp_length = inp_shape[1] inputs = self.word_embeddings(input_ids) if self.scale: inputs = inputs * self.embedding_size ** 0.5 if self.pos_embed is not None: if self.pos_embed == 'learnable': if position_ids is None: position_ids = torch.arange(inp_length).to(input_ids) position_ids = position_ids.unsqueeze(0).expand_as( input_ids) inputs = inputs + self.pos_embeddings(position_ids) elif self.pos_embed == 'functional': inputs = self.pos_embeddings(inputs) if self.type_embed: if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) inputs = inputs + self.type_embeddings(token_type_ids) if self.layer_norm is not None: inputs = self.layer_norm(inputs) if self.out_dropout is not None: inputs = self.out_dropout(inputs) return inputs <|reserved_special_token_1|> from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import torch import torch.nn as nn import thuctc.utils as utils from thuctc.modules.module import Module from thuctc.modules.layer_norm import LayerNorm class PositionalEmbedding(torch.nn.Module): def __init__(self): super(PositionalEmbedding, self).__init__() def forward(self, inputs): if inputs.dim() != 3: raise ValueError('The rank of input must be 3.') length = inputs.shape[1] channels = inputs.shape[2] half_dim = channels // 2 positions = torch.arange(length, dtype=inputs.dtype, device=inputs. device) dimensions = torch.arange(half_dim, dtype=inputs.dtype, device= inputs.device) scale = math.log(10000.0) / float(half_dim - 1) dimensions.mul_(-scale).exp_() scaled_time = positions.unsqueeze(1) * dimensions.unsqueeze(0) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) if channels % 2 == 1: pad = torch.zeros([signal.shape[0], 1], dtype=inputs.dtype, device=inputs.device) signal = torch.cat([signal, pad], axis=1) return inputs + torch.reshape(signal, [1, -1, channels]).to(inputs) class Embedding(Module): def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'): super(Embedding, self).__init__(name=name) self.embed_nums = embed_nums self.embed_dims = embed_dims with utils.scope(name): self.weight = nn.Parameter(torch.empty(self.embed_nums, self. embed_dims)) self.add_name(self.weight, 'weight') if bias: self.bias = nn.Parameter(torch.zeros(self.embed_dims)) self.add_name(self.bias, 'bias') else: self.bias = None self.reset_parameters() def reset_parameters(self): nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5) def forward(self, inputs): outputs = nn.functional.embedding(inputs, self.weight) if self.bias is not None: outputs = outputs + self.bias return outputs class UnifiedEmbedding(Module): def __init__(self, params, pos_embed=None, type_embed=False, layer_norm =False, dropout=0.0, scale=False, name='embedding'): super(UnifiedEmbedding, self).__init__(name=name) self.pos_embed = pos_embed self.type_embed = type_embed self.vocab_size = len(params.vocabulary['source']) self.embedding_size = params.embedding_size self.layer_norm = None self.out_dropout = None self.scale = scale if dropout > 0: self.out_dropout = nn.Dropout(p=dropout) with utils.scope(name): self.word_embeddings = Embedding(self.vocab_size, self. embedding_size, name='word_embedding') if self.pos_embed is not None: if self.pos_embed == 'learnable': self.pos_embeddings = Embedding(params.max_pos, self. embedding_size, name='pos_embedding') elif self.pos_embed == 'functional': self.pos_embeddings = PositionalEmbedding() else: raise ValueError('Unsupported position embedding: %s' % pos_embed) if self.type_embed: self.type_embeddings = Embedding(params.type_vocab_size, self.embedding_size, name='type_embedding') if layer_norm: self.layer_norm = LayerNorm(self.embedding_size, eps=params .layer_norm_eps) def resize_word_embedding(self, new_vocab_size): old_embeddings = self.word_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name= 'word_embedding').to(old_embeddings.weight) new_embeddings.reset_parameters() new_embeddings.weight.data[:old_num_tokens, : ] = old_embeddings.weight.data self.word_embeddings = new_embeddings self.vocab_size = new_vocab_size def forward(self, input_ids, token_type_ids=None, position_ids=None): inp_shape = input_ids.size() inp_length = inp_shape[1] inputs = self.word_embeddings(input_ids) if self.scale: inputs = inputs * self.embedding_size ** 0.5 if self.pos_embed is not None: if self.pos_embed == 'learnable': if position_ids is None: position_ids = torch.arange(inp_length).to(input_ids) position_ids = position_ids.unsqueeze(0).expand_as( input_ids) inputs = inputs + self.pos_embeddings(position_ids) elif self.pos_embed == 'functional': inputs = self.pos_embeddings(inputs) if self.type_embed: if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) inputs = inputs + self.type_embeddings(token_type_ids) if self.layer_norm is not None: inputs = self.layer_norm(inputs) if self.out_dropout is not None: inputs = self.out_dropout(inputs) return inputs <|reserved_special_token_1|> # coding=utf-8 # Copyright 2021-Present The THUCTC Authors from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import torch import torch.nn as nn import thuctc.utils as utils from thuctc.modules.module import Module from thuctc.modules.layer_norm import LayerNorm class PositionalEmbedding(torch.nn.Module): def __init__(self): super(PositionalEmbedding, self).__init__() def forward(self, inputs): if inputs.dim() != 3: raise ValueError("The rank of input must be 3.") length = inputs.shape[1] channels = inputs.shape[2] half_dim = channels // 2 positions = torch.arange(length, dtype=inputs.dtype, device=inputs.device) dimensions = torch.arange(half_dim, dtype=inputs.dtype, device=inputs.device) scale = math.log(10000.0) / float(half_dim - 1) dimensions.mul_(-scale).exp_() scaled_time = positions.unsqueeze(1) * dimensions.unsqueeze(0) signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) if channels % 2 == 1: pad = torch.zeros([signal.shape[0], 1], dtype=inputs.dtype, device=inputs.device) signal = torch.cat([signal, pad], axis=1) return inputs + torch.reshape(signal, [1, -1, channels]).to(inputs) class Embedding(Module): def __init__(self, embed_nums, embed_dims, bias=False, name="embedding"): super(Embedding, self).__init__(name=name) self.embed_nums = embed_nums self.embed_dims = embed_dims with utils.scope(name): self.weight = nn.Parameter( torch.empty(self.embed_nums, self.embed_dims)) self.add_name(self.weight, "weight") if bias: self.bias = nn.Parameter( torch.zeros(self.embed_dims)) self.add_name(self.bias, "bias") else: self.bias = None self.reset_parameters() def reset_parameters(self): nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5) def forward(self, inputs): outputs = nn.functional.embedding(inputs, self.weight) if self.bias is not None: outputs = outputs + self.bias return outputs class UnifiedEmbedding(Module): def __init__(self, params, pos_embed=None, type_embed=False, layer_norm=False, dropout=0.0, scale=False, name="embedding"): super(UnifiedEmbedding, self).__init__(name=name) self.pos_embed = pos_embed self.type_embed = type_embed self.vocab_size = len(params.vocabulary["source"]) self.embedding_size = params.embedding_size self.layer_norm = None self.out_dropout = None self.scale = scale if dropout > 0: self.out_dropout = nn.Dropout(p=dropout) with utils.scope(name): self.word_embeddings = Embedding(self.vocab_size, self.embedding_size, name="word_embedding") if self.pos_embed is not None: if self.pos_embed == "learnable": self.pos_embeddings = Embedding(params.max_pos, self.embedding_size, name="pos_embedding") elif self.pos_embed == "functional": self.pos_embeddings = PositionalEmbedding() else: raise ValueError("Unsupported position " "embedding: %s" % pos_embed) if self.type_embed: self.type_embeddings = Embedding(params.type_vocab_size, self.embedding_size, name="type_embedding") if layer_norm: self.layer_norm = LayerNorm(self.embedding_size, eps=params.layer_norm_eps) def resize_word_embedding(self, new_vocab_size): old_embeddings = self.word_embeddings old_num_tokens, old_embedding_dim = old_embeddings.weight.size() new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name="word_embedding").to(old_embeddings.weight) new_embeddings.reset_parameters() new_embeddings.weight.data[:old_num_tokens, :] = old_embeddings.weight.data self.word_embeddings = new_embeddings self.vocab_size = new_vocab_size def forward(self, input_ids, token_type_ids=None, position_ids=None): inp_shape = input_ids.size() inp_length = inp_shape[1] inputs = self.word_embeddings(input_ids) if self.scale: inputs = inputs * (self.embedding_size ** 0.5) if self.pos_embed is not None: if self.pos_embed == "learnable": if position_ids is None: position_ids = torch.arange(inp_length).to(input_ids) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) inputs = inputs + self.pos_embeddings(position_ids) elif self.pos_embed == "functional": inputs = self.pos_embeddings(inputs) if self.type_embed: if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) inputs = inputs + self.type_embeddings(token_type_ids) if self.layer_norm is not None: inputs = self.layer_norm(inputs) if self.out_dropout is not None: inputs = self.out_dropout(inputs) return inputs
flexible
{ "blob_id": "c773b273ad6953bf9c74b11c44aff16e9fd0860e", "index": 3468, "step-1": "<mask token>\n\n\nclass Embedding(Module):\n\n def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'):\n super(Embedding, self).__init__(name=name)\n self.embed_nums = embed_nums\n self.embed_dims = embed_dims\n with utils.scope(name):\n self.weight = nn.Parameter(torch.empty(self.embed_nums, self.\n embed_dims))\n self.add_name(self.weight, 'weight')\n if bias:\n self.bias = nn.Parameter(torch.zeros(self.embed_dims))\n self.add_name(self.bias, 'bias')\n else:\n self.bias = None\n self.reset_parameters()\n <mask token>\n\n def forward(self, inputs):\n outputs = nn.functional.embedding(inputs, self.weight)\n if self.bias is not None:\n outputs = outputs + self.bias\n return outputs\n\n\nclass UnifiedEmbedding(Module):\n\n def __init__(self, params, pos_embed=None, type_embed=False, layer_norm\n =False, dropout=0.0, scale=False, name='embedding'):\n super(UnifiedEmbedding, self).__init__(name=name)\n self.pos_embed = pos_embed\n self.type_embed = type_embed\n self.vocab_size = len(params.vocabulary['source'])\n self.embedding_size = params.embedding_size\n self.layer_norm = None\n self.out_dropout = None\n self.scale = scale\n if dropout > 0:\n self.out_dropout = nn.Dropout(p=dropout)\n with utils.scope(name):\n self.word_embeddings = Embedding(self.vocab_size, self.\n embedding_size, name='word_embedding')\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n self.pos_embeddings = Embedding(params.max_pos, self.\n embedding_size, name='pos_embedding')\n elif self.pos_embed == 'functional':\n self.pos_embeddings = PositionalEmbedding()\n else:\n raise ValueError('Unsupported position embedding: %s' %\n pos_embed)\n if self.type_embed:\n self.type_embeddings = Embedding(params.type_vocab_size,\n self.embedding_size, name='type_embedding')\n if layer_norm:\n self.layer_norm = LayerNorm(self.embedding_size, eps=params\n .layer_norm_eps)\n\n def resize_word_embedding(self, new_vocab_size):\n old_embeddings = self.word_embeddings\n old_num_tokens, old_embedding_dim = old_embeddings.weight.size()\n new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name=\n 'word_embedding').to(old_embeddings.weight)\n new_embeddings.reset_parameters()\n new_embeddings.weight.data[:old_num_tokens, :\n ] = old_embeddings.weight.data\n self.word_embeddings = new_embeddings\n self.vocab_size = new_vocab_size\n\n def forward(self, input_ids, token_type_ids=None, position_ids=None):\n inp_shape = input_ids.size()\n inp_length = inp_shape[1]\n inputs = self.word_embeddings(input_ids)\n if self.scale:\n inputs = inputs * self.embedding_size ** 0.5\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n if position_ids is None:\n position_ids = torch.arange(inp_length).to(input_ids)\n position_ids = position_ids.unsqueeze(0).expand_as(\n input_ids)\n inputs = inputs + self.pos_embeddings(position_ids)\n elif self.pos_embed == 'functional':\n inputs = self.pos_embeddings(inputs)\n if self.type_embed:\n if token_type_ids is None:\n token_type_ids = torch.zeros_like(input_ids)\n inputs = inputs + self.type_embeddings(token_type_ids)\n if self.layer_norm is not None:\n inputs = self.layer_norm(inputs)\n if self.out_dropout is not None:\n inputs = self.out_dropout(inputs)\n return inputs\n", "step-2": "<mask token>\n\n\nclass PositionalEmbedding(torch.nn.Module):\n <mask token>\n <mask token>\n\n\nclass Embedding(Module):\n\n def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'):\n super(Embedding, self).__init__(name=name)\n self.embed_nums = embed_nums\n self.embed_dims = embed_dims\n with utils.scope(name):\n self.weight = nn.Parameter(torch.empty(self.embed_nums, self.\n embed_dims))\n self.add_name(self.weight, 'weight')\n if bias:\n self.bias = nn.Parameter(torch.zeros(self.embed_dims))\n self.add_name(self.bias, 'bias')\n else:\n self.bias = None\n self.reset_parameters()\n\n def reset_parameters(self):\n nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5)\n\n def forward(self, inputs):\n outputs = nn.functional.embedding(inputs, self.weight)\n if self.bias is not None:\n outputs = outputs + self.bias\n return outputs\n\n\nclass UnifiedEmbedding(Module):\n\n def __init__(self, params, pos_embed=None, type_embed=False, layer_norm\n =False, dropout=0.0, scale=False, name='embedding'):\n super(UnifiedEmbedding, self).__init__(name=name)\n self.pos_embed = pos_embed\n self.type_embed = type_embed\n self.vocab_size = len(params.vocabulary['source'])\n self.embedding_size = params.embedding_size\n self.layer_norm = None\n self.out_dropout = None\n self.scale = scale\n if dropout > 0:\n self.out_dropout = nn.Dropout(p=dropout)\n with utils.scope(name):\n self.word_embeddings = Embedding(self.vocab_size, self.\n embedding_size, name='word_embedding')\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n self.pos_embeddings = Embedding(params.max_pos, self.\n embedding_size, name='pos_embedding')\n elif self.pos_embed == 'functional':\n self.pos_embeddings = PositionalEmbedding()\n else:\n raise ValueError('Unsupported position embedding: %s' %\n pos_embed)\n if self.type_embed:\n self.type_embeddings = Embedding(params.type_vocab_size,\n self.embedding_size, name='type_embedding')\n if layer_norm:\n self.layer_norm = LayerNorm(self.embedding_size, eps=params\n .layer_norm_eps)\n\n def resize_word_embedding(self, new_vocab_size):\n old_embeddings = self.word_embeddings\n old_num_tokens, old_embedding_dim = old_embeddings.weight.size()\n new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name=\n 'word_embedding').to(old_embeddings.weight)\n new_embeddings.reset_parameters()\n new_embeddings.weight.data[:old_num_tokens, :\n ] = old_embeddings.weight.data\n self.word_embeddings = new_embeddings\n self.vocab_size = new_vocab_size\n\n def forward(self, input_ids, token_type_ids=None, position_ids=None):\n inp_shape = input_ids.size()\n inp_length = inp_shape[1]\n inputs = self.word_embeddings(input_ids)\n if self.scale:\n inputs = inputs * self.embedding_size ** 0.5\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n if position_ids is None:\n position_ids = torch.arange(inp_length).to(input_ids)\n position_ids = position_ids.unsqueeze(0).expand_as(\n input_ids)\n inputs = inputs + self.pos_embeddings(position_ids)\n elif self.pos_embed == 'functional':\n inputs = self.pos_embeddings(inputs)\n if self.type_embed:\n if token_type_ids is None:\n token_type_ids = torch.zeros_like(input_ids)\n inputs = inputs + self.type_embeddings(token_type_ids)\n if self.layer_norm is not None:\n inputs = self.layer_norm(inputs)\n if self.out_dropout is not None:\n inputs = self.out_dropout(inputs)\n return inputs\n", "step-3": "<mask token>\n\n\nclass PositionalEmbedding(torch.nn.Module):\n <mask token>\n\n def forward(self, inputs):\n if inputs.dim() != 3:\n raise ValueError('The rank of input must be 3.')\n length = inputs.shape[1]\n channels = inputs.shape[2]\n half_dim = channels // 2\n positions = torch.arange(length, dtype=inputs.dtype, device=inputs.\n device)\n dimensions = torch.arange(half_dim, dtype=inputs.dtype, device=\n inputs.device)\n scale = math.log(10000.0) / float(half_dim - 1)\n dimensions.mul_(-scale).exp_()\n scaled_time = positions.unsqueeze(1) * dimensions.unsqueeze(0)\n signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)],\n dim=1)\n if channels % 2 == 1:\n pad = torch.zeros([signal.shape[0], 1], dtype=inputs.dtype,\n device=inputs.device)\n signal = torch.cat([signal, pad], axis=1)\n return inputs + torch.reshape(signal, [1, -1, channels]).to(inputs)\n\n\nclass Embedding(Module):\n\n def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'):\n super(Embedding, self).__init__(name=name)\n self.embed_nums = embed_nums\n self.embed_dims = embed_dims\n with utils.scope(name):\n self.weight = nn.Parameter(torch.empty(self.embed_nums, self.\n embed_dims))\n self.add_name(self.weight, 'weight')\n if bias:\n self.bias = nn.Parameter(torch.zeros(self.embed_dims))\n self.add_name(self.bias, 'bias')\n else:\n self.bias = None\n self.reset_parameters()\n\n def reset_parameters(self):\n nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5)\n\n def forward(self, inputs):\n outputs = nn.functional.embedding(inputs, self.weight)\n if self.bias is not None:\n outputs = outputs + self.bias\n return outputs\n\n\nclass UnifiedEmbedding(Module):\n\n def __init__(self, params, pos_embed=None, type_embed=False, layer_norm\n =False, dropout=0.0, scale=False, name='embedding'):\n super(UnifiedEmbedding, self).__init__(name=name)\n self.pos_embed = pos_embed\n self.type_embed = type_embed\n self.vocab_size = len(params.vocabulary['source'])\n self.embedding_size = params.embedding_size\n self.layer_norm = None\n self.out_dropout = None\n self.scale = scale\n if dropout > 0:\n self.out_dropout = nn.Dropout(p=dropout)\n with utils.scope(name):\n self.word_embeddings = Embedding(self.vocab_size, self.\n embedding_size, name='word_embedding')\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n self.pos_embeddings = Embedding(params.max_pos, self.\n embedding_size, name='pos_embedding')\n elif self.pos_embed == 'functional':\n self.pos_embeddings = PositionalEmbedding()\n else:\n raise ValueError('Unsupported position embedding: %s' %\n pos_embed)\n if self.type_embed:\n self.type_embeddings = Embedding(params.type_vocab_size,\n self.embedding_size, name='type_embedding')\n if layer_norm:\n self.layer_norm = LayerNorm(self.embedding_size, eps=params\n .layer_norm_eps)\n\n def resize_word_embedding(self, new_vocab_size):\n old_embeddings = self.word_embeddings\n old_num_tokens, old_embedding_dim = old_embeddings.weight.size()\n new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name=\n 'word_embedding').to(old_embeddings.weight)\n new_embeddings.reset_parameters()\n new_embeddings.weight.data[:old_num_tokens, :\n ] = old_embeddings.weight.data\n self.word_embeddings = new_embeddings\n self.vocab_size = new_vocab_size\n\n def forward(self, input_ids, token_type_ids=None, position_ids=None):\n inp_shape = input_ids.size()\n inp_length = inp_shape[1]\n inputs = self.word_embeddings(input_ids)\n if self.scale:\n inputs = inputs * self.embedding_size ** 0.5\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n if position_ids is None:\n position_ids = torch.arange(inp_length).to(input_ids)\n position_ids = position_ids.unsqueeze(0).expand_as(\n input_ids)\n inputs = inputs + self.pos_embeddings(position_ids)\n elif self.pos_embed == 'functional':\n inputs = self.pos_embeddings(inputs)\n if self.type_embed:\n if token_type_ids is None:\n token_type_ids = torch.zeros_like(input_ids)\n inputs = inputs + self.type_embeddings(token_type_ids)\n if self.layer_norm is not None:\n inputs = self.layer_norm(inputs)\n if self.out_dropout is not None:\n inputs = self.out_dropout(inputs)\n return inputs\n", "step-4": "from __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\nimport math\nimport torch\nimport torch.nn as nn\nimport thuctc.utils as utils\nfrom thuctc.modules.module import Module\nfrom thuctc.modules.layer_norm import LayerNorm\n\n\nclass PositionalEmbedding(torch.nn.Module):\n\n def __init__(self):\n super(PositionalEmbedding, self).__init__()\n\n def forward(self, inputs):\n if inputs.dim() != 3:\n raise ValueError('The rank of input must be 3.')\n length = inputs.shape[1]\n channels = inputs.shape[2]\n half_dim = channels // 2\n positions = torch.arange(length, dtype=inputs.dtype, device=inputs.\n device)\n dimensions = torch.arange(half_dim, dtype=inputs.dtype, device=\n inputs.device)\n scale = math.log(10000.0) / float(half_dim - 1)\n dimensions.mul_(-scale).exp_()\n scaled_time = positions.unsqueeze(1) * dimensions.unsqueeze(0)\n signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)],\n dim=1)\n if channels % 2 == 1:\n pad = torch.zeros([signal.shape[0], 1], dtype=inputs.dtype,\n device=inputs.device)\n signal = torch.cat([signal, pad], axis=1)\n return inputs + torch.reshape(signal, [1, -1, channels]).to(inputs)\n\n\nclass Embedding(Module):\n\n def __init__(self, embed_nums, embed_dims, bias=False, name='embedding'):\n super(Embedding, self).__init__(name=name)\n self.embed_nums = embed_nums\n self.embed_dims = embed_dims\n with utils.scope(name):\n self.weight = nn.Parameter(torch.empty(self.embed_nums, self.\n embed_dims))\n self.add_name(self.weight, 'weight')\n if bias:\n self.bias = nn.Parameter(torch.zeros(self.embed_dims))\n self.add_name(self.bias, 'bias')\n else:\n self.bias = None\n self.reset_parameters()\n\n def reset_parameters(self):\n nn.init.normal_(self.weight, mean=0.0, std=self.embed_dims ** -0.5)\n\n def forward(self, inputs):\n outputs = nn.functional.embedding(inputs, self.weight)\n if self.bias is not None:\n outputs = outputs + self.bias\n return outputs\n\n\nclass UnifiedEmbedding(Module):\n\n def __init__(self, params, pos_embed=None, type_embed=False, layer_norm\n =False, dropout=0.0, scale=False, name='embedding'):\n super(UnifiedEmbedding, self).__init__(name=name)\n self.pos_embed = pos_embed\n self.type_embed = type_embed\n self.vocab_size = len(params.vocabulary['source'])\n self.embedding_size = params.embedding_size\n self.layer_norm = None\n self.out_dropout = None\n self.scale = scale\n if dropout > 0:\n self.out_dropout = nn.Dropout(p=dropout)\n with utils.scope(name):\n self.word_embeddings = Embedding(self.vocab_size, self.\n embedding_size, name='word_embedding')\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n self.pos_embeddings = Embedding(params.max_pos, self.\n embedding_size, name='pos_embedding')\n elif self.pos_embed == 'functional':\n self.pos_embeddings = PositionalEmbedding()\n else:\n raise ValueError('Unsupported position embedding: %s' %\n pos_embed)\n if self.type_embed:\n self.type_embeddings = Embedding(params.type_vocab_size,\n self.embedding_size, name='type_embedding')\n if layer_norm:\n self.layer_norm = LayerNorm(self.embedding_size, eps=params\n .layer_norm_eps)\n\n def resize_word_embedding(self, new_vocab_size):\n old_embeddings = self.word_embeddings\n old_num_tokens, old_embedding_dim = old_embeddings.weight.size()\n new_embeddings = Embedding(new_vocab_size, old_embedding_dim, name=\n 'word_embedding').to(old_embeddings.weight)\n new_embeddings.reset_parameters()\n new_embeddings.weight.data[:old_num_tokens, :\n ] = old_embeddings.weight.data\n self.word_embeddings = new_embeddings\n self.vocab_size = new_vocab_size\n\n def forward(self, input_ids, token_type_ids=None, position_ids=None):\n inp_shape = input_ids.size()\n inp_length = inp_shape[1]\n inputs = self.word_embeddings(input_ids)\n if self.scale:\n inputs = inputs * self.embedding_size ** 0.5\n if self.pos_embed is not None:\n if self.pos_embed == 'learnable':\n if position_ids is None:\n position_ids = torch.arange(inp_length).to(input_ids)\n position_ids = position_ids.unsqueeze(0).expand_as(\n input_ids)\n inputs = inputs + self.pos_embeddings(position_ids)\n elif self.pos_embed == 'functional':\n inputs = self.pos_embeddings(inputs)\n if self.type_embed:\n if token_type_ids is None:\n token_type_ids = torch.zeros_like(input_ids)\n inputs = inputs + self.type_embeddings(token_type_ids)\n if self.layer_norm is not None:\n inputs = self.layer_norm(inputs)\n if self.out_dropout is not None:\n inputs = self.out_dropout(inputs)\n return inputs\n", "step-5": "# coding=utf-8\n# Copyright 2021-Present The THUCTC Authors\n\nfrom __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport math\nimport torch\n\nimport torch.nn as nn\nimport thuctc.utils as utils\n\nfrom thuctc.modules.module import Module\nfrom thuctc.modules.layer_norm import LayerNorm\n\n\nclass PositionalEmbedding(torch.nn.Module):\n\n def __init__(self):\n super(PositionalEmbedding, self).__init__()\n\n def forward(self, inputs):\n if inputs.dim() != 3:\n raise ValueError(\"The rank of input must be 3.\")\n\n length = inputs.shape[1]\n channels = inputs.shape[2]\n half_dim = channels // 2\n\n positions = torch.arange(length, dtype=inputs.dtype,\n device=inputs.device)\n dimensions = torch.arange(half_dim, dtype=inputs.dtype,\n device=inputs.device)\n\n scale = math.log(10000.0) / float(half_dim - 1)\n dimensions.mul_(-scale).exp_()\n\n scaled_time = positions.unsqueeze(1) * dimensions.unsqueeze(0)\n signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)],\n dim=1)\n\n if channels % 2 == 1:\n pad = torch.zeros([signal.shape[0], 1], dtype=inputs.dtype,\n device=inputs.device)\n signal = torch.cat([signal, pad], axis=1)\n\n return inputs + torch.reshape(signal, [1, -1, channels]).to(inputs)\n\n\nclass Embedding(Module):\n\n def __init__(self, embed_nums, embed_dims, bias=False, name=\"embedding\"):\n super(Embedding, self).__init__(name=name)\n\n self.embed_nums = embed_nums\n self.embed_dims = embed_dims\n\n with utils.scope(name):\n self.weight = nn.Parameter(\n torch.empty(self.embed_nums, self.embed_dims))\n self.add_name(self.weight, \"weight\")\n\n if bias:\n self.bias = nn.Parameter(\n torch.zeros(self.embed_dims))\n self.add_name(self.bias, \"bias\")\n else:\n self.bias = None\n\n self.reset_parameters()\n\n def reset_parameters(self):\n nn.init.normal_(self.weight, mean=0.0,\n std=self.embed_dims ** -0.5)\n\n def forward(self, inputs):\n outputs = nn.functional.embedding(inputs, self.weight)\n\n if self.bias is not None:\n outputs = outputs + self.bias\n\n return outputs\n\n\nclass UnifiedEmbedding(Module):\n\n def __init__(self, params, pos_embed=None, type_embed=False,\n layer_norm=False, dropout=0.0, scale=False, name=\"embedding\"):\n super(UnifiedEmbedding, self).__init__(name=name)\n\n self.pos_embed = pos_embed\n self.type_embed = type_embed\n self.vocab_size = len(params.vocabulary[\"source\"])\n self.embedding_size = params.embedding_size\n self.layer_norm = None\n self.out_dropout = None\n self.scale = scale\n\n if dropout > 0:\n self.out_dropout = nn.Dropout(p=dropout)\n\n with utils.scope(name):\n self.word_embeddings = Embedding(self.vocab_size,\n self.embedding_size,\n name=\"word_embedding\")\n\n if self.pos_embed is not None:\n if self.pos_embed == \"learnable\":\n self.pos_embeddings = Embedding(params.max_pos,\n self.embedding_size,\n name=\"pos_embedding\")\n elif self.pos_embed == \"functional\":\n self.pos_embeddings = PositionalEmbedding()\n else:\n raise ValueError(\"Unsupported position \"\n \"embedding: %s\" % pos_embed)\n\n if self.type_embed:\n self.type_embeddings = Embedding(params.type_vocab_size,\n self.embedding_size,\n name=\"type_embedding\")\n\n if layer_norm:\n self.layer_norm = LayerNorm(self.embedding_size,\n eps=params.layer_norm_eps)\n\n def resize_word_embedding(self, new_vocab_size): \n old_embeddings = self.word_embeddings\n old_num_tokens, old_embedding_dim = old_embeddings.weight.size()\n new_embeddings = Embedding(new_vocab_size,\n old_embedding_dim,\n name=\"word_embedding\").to(old_embeddings.weight)\n new_embeddings.reset_parameters()\n new_embeddings.weight.data[:old_num_tokens, :] = old_embeddings.weight.data\n self.word_embeddings = new_embeddings\n self.vocab_size = new_vocab_size\n\n def forward(self, input_ids, token_type_ids=None, position_ids=None):\n inp_shape = input_ids.size()\n inp_length = inp_shape[1]\n\n inputs = self.word_embeddings(input_ids)\n\n if self.scale:\n inputs = inputs * (self.embedding_size ** 0.5)\n\n if self.pos_embed is not None:\n if self.pos_embed == \"learnable\":\n if position_ids is None:\n position_ids = torch.arange(inp_length).to(input_ids)\n position_ids = position_ids.unsqueeze(0).expand_as(input_ids)\n\n inputs = inputs + self.pos_embeddings(position_ids)\n elif self.pos_embed == \"functional\":\n inputs = self.pos_embeddings(inputs)\n\n if self.type_embed:\n if token_type_ids is None:\n token_type_ids = torch.zeros_like(input_ids)\n\n inputs = inputs + self.type_embeddings(token_type_ids)\n\n if self.layer_norm is not None:\n inputs = self.layer_norm(inputs)\n\n if self.out_dropout is not None:\n inputs = self.out_dropout(inputs)\n\n return inputs\n", "step-ids": [ 7, 9, 10, 12, 13 ] }
[ 7, 9, 10, 12, 13 ]
<|reserved_special_token_0|> class StaticBox(wx.Dialog): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class StaticBox(wx.Dialog): def __init__(self, parent, id, title): wx.Dialog.__init__(self, parent, id, title, size=(250, 230)) wx.StaticBox(self, -1, 'Personal Info', (5, 5), size=(240, 170)) wx.CheckBox(self, -1, 'Male', (15, 30)) wx.CheckBox(self, -1, 'Married', (15, 55)) wx.StaticText(self, -1, 'Age', (15, 95)) wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min=1, max=120) wx.Button(self, 1, 'Ok', (90, 185), (60, -1)) self.Bind(wx.EVT_BUTTON, self.OnClose, id=1) self.Center() self.ShowModal() self.Destroy() def OnClose(self, event): self.Close() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class StaticBox(wx.Dialog): def __init__(self, parent, id, title): wx.Dialog.__init__(self, parent, id, title, size=(250, 230)) wx.StaticBox(self, -1, 'Personal Info', (5, 5), size=(240, 170)) wx.CheckBox(self, -1, 'Male', (15, 30)) wx.CheckBox(self, -1, 'Married', (15, 55)) wx.StaticText(self, -1, 'Age', (15, 95)) wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min=1, max=120) wx.Button(self, 1, 'Ok', (90, 185), (60, -1)) self.Bind(wx.EVT_BUTTON, self.OnClose, id=1) self.Center() self.ShowModal() self.Destroy() def OnClose(self, event): self.Close() if __name__ == '__main__': app = wx.App() StaticBox(None, -1, 'staticbox.py') app.MainLoop() <|reserved_special_token_1|> import wx class StaticBox(wx.Dialog): def __init__(self, parent, id, title): wx.Dialog.__init__(self, parent, id, title, size=(250, 230)) wx.StaticBox(self, -1, 'Personal Info', (5, 5), size=(240, 170)) wx.CheckBox(self, -1, 'Male', (15, 30)) wx.CheckBox(self, -1, 'Married', (15, 55)) wx.StaticText(self, -1, 'Age', (15, 95)) wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min=1, max=120) wx.Button(self, 1, 'Ok', (90, 185), (60, -1)) self.Bind(wx.EVT_BUTTON, self.OnClose, id=1) self.Center() self.ShowModal() self.Destroy() def OnClose(self, event): self.Close() if __name__ == '__main__': app = wx.App() StaticBox(None, -1, 'staticbox.py') app.MainLoop() <|reserved_special_token_1|> #!/usr/bin/env python # -*- coding: utf-8 -*- # staticbox.py import wx class StaticBox(wx.Dialog): def __init__(self, parent, id, title): wx.Dialog.__init__(self, parent, id, title, size = (250, 230)) wx.StaticBox(self, -1, 'Personal Info', (5, 5), size = (240, 170)) wx.CheckBox(self, -1, 'Male', (15, 30)) wx.CheckBox(self, -1, 'Married', (15, 55)) wx.StaticText(self, -1, 'Age', (15, 95)) wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min = 1, max = 120) wx.Button(self, 1, 'Ok', (90, 185), (60, -1)) self.Bind(wx.EVT_BUTTON, self.OnClose, id = 1) self.Center() self.ShowModal() self.Destroy() def OnClose(self, event): self.Close() if __name__ == '__main__': app = wx.App() StaticBox(None, -1, 'staticbox.py') app.MainLoop()
flexible
{ "blob_id": "96bf6220bfc884e3a19f70a63d9ecba449e2e7e2", "index": 6108, "step-1": "<mask token>\n\n\nclass StaticBox(wx.Dialog):\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass StaticBox(wx.Dialog):\n\n def __init__(self, parent, id, title):\n wx.Dialog.__init__(self, parent, id, title, size=(250, 230))\n wx.StaticBox(self, -1, 'Personal Info', (5, 5), size=(240, 170))\n wx.CheckBox(self, -1, 'Male', (15, 30))\n wx.CheckBox(self, -1, 'Married', (15, 55))\n wx.StaticText(self, -1, 'Age', (15, 95))\n wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min=1, max=120)\n wx.Button(self, 1, 'Ok', (90, 185), (60, -1))\n self.Bind(wx.EVT_BUTTON, self.OnClose, id=1)\n self.Center()\n self.ShowModal()\n self.Destroy()\n\n def OnClose(self, event):\n self.Close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass StaticBox(wx.Dialog):\n\n def __init__(self, parent, id, title):\n wx.Dialog.__init__(self, parent, id, title, size=(250, 230))\n wx.StaticBox(self, -1, 'Personal Info', (5, 5), size=(240, 170))\n wx.CheckBox(self, -1, 'Male', (15, 30))\n wx.CheckBox(self, -1, 'Married', (15, 55))\n wx.StaticText(self, -1, 'Age', (15, 95))\n wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min=1, max=120)\n wx.Button(self, 1, 'Ok', (90, 185), (60, -1))\n self.Bind(wx.EVT_BUTTON, self.OnClose, id=1)\n self.Center()\n self.ShowModal()\n self.Destroy()\n\n def OnClose(self, event):\n self.Close()\n\n\nif __name__ == '__main__':\n app = wx.App()\n StaticBox(None, -1, 'staticbox.py')\n app.MainLoop()\n", "step-4": "import wx\n\n\nclass StaticBox(wx.Dialog):\n\n def __init__(self, parent, id, title):\n wx.Dialog.__init__(self, parent, id, title, size=(250, 230))\n wx.StaticBox(self, -1, 'Personal Info', (5, 5), size=(240, 170))\n wx.CheckBox(self, -1, 'Male', (15, 30))\n wx.CheckBox(self, -1, 'Married', (15, 55))\n wx.StaticText(self, -1, 'Age', (15, 95))\n wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min=1, max=120)\n wx.Button(self, 1, 'Ok', (90, 185), (60, -1))\n self.Bind(wx.EVT_BUTTON, self.OnClose, id=1)\n self.Center()\n self.ShowModal()\n self.Destroy()\n\n def OnClose(self, event):\n self.Close()\n\n\nif __name__ == '__main__':\n app = wx.App()\n StaticBox(None, -1, 'staticbox.py')\n app.MainLoop()\n", "step-5": "#!/usr/bin/env python \n# -*- coding: utf-8 -*- \n\n# staticbox.py\n\nimport wx\n\nclass StaticBox(wx.Dialog):\n def __init__(self, parent, id, title):\n wx.Dialog.__init__(self, parent, id, title, size = (250, 230))\n\n wx.StaticBox(self, -1, 'Personal Info', (5, 5), size = (240, 170))\n wx.CheckBox(self, -1, 'Male', (15, 30))\n wx.CheckBox(self, -1, 'Married', (15, 55))\n wx.StaticText(self, -1, 'Age', (15, 95))\n wx.SpinCtrl(self, -1, '1', (55, 90), (60, -1), min = 1, max = 120)\n wx.Button(self, 1, 'Ok', (90, 185), (60, -1))\n\n self.Bind(wx.EVT_BUTTON, self.OnClose, id = 1)\n\n self.Center()\n self.ShowModal()\n self.Destroy()\n\n def OnClose(self, event):\n self.Close()\n\nif __name__ == '__main__':\n app = wx.App()\n StaticBox(None, -1, 'staticbox.py')\n app.MainLoop()\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def my_logistic(x, a, b, c): return c / (1 + a * np.exp(-b * x)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> matplotlib.use('Agg') <|reserved_special_token_0|> df_mrns.sort_values('COLLECTION_DT', inplace=True) df_mrns.drop_duplicates('MRN', keep='first', inplace=True) <|reserved_special_token_0|> df_mrns_not_variant.sort_values('COLLECTION_DT', inplace=True) df_mrns_not_variant.drop_duplicates('MRN', keep='first', inplace=True) <|reserved_special_token_0|> df_2.drop_duplicates('MRN', keep='first', inplace=True) <|reserved_special_token_0|> df.sort_values('COLLECTION_DT', inplace=True) df.variant.fillna(0, inplace=True) <|reserved_special_token_0|> df_data.to_excel('final_Data_' + tag + '_log_growth_6_28_2021.xlsx', index= False) def my_logistic(x, a, b, c): return c / (1 + a * np.exp(-b * x)) <|reserved_special_token_0|> plt.scatter(x, y) plt.plot(x, my_logistic(x, a, b, c)) <|reserved_special_token_0|> plt.plot(xprime, yprime) plt.savefig('log_fit_best_fit' + tag + '.png') plt.close() <|reserved_special_token_0|> for i, p, var in zip(range(n), pars, np.diag(pcov)): sigma = var ** 0.5 if i == 1: val_dw = p - sigma * tval val_up = p + sigma * tval print('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma * tval, p + sigma * tval)) plt.plot(x, y, 'bo', markersize=5, label='Observed') <|reserved_special_token_0|> plt.plot(xprime, yprime, label='Predicted') <|reserved_special_token_0|> plt.fill_between(xpred, ypred_up, ypred_dw, color='k', alpha=0.1, label= '95% CI') plt.title('Logistic growth model [' + tag + ']', fontsize=18) plt.xlabel('Days since ' + days_since, fontsize=15) plt.ylabel('Percent of patients ', fontsize=15) plt.legend() plt.savefig('log_pred_best_fit' + tag + '.png') plt.close() <|reserved_special_token_0|> print(dt) <|reserved_special_token_0|> print(dt) <|reserved_special_token_0|> print(dt) <|reserved_special_token_1|> <|reserved_special_token_0|> matplotlib.use('Agg') <|reserved_special_token_0|> params = read_run_params() run = params['current_run'] out_home = params['container'] + 'output/' out_dir = out_home + run + '/' df = pd.read_csv(out_dir + '4_mcov_strain_variant_map_covid_pangolin_db_input_' + run + '.csv') df = df[df.quality == 'HQ'] tag = 'B.1.617.Family' voi = ['B.1.617.2', 'AY.2', 'AY.3'] start_date = '4-15-2021' end_date = '7-20-2021' days_since = '4/15/2021' days = 180 keep_mrns_variant = np.unique(df[df.variant.isin(voi)]['MRN']) df_mrns = df[df.MRN.isin(keep_mrns_variant)] df_mrns = df_mrns[df_mrns.variant.isin(voi)] df_mrns.sort_values('COLLECTION_DT', inplace=True) df_mrns.drop_duplicates('MRN', keep='first', inplace=True) keep_mrns_not_variant = np.unique(df[~df.variant.isin(voi)]['MRN']) df_mrns_not_variant = df[df.MRN.isin(keep_mrns_not_variant)] df_mrns_not_variant = df_mrns_not_variant[~df_mrns_not_variant.variant.isin (voi)] df_mrns_not_variant.sort_values('COLLECTION_DT', inplace=True) df_mrns_not_variant.drop_duplicates('MRN', keep='first', inplace=True) df_2 = df_mrns.append(df_mrns_not_variant) df_2.drop_duplicates('MRN', keep='first', inplace=True) df = df_2 df = df[['MCoVNumber', 'COLLECTION_DT', 'variant']] df.COLLECTION_DT = pd.to_datetime(df.COLLECTION_DT) df.COLLECTION_DT = df.COLLECTION_DT.dt.date df = df[(df.COLLECTION_DT >= pd.to_datetime(start_date)) & (df. COLLECTION_DT < pd.to_datetime(end_date))] df.sort_values('COLLECTION_DT', inplace=True) df.variant.fillna(0, inplace=True) df.variant = [(1 if x in voi else 0) for x in df.variant] df_variant = df.groupby('COLLECTION_DT')['variant'].agg('sum').reset_index() df_count = df.groupby('COLLECTION_DT')['variant'].agg('count').reset_index() dates = pd.date_range(df.COLLECTION_DT.min(), df.COLLECTION_DT.max() + timedelta(days=1) - timedelta(days=1), freq='d') df_data = pd.DataFrame(dates) df_data.columns = ['dates'] df_data['date_step'] = [x for x in range(1, df_data.shape[0] + 1, 1)] df_data['total'] = df_count.variant df_data['variant'] = df_variant.variant df_data['variant_csum'] = np.cumsum(df_variant.variant.values) df_data['variant_percent'] = [(x / y * 100) for x, y in zip(df_data.variant, df_data.total)] df_data.to_excel('final_Data_' + tag + '_log_growth_6_28_2021.xlsx', index= False) def my_logistic(x, a, b, c): return c / (1 + a * np.exp(-b * x)) x = np.array(df_data.date_step) y = np.array(df_data.variant_percent) po = np.random.exponential(size=3) bounds = 0, [1000.0, 2.0, 100.0] (a, b, c), cov = optim.curve_fit(my_logistic, x, y, bounds=bounds, p0=po) plt.scatter(x, y) plt.plot(x, my_logistic(x, a, b, c)) xprime = np.array([x for x in range(1, 170, 1)]) yprime = my_logistic(xprime, a, b, c) plt.plot(xprime, yprime) plt.savefig('log_fit_best_fit' + tag + '.png') plt.close() <|reserved_special_token_0|> pars, pcov = (a, b, c), cov alpha = 0.05 n = len(y) p = len(pars) dof = max(0, n - p) tval = t.ppf(1.0 - alpha / 2.0, dof) val_dw = 0 val_up = 0 for i, p, var in zip(range(n), pars, np.diag(pcov)): sigma = var ** 0.5 if i == 1: val_dw = p - sigma * tval val_up = p + sigma * tval print('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma * tval, p + sigma * tval)) plt.plot(x, y, 'bo', markersize=5, label='Observed') xprime = np.array([x for x in range(1, days, 1)]) yprime = my_logistic(xprime, a, b, c) plt.plot(xprime, yprime, label='Predicted') xpred = np.array([x for x in range(1, days, 1)]) ypred_dw = my_logistic(xpred, pars[0], val_dw, pars[2]) ypred_up = my_logistic(xpred, pars[0], val_up, pars[2]) plt.fill_between(xpred, ypred_up, ypred_dw, color='k', alpha=0.1, label= '95% CI') plt.title('Logistic growth model [' + tag + ']', fontsize=18) plt.xlabel('Days since ' + days_since, fontsize=15) plt.ylabel('Percent of patients ', fontsize=15) plt.legend() plt.savefig('log_pred_best_fit' + tag + '.png') plt.close() gr = b dt = 70 / (gr * 100) print(dt) gr = val_up dt = 70 / (gr * 100) print(dt) gr = val_dw dt = 70 / (gr * 100) print(dt) <|reserved_special_token_1|> import pandas as pd import numpy as np from datetime import timedelta import scipy.optimize as optim from scipy import stats import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from gen_utils.gen_io import read_run_params, log_msg params = read_run_params() run = params['current_run'] out_home = params['container'] + 'output/' out_dir = out_home + run + '/' df = pd.read_csv(out_dir + '4_mcov_strain_variant_map_covid_pangolin_db_input_' + run + '.csv') df = df[df.quality == 'HQ'] tag = 'B.1.617.Family' voi = ['B.1.617.2', 'AY.2', 'AY.3'] start_date = '4-15-2021' end_date = '7-20-2021' days_since = '4/15/2021' days = 180 keep_mrns_variant = np.unique(df[df.variant.isin(voi)]['MRN']) df_mrns = df[df.MRN.isin(keep_mrns_variant)] df_mrns = df_mrns[df_mrns.variant.isin(voi)] df_mrns.sort_values('COLLECTION_DT', inplace=True) df_mrns.drop_duplicates('MRN', keep='first', inplace=True) keep_mrns_not_variant = np.unique(df[~df.variant.isin(voi)]['MRN']) df_mrns_not_variant = df[df.MRN.isin(keep_mrns_not_variant)] df_mrns_not_variant = df_mrns_not_variant[~df_mrns_not_variant.variant.isin (voi)] df_mrns_not_variant.sort_values('COLLECTION_DT', inplace=True) df_mrns_not_variant.drop_duplicates('MRN', keep='first', inplace=True) df_2 = df_mrns.append(df_mrns_not_variant) df_2.drop_duplicates('MRN', keep='first', inplace=True) df = df_2 df = df[['MCoVNumber', 'COLLECTION_DT', 'variant']] df.COLLECTION_DT = pd.to_datetime(df.COLLECTION_DT) df.COLLECTION_DT = df.COLLECTION_DT.dt.date df = df[(df.COLLECTION_DT >= pd.to_datetime(start_date)) & (df. COLLECTION_DT < pd.to_datetime(end_date))] df.sort_values('COLLECTION_DT', inplace=True) df.variant.fillna(0, inplace=True) df.variant = [(1 if x in voi else 0) for x in df.variant] df_variant = df.groupby('COLLECTION_DT')['variant'].agg('sum').reset_index() df_count = df.groupby('COLLECTION_DT')['variant'].agg('count').reset_index() dates = pd.date_range(df.COLLECTION_DT.min(), df.COLLECTION_DT.max() + timedelta(days=1) - timedelta(days=1), freq='d') df_data = pd.DataFrame(dates) df_data.columns = ['dates'] df_data['date_step'] = [x for x in range(1, df_data.shape[0] + 1, 1)] df_data['total'] = df_count.variant df_data['variant'] = df_variant.variant df_data['variant_csum'] = np.cumsum(df_variant.variant.values) df_data['variant_percent'] = [(x / y * 100) for x, y in zip(df_data.variant, df_data.total)] df_data.to_excel('final_Data_' + tag + '_log_growth_6_28_2021.xlsx', index= False) def my_logistic(x, a, b, c): return c / (1 + a * np.exp(-b * x)) x = np.array(df_data.date_step) y = np.array(df_data.variant_percent) po = np.random.exponential(size=3) bounds = 0, [1000.0, 2.0, 100.0] (a, b, c), cov = optim.curve_fit(my_logistic, x, y, bounds=bounds, p0=po) plt.scatter(x, y) plt.plot(x, my_logistic(x, a, b, c)) xprime = np.array([x for x in range(1, 170, 1)]) yprime = my_logistic(xprime, a, b, c) plt.plot(xprime, yprime) plt.savefig('log_fit_best_fit' + tag + '.png') plt.close() from scipy.stats.distributions import t pars, pcov = (a, b, c), cov alpha = 0.05 n = len(y) p = len(pars) dof = max(0, n - p) tval = t.ppf(1.0 - alpha / 2.0, dof) val_dw = 0 val_up = 0 for i, p, var in zip(range(n), pars, np.diag(pcov)): sigma = var ** 0.5 if i == 1: val_dw = p - sigma * tval val_up = p + sigma * tval print('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma * tval, p + sigma * tval)) plt.plot(x, y, 'bo', markersize=5, label='Observed') xprime = np.array([x for x in range(1, days, 1)]) yprime = my_logistic(xprime, a, b, c) plt.plot(xprime, yprime, label='Predicted') xpred = np.array([x for x in range(1, days, 1)]) ypred_dw = my_logistic(xpred, pars[0], val_dw, pars[2]) ypred_up = my_logistic(xpred, pars[0], val_up, pars[2]) plt.fill_between(xpred, ypred_up, ypred_dw, color='k', alpha=0.1, label= '95% CI') plt.title('Logistic growth model [' + tag + ']', fontsize=18) plt.xlabel('Days since ' + days_since, fontsize=15) plt.ylabel('Percent of patients ', fontsize=15) plt.legend() plt.savefig('log_pred_best_fit' + tag + '.png') plt.close() gr = b dt = 70 / (gr * 100) print(dt) gr = val_up dt = 70 / (gr * 100) print(dt) gr = val_dw dt = 70 / (gr * 100) print(dt) <|reserved_special_token_1|> import pandas as pd import numpy as np from datetime import timedelta import scipy.optimize as optim from scipy import stats import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from gen_utils.gen_io import read_run_params,log_msg ############################################# params = read_run_params() run = params["current_run"] out_home = params["container"]+"output/" out_dir = out_home+run+"/" df = pd.read_csv(out_dir+"4_mcov_strain_variant_map_covid_pangolin_db_input_"+run+".csv") df = df[df.quality=="HQ"] ######################### tag="B.1.617.Family" voi=["B.1.617.2","AY.2","AY.3"] start_date = "4-15-2021" end_date = "7-20-2021" days_since="4/15/2021" days= 180 # voi="P.1" # start_date = "1-1-2021" # end_date = "6-20-2021" # days_since="1/1/2021" # days= 360 ################################# ###take unique patients with variant keep_mrns_variant = np.unique(df[df.variant.isin(voi)]["MRN"]) df_mrns = df[df.MRN.isin(keep_mrns_variant)] df_mrns = df_mrns[df_mrns.variant.isin(voi)] ###important step--remove non b117 variant df_mrns.sort_values("COLLECTION_DT",inplace=True) df_mrns.drop_duplicates("MRN",keep="first",inplace=True) keep_mrns_not_variant = np.unique(df[~df.variant.isin(voi)]["MRN"]) df_mrns_not_variant = df[df.MRN.isin(keep_mrns_not_variant)] df_mrns_not_variant = df_mrns_not_variant[~df_mrns_not_variant.variant.isin(voi)] df_mrns_not_variant.sort_values("COLLECTION_DT",inplace=True) df_mrns_not_variant.drop_duplicates("MRN",keep="first",inplace=True) df_2 = df_mrns.append(df_mrns_not_variant) df_2.drop_duplicates("MRN",keep="first",inplace=True) df = df_2 df=df[['MCoVNumber','COLLECTION_DT','variant']] ##################################### df.COLLECTION_DT = pd.to_datetime(df.COLLECTION_DT) df.COLLECTION_DT = df.COLLECTION_DT.dt.date df = df[ ( (df.COLLECTION_DT>=pd.to_datetime(start_date)) & (df.COLLECTION_DT<pd.to_datetime(end_date)) ) ] df.sort_values("COLLECTION_DT",inplace=True) df.variant.fillna(0,inplace=True) ######################### df.variant = [1 if x in voi else 0 for x in df.variant] df_variant = df.groupby("COLLECTION_DT")["variant"].agg("sum").reset_index() df_count = df.groupby("COLLECTION_DT")["variant"].agg("count").reset_index() dates = pd.date_range(df.COLLECTION_DT.min(), (df.COLLECTION_DT.max() + timedelta(days=1) )-timedelta(days=1),freq='d') df_data = pd.DataFrame(dates) df_data.columns=["dates"] df_data["date_step"]= [x for x in range(1,df_data.shape[0]+1,1)] df_data["total"] = df_count.variant df_data["variant"] = df_variant.variant df_data["variant_csum"] = np.cumsum(df_variant.variant.values) df_data["variant_percent"]=[ (x/y)*100 for x,y in zip(df_data.variant,df_data.total)] df_data.to_excel("final_Data_"+tag+"_log_growth_6_28_2021.xlsx",index=False) def my_logistic(x,a,b,c): return c/(1 + a * np.exp(-b*x)) x = np.array(df_data.date_step) # y = np.array(df_data.variant_csum) y = np.array(df_data.variant_percent) ##########optimize po = np.random.exponential(size=3) bounds = (0,[1000.,2.0,100.]) (a,b,c),cov = optim.curve_fit(my_logistic,x,y,bounds=bounds,p0=po) # for i in range(1,20,1): # try: # # po = np.array([250.,0.10,99.]) # po= np.random.exponential(size=3) # bounds = ([0.,0.1,0.],[1000.,float(i),100.]) # (a,b,c),cov = optim.curve_fit(my_logistic,x,y,bounds=bounds,p0=po) # print(c) # except: # print("error for " + str(i)) # po = np.array([250.,0.10,99.]) # bounds = ([0.,0.1,99.],[1000.,1.0,100.]) # (a,b,c),cov = optim.curve_fit(my_logistic,x,y,bounds=bounds,p0=po) plt.scatter(x,y) plt.plot(x,my_logistic(x,a,b,c)) xprime = np.array([x for x in range(1,170,1)]) yprime = my_logistic(xprime,a,b,c) plt.plot(xprime,yprime) plt.savefig("log_fit_best_fit"+tag+".png") plt.close() ############################## method 2 using t distribution on error --> perfer this one from scipy.stats.distributions import t pars, pcov = (a,b,c),cov alpha = 0.05 # 95% confidence interval = 100*(1-alpha) n = len(y) # number of data points p = len(pars) # number of parameters dof = max(0, n - p) # number of degrees of freedom # student-t value for the dof and confidence level tval = t.ppf(1.0-alpha/2., dof) val_dw = 0 val_up = 0 for i, p,var in zip(range(n), pars, np.diag(pcov)): sigma = var**0.5 if i==1: val_dw = p - sigma*tval val_up = p + sigma*tval print ('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma*tval, p + sigma*tval)) plt.plot(x,y,'bo',markersize=5,label='Observed') xprime = np.array([x for x in range(1,days,1)]) yprime = my_logistic(xprime,a,b,c) plt.plot(xprime,yprime,label='Predicted') xpred = np.array([x for x in range(1,days,1)]) ypred_dw = my_logistic(xpred,pars[0],val_dw,pars[2]) ypred_up = my_logistic(xpred,pars[0],val_up,pars[2]) plt.fill_between(xpred, ypred_up,ypred_dw,color = 'k', alpha = 0.1,label='95% CI') plt.title("Logistic growth model ["+tag+"]",fontsize=18) plt.xlabel("Days since "+days_since,fontsize=15) plt.ylabel("Percent of patients ",fontsize=15) plt.legend() plt.savefig("log_pred_best_fit"+tag+".png") plt.close() gr=b;dt = 70/(gr*100);print(dt) gr=val_up;dt = 70/(gr*100);print(dt) gr=val_dw;dt = 70/(gr*100);print(dt)
flexible
{ "blob_id": "dcef5f34a62939d992a109e991552e612bf5bad5", "index": 4619, "step-1": "<mask token>\n\n\ndef my_logistic(x, a, b, c):\n return c / (1 + a * np.exp(-b * x))\n\n\n<mask token>\n", "step-2": "<mask token>\nmatplotlib.use('Agg')\n<mask token>\ndf_mrns.sort_values('COLLECTION_DT', inplace=True)\ndf_mrns.drop_duplicates('MRN', keep='first', inplace=True)\n<mask token>\ndf_mrns_not_variant.sort_values('COLLECTION_DT', inplace=True)\ndf_mrns_not_variant.drop_duplicates('MRN', keep='first', inplace=True)\n<mask token>\ndf_2.drop_duplicates('MRN', keep='first', inplace=True)\n<mask token>\ndf.sort_values('COLLECTION_DT', inplace=True)\ndf.variant.fillna(0, inplace=True)\n<mask token>\ndf_data.to_excel('final_Data_' + tag + '_log_growth_6_28_2021.xlsx', index=\n False)\n\n\ndef my_logistic(x, a, b, c):\n return c / (1 + a * np.exp(-b * x))\n\n\n<mask token>\nplt.scatter(x, y)\nplt.plot(x, my_logistic(x, a, b, c))\n<mask token>\nplt.plot(xprime, yprime)\nplt.savefig('log_fit_best_fit' + tag + '.png')\nplt.close()\n<mask token>\nfor i, p, var in zip(range(n), pars, np.diag(pcov)):\n sigma = var ** 0.5\n if i == 1:\n val_dw = p - sigma * tval\n val_up = p + sigma * tval\n print('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma * tval, p + sigma *\n tval))\nplt.plot(x, y, 'bo', markersize=5, label='Observed')\n<mask token>\nplt.plot(xprime, yprime, label='Predicted')\n<mask token>\nplt.fill_between(xpred, ypred_up, ypred_dw, color='k', alpha=0.1, label=\n '95% CI')\nplt.title('Logistic growth model [' + tag + ']', fontsize=18)\nplt.xlabel('Days since ' + days_since, fontsize=15)\nplt.ylabel('Percent of patients ', fontsize=15)\nplt.legend()\nplt.savefig('log_pred_best_fit' + tag + '.png')\nplt.close()\n<mask token>\nprint(dt)\n<mask token>\nprint(dt)\n<mask token>\nprint(dt)\n", "step-3": "<mask token>\nmatplotlib.use('Agg')\n<mask token>\nparams = read_run_params()\nrun = params['current_run']\nout_home = params['container'] + 'output/'\nout_dir = out_home + run + '/'\ndf = pd.read_csv(out_dir +\n '4_mcov_strain_variant_map_covid_pangolin_db_input_' + run + '.csv')\ndf = df[df.quality == 'HQ']\ntag = 'B.1.617.Family'\nvoi = ['B.1.617.2', 'AY.2', 'AY.3']\nstart_date = '4-15-2021'\nend_date = '7-20-2021'\ndays_since = '4/15/2021'\ndays = 180\nkeep_mrns_variant = np.unique(df[df.variant.isin(voi)]['MRN'])\ndf_mrns = df[df.MRN.isin(keep_mrns_variant)]\ndf_mrns = df_mrns[df_mrns.variant.isin(voi)]\ndf_mrns.sort_values('COLLECTION_DT', inplace=True)\ndf_mrns.drop_duplicates('MRN', keep='first', inplace=True)\nkeep_mrns_not_variant = np.unique(df[~df.variant.isin(voi)]['MRN'])\ndf_mrns_not_variant = df[df.MRN.isin(keep_mrns_not_variant)]\ndf_mrns_not_variant = df_mrns_not_variant[~df_mrns_not_variant.variant.isin\n (voi)]\ndf_mrns_not_variant.sort_values('COLLECTION_DT', inplace=True)\ndf_mrns_not_variant.drop_duplicates('MRN', keep='first', inplace=True)\ndf_2 = df_mrns.append(df_mrns_not_variant)\ndf_2.drop_duplicates('MRN', keep='first', inplace=True)\ndf = df_2\ndf = df[['MCoVNumber', 'COLLECTION_DT', 'variant']]\ndf.COLLECTION_DT = pd.to_datetime(df.COLLECTION_DT)\ndf.COLLECTION_DT = df.COLLECTION_DT.dt.date\ndf = df[(df.COLLECTION_DT >= pd.to_datetime(start_date)) & (df.\n COLLECTION_DT < pd.to_datetime(end_date))]\ndf.sort_values('COLLECTION_DT', inplace=True)\ndf.variant.fillna(0, inplace=True)\ndf.variant = [(1 if x in voi else 0) for x in df.variant]\ndf_variant = df.groupby('COLLECTION_DT')['variant'].agg('sum').reset_index()\ndf_count = df.groupby('COLLECTION_DT')['variant'].agg('count').reset_index()\ndates = pd.date_range(df.COLLECTION_DT.min(), df.COLLECTION_DT.max() +\n timedelta(days=1) - timedelta(days=1), freq='d')\ndf_data = pd.DataFrame(dates)\ndf_data.columns = ['dates']\ndf_data['date_step'] = [x for x in range(1, df_data.shape[0] + 1, 1)]\ndf_data['total'] = df_count.variant\ndf_data['variant'] = df_variant.variant\ndf_data['variant_csum'] = np.cumsum(df_variant.variant.values)\ndf_data['variant_percent'] = [(x / y * 100) for x, y in zip(df_data.variant,\n df_data.total)]\ndf_data.to_excel('final_Data_' + tag + '_log_growth_6_28_2021.xlsx', index=\n False)\n\n\ndef my_logistic(x, a, b, c):\n return c / (1 + a * np.exp(-b * x))\n\n\nx = np.array(df_data.date_step)\ny = np.array(df_data.variant_percent)\npo = np.random.exponential(size=3)\nbounds = 0, [1000.0, 2.0, 100.0]\n(a, b, c), cov = optim.curve_fit(my_logistic, x, y, bounds=bounds, p0=po)\nplt.scatter(x, y)\nplt.plot(x, my_logistic(x, a, b, c))\nxprime = np.array([x for x in range(1, 170, 1)])\nyprime = my_logistic(xprime, a, b, c)\nplt.plot(xprime, yprime)\nplt.savefig('log_fit_best_fit' + tag + '.png')\nplt.close()\n<mask token>\npars, pcov = (a, b, c), cov\nalpha = 0.05\nn = len(y)\np = len(pars)\ndof = max(0, n - p)\ntval = t.ppf(1.0 - alpha / 2.0, dof)\nval_dw = 0\nval_up = 0\nfor i, p, var in zip(range(n), pars, np.diag(pcov)):\n sigma = var ** 0.5\n if i == 1:\n val_dw = p - sigma * tval\n val_up = p + sigma * tval\n print('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma * tval, p + sigma *\n tval))\nplt.plot(x, y, 'bo', markersize=5, label='Observed')\nxprime = np.array([x for x in range(1, days, 1)])\nyprime = my_logistic(xprime, a, b, c)\nplt.plot(xprime, yprime, label='Predicted')\nxpred = np.array([x for x in range(1, days, 1)])\nypred_dw = my_logistic(xpred, pars[0], val_dw, pars[2])\nypred_up = my_logistic(xpred, pars[0], val_up, pars[2])\nplt.fill_between(xpred, ypred_up, ypred_dw, color='k', alpha=0.1, label=\n '95% CI')\nplt.title('Logistic growth model [' + tag + ']', fontsize=18)\nplt.xlabel('Days since ' + days_since, fontsize=15)\nplt.ylabel('Percent of patients ', fontsize=15)\nplt.legend()\nplt.savefig('log_pred_best_fit' + tag + '.png')\nplt.close()\ngr = b\ndt = 70 / (gr * 100)\nprint(dt)\ngr = val_up\ndt = 70 / (gr * 100)\nprint(dt)\ngr = val_dw\ndt = 70 / (gr * 100)\nprint(dt)\n", "step-4": "import pandas as pd\nimport numpy as np\nfrom datetime import timedelta\nimport scipy.optimize as optim\nfrom scipy import stats\nimport matplotlib\nmatplotlib.use('Agg')\nimport matplotlib.pyplot as plt\nfrom gen_utils.gen_io import read_run_params, log_msg\nparams = read_run_params()\nrun = params['current_run']\nout_home = params['container'] + 'output/'\nout_dir = out_home + run + '/'\ndf = pd.read_csv(out_dir +\n '4_mcov_strain_variant_map_covid_pangolin_db_input_' + run + '.csv')\ndf = df[df.quality == 'HQ']\ntag = 'B.1.617.Family'\nvoi = ['B.1.617.2', 'AY.2', 'AY.3']\nstart_date = '4-15-2021'\nend_date = '7-20-2021'\ndays_since = '4/15/2021'\ndays = 180\nkeep_mrns_variant = np.unique(df[df.variant.isin(voi)]['MRN'])\ndf_mrns = df[df.MRN.isin(keep_mrns_variant)]\ndf_mrns = df_mrns[df_mrns.variant.isin(voi)]\ndf_mrns.sort_values('COLLECTION_DT', inplace=True)\ndf_mrns.drop_duplicates('MRN', keep='first', inplace=True)\nkeep_mrns_not_variant = np.unique(df[~df.variant.isin(voi)]['MRN'])\ndf_mrns_not_variant = df[df.MRN.isin(keep_mrns_not_variant)]\ndf_mrns_not_variant = df_mrns_not_variant[~df_mrns_not_variant.variant.isin\n (voi)]\ndf_mrns_not_variant.sort_values('COLLECTION_DT', inplace=True)\ndf_mrns_not_variant.drop_duplicates('MRN', keep='first', inplace=True)\ndf_2 = df_mrns.append(df_mrns_not_variant)\ndf_2.drop_duplicates('MRN', keep='first', inplace=True)\ndf = df_2\ndf = df[['MCoVNumber', 'COLLECTION_DT', 'variant']]\ndf.COLLECTION_DT = pd.to_datetime(df.COLLECTION_DT)\ndf.COLLECTION_DT = df.COLLECTION_DT.dt.date\ndf = df[(df.COLLECTION_DT >= pd.to_datetime(start_date)) & (df.\n COLLECTION_DT < pd.to_datetime(end_date))]\ndf.sort_values('COLLECTION_DT', inplace=True)\ndf.variant.fillna(0, inplace=True)\ndf.variant = [(1 if x in voi else 0) for x in df.variant]\ndf_variant = df.groupby('COLLECTION_DT')['variant'].agg('sum').reset_index()\ndf_count = df.groupby('COLLECTION_DT')['variant'].agg('count').reset_index()\ndates = pd.date_range(df.COLLECTION_DT.min(), df.COLLECTION_DT.max() +\n timedelta(days=1) - timedelta(days=1), freq='d')\ndf_data = pd.DataFrame(dates)\ndf_data.columns = ['dates']\ndf_data['date_step'] = [x for x in range(1, df_data.shape[0] + 1, 1)]\ndf_data['total'] = df_count.variant\ndf_data['variant'] = df_variant.variant\ndf_data['variant_csum'] = np.cumsum(df_variant.variant.values)\ndf_data['variant_percent'] = [(x / y * 100) for x, y in zip(df_data.variant,\n df_data.total)]\ndf_data.to_excel('final_Data_' + tag + '_log_growth_6_28_2021.xlsx', index=\n False)\n\n\ndef my_logistic(x, a, b, c):\n return c / (1 + a * np.exp(-b * x))\n\n\nx = np.array(df_data.date_step)\ny = np.array(df_data.variant_percent)\npo = np.random.exponential(size=3)\nbounds = 0, [1000.0, 2.0, 100.0]\n(a, b, c), cov = optim.curve_fit(my_logistic, x, y, bounds=bounds, p0=po)\nplt.scatter(x, y)\nplt.plot(x, my_logistic(x, a, b, c))\nxprime = np.array([x for x in range(1, 170, 1)])\nyprime = my_logistic(xprime, a, b, c)\nplt.plot(xprime, yprime)\nplt.savefig('log_fit_best_fit' + tag + '.png')\nplt.close()\nfrom scipy.stats.distributions import t\npars, pcov = (a, b, c), cov\nalpha = 0.05\nn = len(y)\np = len(pars)\ndof = max(0, n - p)\ntval = t.ppf(1.0 - alpha / 2.0, dof)\nval_dw = 0\nval_up = 0\nfor i, p, var in zip(range(n), pars, np.diag(pcov)):\n sigma = var ** 0.5\n if i == 1:\n val_dw = p - sigma * tval\n val_up = p + sigma * tval\n print('p{0}: {1} [{2} {3}]'.format(i, p, p - sigma * tval, p + sigma *\n tval))\nplt.plot(x, y, 'bo', markersize=5, label='Observed')\nxprime = np.array([x for x in range(1, days, 1)])\nyprime = my_logistic(xprime, a, b, c)\nplt.plot(xprime, yprime, label='Predicted')\nxpred = np.array([x for x in range(1, days, 1)])\nypred_dw = my_logistic(xpred, pars[0], val_dw, pars[2])\nypred_up = my_logistic(xpred, pars[0], val_up, pars[2])\nplt.fill_between(xpred, ypred_up, ypred_dw, color='k', alpha=0.1, label=\n '95% CI')\nplt.title('Logistic growth model [' + tag + ']', fontsize=18)\nplt.xlabel('Days since ' + days_since, fontsize=15)\nplt.ylabel('Percent of patients ', fontsize=15)\nplt.legend()\nplt.savefig('log_pred_best_fit' + tag + '.png')\nplt.close()\ngr = b\ndt = 70 / (gr * 100)\nprint(dt)\ngr = val_up\ndt = 70 / (gr * 100)\nprint(dt)\ngr = val_dw\ndt = 70 / (gr * 100)\nprint(dt)\n", "step-5": "import pandas as pd\nimport numpy as np\nfrom datetime import timedelta\nimport scipy.optimize as optim\nfrom scipy import stats\nimport matplotlib\nmatplotlib.use('Agg')\nimport matplotlib.pyplot as plt\nfrom gen_utils.gen_io import read_run_params,log_msg\n\n\n\n#############################################\n\nparams = read_run_params()\nrun = params[\"current_run\"]\nout_home = params[\"container\"]+\"output/\" \nout_dir = out_home+run+\"/\"\n\ndf = pd.read_csv(out_dir+\"4_mcov_strain_variant_map_covid_pangolin_db_input_\"+run+\".csv\")\ndf = df[df.quality==\"HQ\"]\n\n\n \n#########################\ntag=\"B.1.617.Family\"\nvoi=[\"B.1.617.2\",\"AY.2\",\"AY.3\"]\nstart_date = \"4-15-2021\"\nend_date = \"7-20-2021\"\ndays_since=\"4/15/2021\"\ndays= 180\n\n# voi=\"P.1\"\n# start_date = \"1-1-2021\"\n# end_date = \"6-20-2021\"\n# days_since=\"1/1/2021\"\n# days= 360\n#################################\n\n\n###take unique patients with variant\nkeep_mrns_variant = np.unique(df[df.variant.isin(voi)][\"MRN\"])\ndf_mrns = df[df.MRN.isin(keep_mrns_variant)]\ndf_mrns = df_mrns[df_mrns.variant.isin(voi)] ###important step--remove non b117 variant \ndf_mrns.sort_values(\"COLLECTION_DT\",inplace=True)\ndf_mrns.drop_duplicates(\"MRN\",keep=\"first\",inplace=True)\n\n\nkeep_mrns_not_variant = np.unique(df[~df.variant.isin(voi)][\"MRN\"])\ndf_mrns_not_variant = df[df.MRN.isin(keep_mrns_not_variant)]\ndf_mrns_not_variant = df_mrns_not_variant[~df_mrns_not_variant.variant.isin(voi)]\ndf_mrns_not_variant.sort_values(\"COLLECTION_DT\",inplace=True)\ndf_mrns_not_variant.drop_duplicates(\"MRN\",keep=\"first\",inplace=True)\n\ndf_2 = df_mrns.append(df_mrns_not_variant)\ndf_2.drop_duplicates(\"MRN\",keep=\"first\",inplace=True)\n\ndf = df_2\n\n\ndf=df[['MCoVNumber','COLLECTION_DT','variant']]\n\n#####################################\n\ndf.COLLECTION_DT = pd.to_datetime(df.COLLECTION_DT)\ndf.COLLECTION_DT = df.COLLECTION_DT.dt.date\n\n\ndf = df[ ( (df.COLLECTION_DT>=pd.to_datetime(start_date)) &\n (df.COLLECTION_DT<pd.to_datetime(end_date)) \n )\n ]\ndf.sort_values(\"COLLECTION_DT\",inplace=True)\n\ndf.variant.fillna(0,inplace=True)\n#########################\n\ndf.variant = [1 if x in voi else 0 for x in df.variant]\n\n\ndf_variant = df.groupby(\"COLLECTION_DT\")[\"variant\"].agg(\"sum\").reset_index()\ndf_count = df.groupby(\"COLLECTION_DT\")[\"variant\"].agg(\"count\").reset_index()\n\ndates = pd.date_range(df.COLLECTION_DT.min(), (df.COLLECTION_DT.max() + timedelta(days=1) )-timedelta(days=1),freq='d')\ndf_data = pd.DataFrame(dates)\ndf_data.columns=[\"dates\"]\ndf_data[\"date_step\"]= [x for x in range(1,df_data.shape[0]+1,1)]\ndf_data[\"total\"] = df_count.variant\ndf_data[\"variant\"] = df_variant.variant\ndf_data[\"variant_csum\"] = np.cumsum(df_variant.variant.values)\ndf_data[\"variant_percent\"]=[ (x/y)*100 for x,y in zip(df_data.variant,df_data.total)]\ndf_data.to_excel(\"final_Data_\"+tag+\"_log_growth_6_28_2021.xlsx\",index=False)\n\ndef my_logistic(x,a,b,c):\n return c/(1 + a * np.exp(-b*x))\n\nx = np.array(df_data.date_step)\n# y = np.array(df_data.variant_csum)\ny = np.array(df_data.variant_percent)\n\n##########optimize\npo = np.random.exponential(size=3)\nbounds = (0,[1000.,2.0,100.])\n(a,b,c),cov = optim.curve_fit(my_logistic,x,y,bounds=bounds,p0=po)\n\n# for i in range(1,20,1):\n# try:\n# # po = np.array([250.,0.10,99.])\n# po= np.random.exponential(size=3)\n# bounds = ([0.,0.1,0.],[1000.,float(i),100.])\n# (a,b,c),cov = optim.curve_fit(my_logistic,x,y,bounds=bounds,p0=po)\n# print(c)\n# except:\n# print(\"error for \" + str(i))\n\n# po = np.array([250.,0.10,99.])\n# bounds = ([0.,0.1,99.],[1000.,1.0,100.])\n# (a,b,c),cov = optim.curve_fit(my_logistic,x,y,bounds=bounds,p0=po)\n\nplt.scatter(x,y)\nplt.plot(x,my_logistic(x,a,b,c))\nxprime = np.array([x for x in range(1,170,1)])\nyprime = my_logistic(xprime,a,b,c)\nplt.plot(xprime,yprime)\nplt.savefig(\"log_fit_best_fit\"+tag+\".png\")\nplt.close()\n\n\n############################## method 2 using t distribution on error --> perfer this one \n\nfrom scipy.stats.distributions import t\n\npars, pcov = (a,b,c),cov\n\nalpha = 0.05 # 95% confidence interval = 100*(1-alpha)\n\nn = len(y) # number of data points\np = len(pars) # number of parameters\n\ndof = max(0, n - p) # number of degrees of freedom\n\n# student-t value for the dof and confidence level\ntval = t.ppf(1.0-alpha/2., dof) \n\nval_dw = 0\nval_up = 0\nfor i, p,var in zip(range(n), pars, np.diag(pcov)):\n sigma = var**0.5\n \n if i==1:\n val_dw = p - sigma*tval\n val_up = p + sigma*tval\n\n print ('p{0}: {1} [{2} {3}]'.format(i, p,\n p - sigma*tval,\n p + sigma*tval))\n\n\n\nplt.plot(x,y,'bo',markersize=5,label='Observed')\nxprime = np.array([x for x in range(1,days,1)])\nyprime = my_logistic(xprime,a,b,c)\nplt.plot(xprime,yprime,label='Predicted')\n\nxpred = np.array([x for x in range(1,days,1)])\nypred_dw = my_logistic(xpred,pars[0],val_dw,pars[2])\nypred_up = my_logistic(xpred,pars[0],val_up,pars[2])\n\nplt.fill_between(xpred, ypred_up,ypred_dw,color = 'k', alpha = 0.1,label='95% CI')\n\nplt.title(\"Logistic growth model [\"+tag+\"]\",fontsize=18)\nplt.xlabel(\"Days since \"+days_since,fontsize=15)\nplt.ylabel(\"Percent of patients \",fontsize=15)\n\nplt.legend()\nplt.savefig(\"log_pred_best_fit\"+tag+\".png\")\nplt.close()\n\n\ngr=b;dt = 70/(gr*100);print(dt)\ngr=val_up;dt = 70/(gr*100);print(dt)\ngr=val_dw;dt = 70/(gr*100);print(dt)\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(suv_data.head(10)) print('the no of passengers in the list is' + str(len(suv_data.index))) sns.countplot(x='Purchased', data=suv_data) sns.countplot(x='Purchased', hue='Gender', data=suv_data) suv_data['Age'].plot.hist() suv_data.info() suv_data['EstimatedSalary'].plot.hist(bins=50, figsize=(10, 5)) print(suv_data.isnull()) print(suv_data.isnull().sum()) sns.heatmap(suv_data.isnull(), yticklabels=False, cmap='viridis') plt.show() sns.boxplot(x='Gender', y='Age', data=suv_data) plt.show() suv_data.drop('User ID', axis=1, inplace=True) suv_data.columns suv_data.head(10) <|reserved_special_token_0|> print(Gen.head(5)) <|reserved_special_token_0|> print(suv_data.head(5)) suv_data.drop('Gender', axis=1, inplace=True) print(suv_data.head(10)) <|reserved_special_token_0|> logmodel.fit(X_train, y_train) <|reserved_special_token_0|> print(predictions) <|reserved_special_token_0|> print(classification_report(y_test, predictions)) <|reserved_special_token_0|> print(confusion_matrix(y_test, predictions)) <|reserved_special_token_0|> print(accuracy_score(y_test, predictions) * 100) <|reserved_special_token_1|> <|reserved_special_token_0|> suv_data = pd.read_csv('F:/Development/Machine Learning/suv-data/suv_data.csv') print(suv_data.head(10)) print('the no of passengers in the list is' + str(len(suv_data.index))) sns.countplot(x='Purchased', data=suv_data) sns.countplot(x='Purchased', hue='Gender', data=suv_data) suv_data['Age'].plot.hist() suv_data.info() suv_data['EstimatedSalary'].plot.hist(bins=50, figsize=(10, 5)) print(suv_data.isnull()) print(suv_data.isnull().sum()) sns.heatmap(suv_data.isnull(), yticklabels=False, cmap='viridis') plt.show() sns.boxplot(x='Gender', y='Age', data=suv_data) plt.show() suv_data.drop('User ID', axis=1, inplace=True) suv_data.columns suv_data.head(10) Gen = pd.get_dummies(suv_data['Gender'], drop_first=True) print(Gen.head(5)) suv_data = pd.concat([suv_data, Gen], axis=1) print(suv_data.head(5)) suv_data.drop('Gender', axis=1, inplace=True) print(suv_data.head(10)) X = suv_data.iloc[:, [0, 1, 3]].values y = suv_data.iloc[:, 2].values <|reserved_special_token_0|> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) <|reserved_special_token_0|> sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) <|reserved_special_token_0|> logmodel = LogisticRegression() logmodel.fit(X_train, y_train) predictions = logmodel.predict(X_test) print(predictions) <|reserved_special_token_0|> print(classification_report(y_test, predictions)) <|reserved_special_token_0|> print(confusion_matrix(y_test, predictions)) <|reserved_special_token_0|> print(accuracy_score(y_test, predictions) * 100) <|reserved_special_token_1|> import pandas as pd import matplotlib.pyplot as plt import math import seaborn as sns import numpy as np suv_data = pd.read_csv('F:/Development/Machine Learning/suv-data/suv_data.csv') print(suv_data.head(10)) print('the no of passengers in the list is' + str(len(suv_data.index))) sns.countplot(x='Purchased', data=suv_data) sns.countplot(x='Purchased', hue='Gender', data=suv_data) suv_data['Age'].plot.hist() suv_data.info() suv_data['EstimatedSalary'].plot.hist(bins=50, figsize=(10, 5)) print(suv_data.isnull()) print(suv_data.isnull().sum()) sns.heatmap(suv_data.isnull(), yticklabels=False, cmap='viridis') plt.show() sns.boxplot(x='Gender', y='Age', data=suv_data) plt.show() suv_data.drop('User ID', axis=1, inplace=True) suv_data.columns suv_data.head(10) Gen = pd.get_dummies(suv_data['Gender'], drop_first=True) print(Gen.head(5)) suv_data = pd.concat([suv_data, Gen], axis=1) print(suv_data.head(5)) suv_data.drop('Gender', axis=1, inplace=True) print(suv_data.head(10)) X = suv_data.iloc[:, [0, 1, 3]].values y = suv_data.iloc[:, 2].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.linear_model import LogisticRegression logmodel = LogisticRegression() logmodel.fit(X_train, y_train) predictions = logmodel.predict(X_test) print(predictions) from sklearn.metrics import classification_report print(classification_report(y_test, predictions)) from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, predictions)) from sklearn.metrics import accuracy_score print(accuracy_score(y_test, predictions) * 100) <|reserved_special_token_1|> import pandas as pd import matplotlib.pyplot as plt import math import seaborn as sns import numpy as np suv_data=pd.read_csv("F:/Development/Machine Learning/suv-data/suv_data.csv") print(suv_data.head(10)) print("the no of passengers in the list is"+str(len(suv_data.index))) sns.countplot(x="Purchased",data=suv_data) sns.countplot(x="Purchased",hue="Gender",data=suv_data) suv_data['Age'].plot.hist() suv_data.info() suv_data['EstimatedSalary'].plot.hist(bins=50,figsize=(10,5)) print(suv_data.isnull()) print(suv_data.isnull().sum()) sns.heatmap(suv_data.isnull(),yticklabels=False,cmap="viridis") plt.show() sns.boxplot(x="Gender",y="Age",data=suv_data) plt.show() suv_data.drop("User ID",axis=1,inplace=True) suv_data.columns suv_data.head(10) Gen=pd.get_dummies(suv_data['Gender'],drop_first=True) print(Gen.head(5)) suv_data=pd.concat([suv_data,Gen],axis=1) print(suv_data.head(5)) suv_data.drop("Gender",axis=1,inplace=True) print(suv_data.head(10)) X=suv_data.iloc[:,[0,1,3]].values y=suv_data.iloc[:,2].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) from sklearn.preprocessing import StandardScaler sc=StandardScaler() X_train=sc.fit_transform(X_train) X_test=sc.transform(X_test) from sklearn.linear_model import LogisticRegression logmodel=LogisticRegression() logmodel.fit(X_train, y_train) predictions=logmodel.predict(X_test) print(predictions) from sklearn.metrics import classification_report print(classification_report(y_test,predictions)) from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test,predictions)) from sklearn.metrics import accuracy_score print(accuracy_score(y_test,predictions)*100)
flexible
{ "blob_id": "c955057d7f8d5289898ecb96a290f5a7d241b787", "index": 6440, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(suv_data.head(10))\nprint('the no of passengers in the list is' + str(len(suv_data.index)))\nsns.countplot(x='Purchased', data=suv_data)\nsns.countplot(x='Purchased', hue='Gender', data=suv_data)\nsuv_data['Age'].plot.hist()\nsuv_data.info()\nsuv_data['EstimatedSalary'].plot.hist(bins=50, figsize=(10, 5))\nprint(suv_data.isnull())\nprint(suv_data.isnull().sum())\nsns.heatmap(suv_data.isnull(), yticklabels=False, cmap='viridis')\nplt.show()\nsns.boxplot(x='Gender', y='Age', data=suv_data)\nplt.show()\nsuv_data.drop('User ID', axis=1, inplace=True)\nsuv_data.columns\nsuv_data.head(10)\n<mask token>\nprint(Gen.head(5))\n<mask token>\nprint(suv_data.head(5))\nsuv_data.drop('Gender', axis=1, inplace=True)\nprint(suv_data.head(10))\n<mask token>\nlogmodel.fit(X_train, y_train)\n<mask token>\nprint(predictions)\n<mask token>\nprint(classification_report(y_test, predictions))\n<mask token>\nprint(confusion_matrix(y_test, predictions))\n<mask token>\nprint(accuracy_score(y_test, predictions) * 100)\n", "step-3": "<mask token>\nsuv_data = pd.read_csv('F:/Development/Machine Learning/suv-data/suv_data.csv')\nprint(suv_data.head(10))\nprint('the no of passengers in the list is' + str(len(suv_data.index)))\nsns.countplot(x='Purchased', data=suv_data)\nsns.countplot(x='Purchased', hue='Gender', data=suv_data)\nsuv_data['Age'].plot.hist()\nsuv_data.info()\nsuv_data['EstimatedSalary'].plot.hist(bins=50, figsize=(10, 5))\nprint(suv_data.isnull())\nprint(suv_data.isnull().sum())\nsns.heatmap(suv_data.isnull(), yticklabels=False, cmap='viridis')\nplt.show()\nsns.boxplot(x='Gender', y='Age', data=suv_data)\nplt.show()\nsuv_data.drop('User ID', axis=1, inplace=True)\nsuv_data.columns\nsuv_data.head(10)\nGen = pd.get_dummies(suv_data['Gender'], drop_first=True)\nprint(Gen.head(5))\nsuv_data = pd.concat([suv_data, Gen], axis=1)\nprint(suv_data.head(5))\nsuv_data.drop('Gender', axis=1, inplace=True)\nprint(suv_data.head(10))\nX = suv_data.iloc[:, [0, 1, 3]].values\ny = suv_data.iloc[:, 2].values\n<mask token>\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,\n random_state=0)\n<mask token>\nsc = StandardScaler()\nX_train = sc.fit_transform(X_train)\nX_test = sc.transform(X_test)\n<mask token>\nlogmodel = LogisticRegression()\nlogmodel.fit(X_train, y_train)\npredictions = logmodel.predict(X_test)\nprint(predictions)\n<mask token>\nprint(classification_report(y_test, predictions))\n<mask token>\nprint(confusion_matrix(y_test, predictions))\n<mask token>\nprint(accuracy_score(y_test, predictions) * 100)\n", "step-4": "import pandas as pd\nimport matplotlib.pyplot as plt\nimport math\nimport seaborn as sns\nimport numpy as np\nsuv_data = pd.read_csv('F:/Development/Machine Learning/suv-data/suv_data.csv')\nprint(suv_data.head(10))\nprint('the no of passengers in the list is' + str(len(suv_data.index)))\nsns.countplot(x='Purchased', data=suv_data)\nsns.countplot(x='Purchased', hue='Gender', data=suv_data)\nsuv_data['Age'].plot.hist()\nsuv_data.info()\nsuv_data['EstimatedSalary'].plot.hist(bins=50, figsize=(10, 5))\nprint(suv_data.isnull())\nprint(suv_data.isnull().sum())\nsns.heatmap(suv_data.isnull(), yticklabels=False, cmap='viridis')\nplt.show()\nsns.boxplot(x='Gender', y='Age', data=suv_data)\nplt.show()\nsuv_data.drop('User ID', axis=1, inplace=True)\nsuv_data.columns\nsuv_data.head(10)\nGen = pd.get_dummies(suv_data['Gender'], drop_first=True)\nprint(Gen.head(5))\nsuv_data = pd.concat([suv_data, Gen], axis=1)\nprint(suv_data.head(5))\nsuv_data.drop('Gender', axis=1, inplace=True)\nprint(suv_data.head(10))\nX = suv_data.iloc[:, [0, 1, 3]].values\ny = suv_data.iloc[:, 2].values\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,\n random_state=0)\nfrom sklearn.preprocessing import StandardScaler\nsc = StandardScaler()\nX_train = sc.fit_transform(X_train)\nX_test = sc.transform(X_test)\nfrom sklearn.linear_model import LogisticRegression\nlogmodel = LogisticRegression()\nlogmodel.fit(X_train, y_train)\npredictions = logmodel.predict(X_test)\nprint(predictions)\nfrom sklearn.metrics import classification_report\nprint(classification_report(y_test, predictions))\nfrom sklearn.metrics import confusion_matrix\nprint(confusion_matrix(y_test, predictions))\nfrom sklearn.metrics import accuracy_score\nprint(accuracy_score(y_test, predictions) * 100)\n", "step-5": "import pandas as pd\nimport matplotlib.pyplot as plt \nimport math\nimport seaborn as sns\nimport numpy as np\nsuv_data=pd.read_csv(\"F:/Development/Machine Learning/suv-data/suv_data.csv\")\nprint(suv_data.head(10))\nprint(\"the no of passengers in the list is\"+str(len(suv_data.index)))\nsns.countplot(x=\"Purchased\",data=suv_data)\nsns.countplot(x=\"Purchased\",hue=\"Gender\",data=suv_data)\nsuv_data['Age'].plot.hist()\nsuv_data.info()\nsuv_data['EstimatedSalary'].plot.hist(bins=50,figsize=(10,5))\nprint(suv_data.isnull())\nprint(suv_data.isnull().sum())\nsns.heatmap(suv_data.isnull(),yticklabels=False,cmap=\"viridis\")\nplt.show()\nsns.boxplot(x=\"Gender\",y=\"Age\",data=suv_data)\nplt.show()\nsuv_data.drop(\"User ID\",axis=1,inplace=True)\nsuv_data.columns\nsuv_data.head(10)\nGen=pd.get_dummies(suv_data['Gender'],drop_first=True)\nprint(Gen.head(5))\nsuv_data=pd.concat([suv_data,Gen],axis=1)\nprint(suv_data.head(5))\nsuv_data.drop(\"Gender\",axis=1,inplace=True)\nprint(suv_data.head(10))\nX=suv_data.iloc[:,[0,1,3]].values\ny=suv_data.iloc[:,2].values\nfrom sklearn.model_selection import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)\nfrom sklearn.preprocessing import StandardScaler\nsc=StandardScaler()\nX_train=sc.fit_transform(X_train)\nX_test=sc.transform(X_test)\nfrom sklearn.linear_model import LogisticRegression\nlogmodel=LogisticRegression()\nlogmodel.fit(X_train, y_train)\npredictions=logmodel.predict(X_test)\nprint(predictions)\nfrom sklearn.metrics import classification_report\nprint(classification_report(y_test,predictions))\nfrom sklearn.metrics import confusion_matrix\nprint(confusion_matrix(y_test,predictions))\nfrom sklearn.metrics import accuracy_score\nprint(accuracy_score(y_test,predictions)*100)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.contrib import admin from django.urls import path, include from django.conf import settings from rest_framework_swagger.views import get_swagger_view schema_view = get_swagger_view(title='API') from django.contrib.auth import views as auth_views urlpatterns = [ path('django-admin/', admin.site.urls), path('', schema_view), path('auth/login/', auth_views.LoginView.as_view(template_name='auth/login.html')), path('auth/logout/', auth_views.LogoutView.as_view()), path('api/auth/', include('apps.auth.urls')), path('api/polls/', include('apps.polls.urls')), ] if settings.DEBUG and 'debug_toolbar' in settings.INSTALLED_APPS: import debug_toolbar urlpatterns = [ path('__debug__/', include(debug_toolbar.urls)) ] + urlpatterns
normal
{ "blob_id": "987d6c769a4f593405e889ed2b0e3f9955900406", "index": 856, "step-1": "<mask token>\n", "step-2": "<mask token>\nif settings.DEBUG and 'debug_toolbar' in settings.INSTALLED_APPS:\n import debug_toolbar\n urlpatterns = [path('__debug__/', include(debug_toolbar.urls))\n ] + urlpatterns\n", "step-3": "<mask token>\nschema_view = get_swagger_view(title='API')\n<mask token>\nurlpatterns = [path('django-admin/', admin.site.urls), path('', schema_view\n ), path('auth/login/', auth_views.LoginView.as_view(template_name=\n 'auth/login.html')), path('auth/logout/', auth_views.LogoutView.as_view\n ()), path('api/auth/', include('apps.auth.urls')), path('api/polls/',\n include('apps.polls.urls'))]\nif settings.DEBUG and 'debug_toolbar' in settings.INSTALLED_APPS:\n import debug_toolbar\n urlpatterns = [path('__debug__/', include(debug_toolbar.urls))\n ] + urlpatterns\n", "step-4": "from django.contrib import admin\nfrom django.urls import path, include\nfrom django.conf import settings\nfrom rest_framework_swagger.views import get_swagger_view\nschema_view = get_swagger_view(title='API')\nfrom django.contrib.auth import views as auth_views\nurlpatterns = [path('django-admin/', admin.site.urls), path('', schema_view\n ), path('auth/login/', auth_views.LoginView.as_view(template_name=\n 'auth/login.html')), path('auth/logout/', auth_views.LogoutView.as_view\n ()), path('api/auth/', include('apps.auth.urls')), path('api/polls/',\n include('apps.polls.urls'))]\nif settings.DEBUG and 'debug_toolbar' in settings.INSTALLED_APPS:\n import debug_toolbar\n urlpatterns = [path('__debug__/', include(debug_toolbar.urls))\n ] + urlpatterns\n", "step-5": "from django.contrib import admin\nfrom django.urls import path, include\nfrom django.conf import settings\n\nfrom rest_framework_swagger.views import get_swagger_view\n\nschema_view = get_swagger_view(title='API')\n\nfrom django.contrib.auth import views as auth_views\n\nurlpatterns = [\n path('django-admin/', admin.site.urls),\n path('', schema_view),\n path('auth/login/', auth_views.LoginView.as_view(template_name='auth/login.html')),\n path('auth/logout/', auth_views.LogoutView.as_view()),\n path('api/auth/', include('apps.auth.urls')),\n path('api/polls/', include('apps.polls.urls')),\n]\n\nif settings.DEBUG and 'debug_toolbar' in settings.INSTALLED_APPS:\n import debug_toolbar\n urlpatterns = [\n path('__debug__/', include(debug_toolbar.urls))\n ] + urlpatterns\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import csv as csv import hashlib from sets import Set def func_hash(parameter): hash_object = hashlib.sha384(parameter) table_hash = hash_object.hexdigest() return table_hash def myFunk(): with open('users.csv', 'w') as fp: a = csv.writer(fp, delimiter=',') roles = ['inspector', 'admin'] data = [['Userneme', 'hash_password', 'role'], ['Olya', func_hash('Olya'), 'admin'], ['Stas', func_hash('Stas'), 'admin'], ['Dima', func_hash('Dima'), 'admin'], ['Kyrylo', func_hash('Kyrylo'), 'admin'], ['Lubchyk', func_hash('Lubchyk'), 'inspector'], ['Sashko', func_hash('Sashko'),roles], ] a.writerows(data) myFunk()
normal
{ "blob_id": "96d13a883590ca969e997bbb27bcdbee1b24252f", "index": 2730, "step-1": "<mask token>\n\n\ndef myFunk():\n with open('users.csv', 'w') as fp:\n a = csv.writer(fp, delimiter=',')\n roles = ['inspector', 'admin']\n data = [['Userneme', 'hash_password', 'role'], ['Olya', func_hash(\n 'Olya'), 'admin'], ['Stas', func_hash('Stas'), 'admin'], [\n 'Dima', func_hash('Dima'), 'admin'], ['Kyrylo', func_hash(\n 'Kyrylo'), 'admin'], ['Lubchyk', func_hash('Lubchyk'),\n 'inspector'], ['Sashko', func_hash('Sashko'), roles]]\n a.writerows(data)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef func_hash(parameter):\n hash_object = hashlib.sha384(parameter)\n table_hash = hash_object.hexdigest()\n return table_hash\n\n\ndef myFunk():\n with open('users.csv', 'w') as fp:\n a = csv.writer(fp, delimiter=',')\n roles = ['inspector', 'admin']\n data = [['Userneme', 'hash_password', 'role'], ['Olya', func_hash(\n 'Olya'), 'admin'], ['Stas', func_hash('Stas'), 'admin'], [\n 'Dima', func_hash('Dima'), 'admin'], ['Kyrylo', func_hash(\n 'Kyrylo'), 'admin'], ['Lubchyk', func_hash('Lubchyk'),\n 'inspector'], ['Sashko', func_hash('Sashko'), roles]]\n a.writerows(data)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef func_hash(parameter):\n hash_object = hashlib.sha384(parameter)\n table_hash = hash_object.hexdigest()\n return table_hash\n\n\ndef myFunk():\n with open('users.csv', 'w') as fp:\n a = csv.writer(fp, delimiter=',')\n roles = ['inspector', 'admin']\n data = [['Userneme', 'hash_password', 'role'], ['Olya', func_hash(\n 'Olya'), 'admin'], ['Stas', func_hash('Stas'), 'admin'], [\n 'Dima', func_hash('Dima'), 'admin'], ['Kyrylo', func_hash(\n 'Kyrylo'), 'admin'], ['Lubchyk', func_hash('Lubchyk'),\n 'inspector'], ['Sashko', func_hash('Sashko'), roles]]\n a.writerows(data)\n\n\nmyFunk()\n", "step-4": "import csv as csv\nimport hashlib\nfrom sets import Set\n\n\ndef func_hash(parameter):\n hash_object = hashlib.sha384(parameter)\n table_hash = hash_object.hexdigest()\n return table_hash\n\n\ndef myFunk():\n with open('users.csv', 'w') as fp:\n a = csv.writer(fp, delimiter=',')\n roles = ['inspector', 'admin']\n data = [['Userneme', 'hash_password', 'role'], ['Olya', func_hash(\n 'Olya'), 'admin'], ['Stas', func_hash('Stas'), 'admin'], [\n 'Dima', func_hash('Dima'), 'admin'], ['Kyrylo', func_hash(\n 'Kyrylo'), 'admin'], ['Lubchyk', func_hash('Lubchyk'),\n 'inspector'], ['Sashko', func_hash('Sashko'), roles]]\n a.writerows(data)\n\n\nmyFunk()\n", "step-5": "import csv as csv\nimport hashlib\nfrom sets import Set\n\ndef func_hash(parameter):\n hash_object = hashlib.sha384(parameter)\n table_hash = hash_object.hexdigest()\n return table_hash\n\ndef myFunk():\n\twith open('users.csv', 'w') as fp:\n\t a = csv.writer(fp, delimiter=',')\n\t roles = ['inspector', 'admin']\n\t data = [['Userneme', 'hash_password', 'role'],\n\t ['Olya', func_hash('Olya'), 'admin'],\n\t ['Stas', func_hash('Stas'), 'admin'],\n\t ['Dima', func_hash('Dima'), 'admin'],\n\t ['Kyrylo', func_hash('Kyrylo'), 'admin'],\n\t ['Lubchyk', func_hash('Lubchyk'), 'inspector'],\n\t ['Sashko', func_hash('Sashko'),roles],\n\t ]\n\t a.writerows(data)\n\nmyFunk()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
""" URL Configuration to test mounting created urls from registries """ from django.contrib import admin from django.urls import include, path from staticpages.loader import StaticpagesLoader staticpages_loader = StaticpagesLoader() urlpatterns = [ path("admin/", admin.site.urls), # Add base pages urls using the same template *staticpages_loader.build_urls([ "index", { "template_path": "index.html", "name": "foo", "extra": "free for use", }, ]) ] # Include another urls map on a sub path urlpatterns.append( path("sub/", include("sandbox.staticpages_testapp.sub_urls")), )
normal
{ "blob_id": "333914f99face050376e4713ca118f2347e50018", "index": 989, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns.append(path('sub/', include(\n 'sandbox.staticpages_testapp.sub_urls')))\n", "step-3": "<mask token>\nstaticpages_loader = StaticpagesLoader()\nurlpatterns = [path('admin/', admin.site.urls), *staticpages_loader.\n build_urls(['index', {'template_path': 'index.html', 'name': 'foo',\n 'extra': 'free for use'}])]\nurlpatterns.append(path('sub/', include(\n 'sandbox.staticpages_testapp.sub_urls')))\n", "step-4": "<mask token>\nfrom django.contrib import admin\nfrom django.urls import include, path\nfrom staticpages.loader import StaticpagesLoader\nstaticpages_loader = StaticpagesLoader()\nurlpatterns = [path('admin/', admin.site.urls), *staticpages_loader.\n build_urls(['index', {'template_path': 'index.html', 'name': 'foo',\n 'extra': 'free for use'}])]\nurlpatterns.append(path('sub/', include(\n 'sandbox.staticpages_testapp.sub_urls')))\n", "step-5": "\"\"\"\nURL Configuration to test mounting created urls from registries\n\"\"\"\nfrom django.contrib import admin\nfrom django.urls import include, path\n\nfrom staticpages.loader import StaticpagesLoader\n\n\nstaticpages_loader = StaticpagesLoader()\n\n\nurlpatterns = [\n path(\"admin/\", admin.site.urls),\n # Add base pages urls using the same template\n *staticpages_loader.build_urls([\n \"index\",\n {\n \"template_path\": \"index.html\",\n \"name\": \"foo\",\n \"extra\": \"free for use\",\n },\n ])\n]\n\n# Include another urls map on a sub path\nurlpatterns.append(\n path(\"sub/\", include(\"sandbox.staticpages_testapp.sub_urls\")),\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class FilebasedUniqueConfig(AppConfig): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class FilebasedUniqueConfig(AppConfig): name = 'papermerge.filebased_unique' label = 'filebased_unique' <|reserved_special_token_1|> from django.apps import AppConfig class FilebasedUniqueConfig(AppConfig): name = 'papermerge.filebased_unique' label = 'filebased_unique'
flexible
{ "blob_id": "2d17229afe154937132c1e4f8c138896da34ab61", "index": 1430, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass FilebasedUniqueConfig(AppConfig):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass FilebasedUniqueConfig(AppConfig):\n name = 'papermerge.filebased_unique'\n label = 'filebased_unique'\n", "step-4": "from django.apps import AppConfig\n\n\nclass FilebasedUniqueConfig(AppConfig):\n name = 'papermerge.filebased_unique'\n label = 'filebased_unique'\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import os, sys from scrapy.cmdline import execute sys.path.append(os.path.dirname(os.path.abspath(__file__))) execute('scrapy crawl laptop'.split())
normal
{ "blob_id": "71ff8e8a62a3b2731071ed7a039b51c150ebaca4", "index": 3671, "step-1": "<mask token>\n", "step-2": "<mask token>\nsys.path.append(os.path.dirname(os.path.abspath(__file__)))\nexecute('scrapy crawl laptop'.split())\n", "step-3": "import os, sys\nfrom scrapy.cmdline import execute\nsys.path.append(os.path.dirname(os.path.abspath(__file__)))\nexecute('scrapy crawl laptop'.split())\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def download_image(url: str) ->bool: img_tag_regex = '<img.*?src="(.*?)"[^\\>]+>' response = requests.get(url) if response.status_code != 200: return False text = response.text image_links = re.findall(img_tag_regex, text) for link in image_links: resp = requests.get(link) with open(link.replace('https://', '').replace('http://', ''), 'wb' ) as file: file.write(resp.content) return True <|reserved_special_token_1|> import re import requests def download_image(url: str) ->bool: img_tag_regex = '<img.*?src="(.*?)"[^\\>]+>' response = requests.get(url) if response.status_code != 200: return False text = response.text image_links = re.findall(img_tag_regex, text) for link in image_links: resp = requests.get(link) with open(link.replace('https://', '').replace('http://', ''), 'wb' ) as file: file.write(resp.content) return True <|reserved_special_token_1|> import re import requests def download_image(url: str) -> bool: img_tag_regex = r"""<img.*?src="(.*?)"[^\>]+>""" response = requests.get(url) if response.status_code != 200: return False text = response.text image_links = re.findall(img_tag_regex, text) for link in image_links: resp = requests.get(link) with open(link.replace("https://", "").replace("http://", ""), "wb") as file: file.write(resp.content) return True
flexible
{ "blob_id": "268c36f6fb99383ea02b7ee406189ffb467d246c", "index": 6554, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef download_image(url: str) ->bool:\n img_tag_regex = '<img.*?src=\"(.*?)\"[^\\\\>]+>'\n response = requests.get(url)\n if response.status_code != 200:\n return False\n text = response.text\n image_links = re.findall(img_tag_regex, text)\n for link in image_links:\n resp = requests.get(link)\n with open(link.replace('https://', '').replace('http://', ''), 'wb'\n ) as file:\n file.write(resp.content)\n return True\n", "step-3": "import re\nimport requests\n\n\ndef download_image(url: str) ->bool:\n img_tag_regex = '<img.*?src=\"(.*?)\"[^\\\\>]+>'\n response = requests.get(url)\n if response.status_code != 200:\n return False\n text = response.text\n image_links = re.findall(img_tag_regex, text)\n for link in image_links:\n resp = requests.get(link)\n with open(link.replace('https://', '').replace('http://', ''), 'wb'\n ) as file:\n file.write(resp.content)\n return True\n", "step-4": "import re\n\nimport requests\n\n\ndef download_image(url: str) -> bool:\n img_tag_regex = r\"\"\"<img.*?src=\"(.*?)\"[^\\>]+>\"\"\"\n\n response = requests.get(url)\n if response.status_code != 200:\n return False\n\n text = response.text\n image_links = re.findall(img_tag_regex, text)\n\n for link in image_links:\n resp = requests.get(link)\n with open(link.replace(\"https://\", \"\").replace(\"http://\", \"\"), \"wb\") as file:\n file.write(resp.content)\n\n return True\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python from math import ceil, floor, sqrt def palindromes(n: int) -> int: """yield successive palindromes starting at n""" # 1 -> 2 -> 3 ... 9 -> 11 -> 22 -> 33 -> 44 .. 99 -> 101 # 101 -> 111 -> 121 -> 131 -> ... -> 191 -> 202 -> 212 # 989 -> 999 -> 1001 -> 1111 -> 1221 # 9889 -> 9999 -> 10001 -> 10101 -> 10201 prev = n s = str(n) even = len(s) % 2 == 0 s = s[:ceil(len(s) / 2)] n = int(s) while True: if even: pal = int(''.join([s, s[-1::-1]])) # join '12' with '21' else: pal = int(''.join([s, s[-2::-1]])) # join '12' with '1' if prev <= pal: yield pal n += 1 if all(digit == '9' for digit in s): even = not even if even: n //= 10 s = str(n) def isPrime(n: int) -> bool: if n < 2: return False for i in range(2, floor(sqrt(n)) + 1): if n % i == 0: return False return True class Solution: def primePalindrome(self, N: int) -> int: """return lowest prime palindrome >= N""" for p in palindromes(N): if isPrime(p): return p
normal
{ "blob_id": "b07073a7f65dbc10806b68729f21a8bc8773a1ab", "index": 3836, "step-1": "<mask token>\n\n\nclass Solution:\n\n def primePalindrome(self, N: int) ->int:\n \"\"\"return lowest prime palindrome >= N\"\"\"\n for p in palindromes(N):\n if isPrime(p):\n return p\n", "step-2": "<mask token>\n\n\ndef palindromes(n: int) ->int:\n \"\"\"yield successive palindromes starting at n\"\"\"\n prev = n\n s = str(n)\n even = len(s) % 2 == 0\n s = s[:ceil(len(s) / 2)]\n n = int(s)\n while True:\n if even:\n pal = int(''.join([s, s[-1::-1]]))\n else:\n pal = int(''.join([s, s[-2::-1]]))\n if prev <= pal:\n yield pal\n n += 1\n if all(digit == '9' for digit in s):\n even = not even\n if even:\n n //= 10\n s = str(n)\n\n\n<mask token>\n\n\nclass Solution:\n\n def primePalindrome(self, N: int) ->int:\n \"\"\"return lowest prime palindrome >= N\"\"\"\n for p in palindromes(N):\n if isPrime(p):\n return p\n", "step-3": "<mask token>\n\n\ndef palindromes(n: int) ->int:\n \"\"\"yield successive palindromes starting at n\"\"\"\n prev = n\n s = str(n)\n even = len(s) % 2 == 0\n s = s[:ceil(len(s) / 2)]\n n = int(s)\n while True:\n if even:\n pal = int(''.join([s, s[-1::-1]]))\n else:\n pal = int(''.join([s, s[-2::-1]]))\n if prev <= pal:\n yield pal\n n += 1\n if all(digit == '9' for digit in s):\n even = not even\n if even:\n n //= 10\n s = str(n)\n\n\ndef isPrime(n: int) ->bool:\n if n < 2:\n return False\n for i in range(2, floor(sqrt(n)) + 1):\n if n % i == 0:\n return False\n return True\n\n\nclass Solution:\n\n def primePalindrome(self, N: int) ->int:\n \"\"\"return lowest prime palindrome >= N\"\"\"\n for p in palindromes(N):\n if isPrime(p):\n return p\n", "step-4": "from math import ceil, floor, sqrt\n\n\ndef palindromes(n: int) ->int:\n \"\"\"yield successive palindromes starting at n\"\"\"\n prev = n\n s = str(n)\n even = len(s) % 2 == 0\n s = s[:ceil(len(s) / 2)]\n n = int(s)\n while True:\n if even:\n pal = int(''.join([s, s[-1::-1]]))\n else:\n pal = int(''.join([s, s[-2::-1]]))\n if prev <= pal:\n yield pal\n n += 1\n if all(digit == '9' for digit in s):\n even = not even\n if even:\n n //= 10\n s = str(n)\n\n\ndef isPrime(n: int) ->bool:\n if n < 2:\n return False\n for i in range(2, floor(sqrt(n)) + 1):\n if n % i == 0:\n return False\n return True\n\n\nclass Solution:\n\n def primePalindrome(self, N: int) ->int:\n \"\"\"return lowest prime palindrome >= N\"\"\"\n for p in palindromes(N):\n if isPrime(p):\n return p\n", "step-5": "#!/usr/bin/env python\n\nfrom math import ceil, floor, sqrt\n\ndef palindromes(n: int) -> int:\n \"\"\"yield successive palindromes starting at n\"\"\"\n # 1 -> 2 -> 3 ... 9 -> 11 -> 22 -> 33 -> 44 .. 99 -> 101\n # 101 -> 111 -> 121 -> 131 -> ... -> 191 -> 202 -> 212\n # 989 -> 999 -> 1001 -> 1111 -> 1221\n # 9889 -> 9999 -> 10001 -> 10101 -> 10201\n prev = n\n s = str(n)\n even = len(s) % 2 == 0\n s = s[:ceil(len(s) / 2)]\n n = int(s)\n while True:\n if even:\n pal = int(''.join([s, s[-1::-1]])) # join '12' with '21'\n else:\n pal = int(''.join([s, s[-2::-1]])) # join '12' with '1'\n if prev <= pal:\n yield pal\n \n n += 1\n if all(digit == '9' for digit in s):\n even = not even\n if even: n //= 10\n s = str(n)\n\ndef isPrime(n: int) -> bool:\n if n < 2:\n return False\n for i in range(2, floor(sqrt(n)) + 1):\n if n % i == 0:\n return False\n return True\n \n\nclass Solution:\n def primePalindrome(self, N: int) -> int:\n \"\"\"return lowest prime palindrome >= N\"\"\"\n for p in palindromes(N):\n if isPrime(p):\n return p\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from .hacker import HackerRegistrationPage from .judge import JudgeRegistrationPage from .mentor import MentorRegistrationPage from .organizer import OrganizerRegistrationPage from .user import UserRegistrationPage
normal
{ "blob_id": "34f3212b0254cbcb5e1ca535a29d4fe820dcaad8", "index": 2978, "step-1": "<mask token>\n", "step-2": "from .hacker import HackerRegistrationPage\nfrom .judge import JudgeRegistrationPage\nfrom .mentor import MentorRegistrationPage\nfrom .organizer import OrganizerRegistrationPage\nfrom .user import UserRegistrationPage\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
import cv2 import numpy as np from pycocotools.coco import maskUtils # from dataset.augmentors import FlipTransform, joints_to_point8, point8_to_joints, AugImgMetadata # from dataset.base_dataflow import Meta from dataset.augmentors import FlipTransform, joints_to_point8, point8_to_joints, AugImgMetadata from dataset.base_dataflow import Meta def read_img(components): """ Loads image from meta.img_path. Assigns the image to the field img of the same meta instance. :param components: components :return: updated components """ img_buf = open(components[0], 'rb').read() if not img_buf: raise Exception('image not read, path=%s' % components[0]) arr = np.fromstring(img_buf, np.uint8) img = cv2.imdecode(arr, cv2.IMREAD_COLOR) components[1], components[2] = img.shape[:2] components[10] = img return components def gen_mask(components): """ Generate masks based on the coco mask polygons. :param components: components :return: updated components """ masks_segments = components[7] hh = components[1] ww = components[2] if masks_segments: mask_miss = np.ones((hh, ww), dtype=np.uint8) for seg in masks_segments: bin_mask = maskUtils.decode(seg) bin_mask = np.logical_not(bin_mask) mask_miss = np.bitwise_and(mask_miss, bin_mask) components[11] = mask_miss return components # components == df # seems params' type is list def augment(components, augmentors,use_o=False): """ Augmenting of images. :param components: components :return: updated components. """ img_path = components[0] height = components[1] width = components[2] center = components[3] bbox = components[4] area = components[5] num_keypoints = components[6] masks_segments = components[7] scale = components[8] all_joints = components[9] img = components[10] mask = components[11] aug_center = components[12] aug_joints = components[13] idx = components[14] meta = Meta(img_path, height, width, center, bbox, area, scale, num_keypoints) meta.masks_segments = masks_segments meta.all_joints = all_joints meta.img = img meta.mask = mask meta.aug_center = aug_center meta.aug_joints = aug_joints aug_center = meta.center.copy() aug_joints = joints_to_point8(meta.all_joints) if idx % 2 == 1: # print(f"ori: {idx//2}, {idx}") o_meta= Meta(img_path, height, width, center, bbox, area, scale, num_keypoints) o_meta.all_joints=all_joints o_meta.img=img o_meta.mask=mask o_meta.aug_center=aug_center o_meta.aug_joints=aug_joints o_aug_center=o_meta.center.copy() o_aug_joints=joints_to_point8(o_meta.all_joints) o_trans=augmentors[4].get_transform(AugImgMetadata( img=o_meta.img, mask = o_meta.mask, center=o_aug_center, scale=o_meta.scale )) o_img,o_mask=o_trans.apply_image(o_meta) o_aug_joints = o_trans.apply_coords(o_aug_joints) # o_aug_center = o_trans.apply_coords(o_aug_center) # o_meta.img=o_img # o_meta.mask=mask o_meta.aug_joints=point8_to_joints(o_aug_joints) # o_meta.aug_center=o_aug_center return [o_img,o_meta.aug_joints] else: for aug in augmentors: transformation = aug.get_transform( AugImgMetadata(img=meta.img, mask=meta.mask, center=aug_center, scale=meta.scale)) im, mask = transformation.apply_image(meta) # augment joints aug_joints = transformation.apply_coords(aug_joints) # after flipping horizontaly the left side joints and right side joints are also # flipped so we need to recover their orginal orientation. if isinstance(transformation, FlipTransform): aug_joints = transformation.recover_left_right(aug_joints) # augment center position aug_center = transformation.apply_coords(aug_center) meta.img = im meta.mask = mask meta.aug_joints = point8_to_joints(aug_joints) meta.aug_center = aug_center back_img=meta.img back_aug_joints = meta.aug_joints # del meta # return [[back_img,back_aug_joints], # [o_meta.img,o_meta.aug_joints]] return [back_img,back_aug_joints] def apply_mask(components): """ Applies the mask (if exists) to the image. :param components: components :return: updated components """ img = components[10] mask = components[11] if mask is not None: img[:, :, 0] = img[:, :, 0] * mask img[:, :, 1] = img[:, :, 1] * mask img[:, :, 2] = img[:, :, 2] * mask img[img == 0] = 128 return components def create_all_mask(mask, num, stride): """ Helper function to create a stack of scaled down mask. :param mask: mask image :param num: number of layers :param stride: parameter used to scale down the mask image because it has the same size as orginal image. We need the size of network output. :return: """ scale_factor = 1.0 / stride small_mask = cv2.resize(mask, (0, 0), fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC) small_mask = small_mask[:, :, np.newaxis] return np.repeat(small_mask, num, axis=2)
normal
{ "blob_id": "e47223622a2718830d830dbb779800659d659ae3", "index": 8472, "step-1": "<mask token>\n\n\ndef augment(components, augmentors, use_o=False):\n \"\"\"\n Augmenting of images.\n\n :param components: components\n :return: updated components.\n \"\"\"\n img_path = components[0]\n height = components[1]\n width = components[2]\n center = components[3]\n bbox = components[4]\n area = components[5]\n num_keypoints = components[6]\n masks_segments = components[7]\n scale = components[8]\n all_joints = components[9]\n img = components[10]\n mask = components[11]\n aug_center = components[12]\n aug_joints = components[13]\n idx = components[14]\n meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n meta.masks_segments = masks_segments\n meta.all_joints = all_joints\n meta.img = img\n meta.mask = mask\n meta.aug_center = aug_center\n meta.aug_joints = aug_joints\n aug_center = meta.center.copy()\n aug_joints = joints_to_point8(meta.all_joints)\n if idx % 2 == 1:\n o_meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n o_meta.all_joints = all_joints\n o_meta.img = img\n o_meta.mask = mask\n o_meta.aug_center = aug_center\n o_meta.aug_joints = aug_joints\n o_aug_center = o_meta.center.copy()\n o_aug_joints = joints_to_point8(o_meta.all_joints)\n o_trans = augmentors[4].get_transform(AugImgMetadata(img=o_meta.img,\n mask=o_meta.mask, center=o_aug_center, scale=o_meta.scale))\n o_img, o_mask = o_trans.apply_image(o_meta)\n o_aug_joints = o_trans.apply_coords(o_aug_joints)\n o_meta.aug_joints = point8_to_joints(o_aug_joints)\n return [o_img, o_meta.aug_joints]\n else:\n for aug in augmentors:\n transformation = aug.get_transform(AugImgMetadata(img=meta.img,\n mask=meta.mask, center=aug_center, scale=meta.scale))\n im, mask = transformation.apply_image(meta)\n aug_joints = transformation.apply_coords(aug_joints)\n if isinstance(transformation, FlipTransform):\n aug_joints = transformation.recover_left_right(aug_joints)\n aug_center = transformation.apply_coords(aug_center)\n meta.img = im\n meta.mask = mask\n meta.aug_joints = point8_to_joints(aug_joints)\n meta.aug_center = aug_center\n back_img = meta.img\n back_aug_joints = meta.aug_joints\n return [back_img, back_aug_joints]\n\n\n<mask token>\n\n\ndef create_all_mask(mask, num, stride):\n \"\"\"\n Helper function to create a stack of scaled down mask.\n\n :param mask: mask image\n :param num: number of layers\n :param stride: parameter used to scale down the mask image because it has\n the same size as orginal image. We need the size of network output.\n :return:\n \"\"\"\n scale_factor = 1.0 / stride\n small_mask = cv2.resize(mask, (0, 0), fx=scale_factor, fy=scale_factor,\n interpolation=cv2.INTER_CUBIC)\n small_mask = small_mask[:, :, np.newaxis]\n return np.repeat(small_mask, num, axis=2)\n", "step-2": "<mask token>\n\n\ndef read_img(components):\n \"\"\"\n Loads image from meta.img_path. Assigns the image to\n the field img of the same meta instance.\n\n :param components: components\n :return: updated components\n \"\"\"\n img_buf = open(components[0], 'rb').read()\n if not img_buf:\n raise Exception('image not read, path=%s' % components[0])\n arr = np.fromstring(img_buf, np.uint8)\n img = cv2.imdecode(arr, cv2.IMREAD_COLOR)\n components[1], components[2] = img.shape[:2]\n components[10] = img\n return components\n\n\ndef gen_mask(components):\n \"\"\"\n Generate masks based on the coco mask polygons.\n\n :param components: components\n :return: updated components\n \"\"\"\n masks_segments = components[7]\n hh = components[1]\n ww = components[2]\n if masks_segments:\n mask_miss = np.ones((hh, ww), dtype=np.uint8)\n for seg in masks_segments:\n bin_mask = maskUtils.decode(seg)\n bin_mask = np.logical_not(bin_mask)\n mask_miss = np.bitwise_and(mask_miss, bin_mask)\n components[11] = mask_miss\n return components\n\n\ndef augment(components, augmentors, use_o=False):\n \"\"\"\n Augmenting of images.\n\n :param components: components\n :return: updated components.\n \"\"\"\n img_path = components[0]\n height = components[1]\n width = components[2]\n center = components[3]\n bbox = components[4]\n area = components[5]\n num_keypoints = components[6]\n masks_segments = components[7]\n scale = components[8]\n all_joints = components[9]\n img = components[10]\n mask = components[11]\n aug_center = components[12]\n aug_joints = components[13]\n idx = components[14]\n meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n meta.masks_segments = masks_segments\n meta.all_joints = all_joints\n meta.img = img\n meta.mask = mask\n meta.aug_center = aug_center\n meta.aug_joints = aug_joints\n aug_center = meta.center.copy()\n aug_joints = joints_to_point8(meta.all_joints)\n if idx % 2 == 1:\n o_meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n o_meta.all_joints = all_joints\n o_meta.img = img\n o_meta.mask = mask\n o_meta.aug_center = aug_center\n o_meta.aug_joints = aug_joints\n o_aug_center = o_meta.center.copy()\n o_aug_joints = joints_to_point8(o_meta.all_joints)\n o_trans = augmentors[4].get_transform(AugImgMetadata(img=o_meta.img,\n mask=o_meta.mask, center=o_aug_center, scale=o_meta.scale))\n o_img, o_mask = o_trans.apply_image(o_meta)\n o_aug_joints = o_trans.apply_coords(o_aug_joints)\n o_meta.aug_joints = point8_to_joints(o_aug_joints)\n return [o_img, o_meta.aug_joints]\n else:\n for aug in augmentors:\n transformation = aug.get_transform(AugImgMetadata(img=meta.img,\n mask=meta.mask, center=aug_center, scale=meta.scale))\n im, mask = transformation.apply_image(meta)\n aug_joints = transformation.apply_coords(aug_joints)\n if isinstance(transformation, FlipTransform):\n aug_joints = transformation.recover_left_right(aug_joints)\n aug_center = transformation.apply_coords(aug_center)\n meta.img = im\n meta.mask = mask\n meta.aug_joints = point8_to_joints(aug_joints)\n meta.aug_center = aug_center\n back_img = meta.img\n back_aug_joints = meta.aug_joints\n return [back_img, back_aug_joints]\n\n\n<mask token>\n\n\ndef create_all_mask(mask, num, stride):\n \"\"\"\n Helper function to create a stack of scaled down mask.\n\n :param mask: mask image\n :param num: number of layers\n :param stride: parameter used to scale down the mask image because it has\n the same size as orginal image. We need the size of network output.\n :return:\n \"\"\"\n scale_factor = 1.0 / stride\n small_mask = cv2.resize(mask, (0, 0), fx=scale_factor, fy=scale_factor,\n interpolation=cv2.INTER_CUBIC)\n small_mask = small_mask[:, :, np.newaxis]\n return np.repeat(small_mask, num, axis=2)\n", "step-3": "<mask token>\n\n\ndef read_img(components):\n \"\"\"\n Loads image from meta.img_path. Assigns the image to\n the field img of the same meta instance.\n\n :param components: components\n :return: updated components\n \"\"\"\n img_buf = open(components[0], 'rb').read()\n if not img_buf:\n raise Exception('image not read, path=%s' % components[0])\n arr = np.fromstring(img_buf, np.uint8)\n img = cv2.imdecode(arr, cv2.IMREAD_COLOR)\n components[1], components[2] = img.shape[:2]\n components[10] = img\n return components\n\n\ndef gen_mask(components):\n \"\"\"\n Generate masks based on the coco mask polygons.\n\n :param components: components\n :return: updated components\n \"\"\"\n masks_segments = components[7]\n hh = components[1]\n ww = components[2]\n if masks_segments:\n mask_miss = np.ones((hh, ww), dtype=np.uint8)\n for seg in masks_segments:\n bin_mask = maskUtils.decode(seg)\n bin_mask = np.logical_not(bin_mask)\n mask_miss = np.bitwise_and(mask_miss, bin_mask)\n components[11] = mask_miss\n return components\n\n\ndef augment(components, augmentors, use_o=False):\n \"\"\"\n Augmenting of images.\n\n :param components: components\n :return: updated components.\n \"\"\"\n img_path = components[0]\n height = components[1]\n width = components[2]\n center = components[3]\n bbox = components[4]\n area = components[5]\n num_keypoints = components[6]\n masks_segments = components[7]\n scale = components[8]\n all_joints = components[9]\n img = components[10]\n mask = components[11]\n aug_center = components[12]\n aug_joints = components[13]\n idx = components[14]\n meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n meta.masks_segments = masks_segments\n meta.all_joints = all_joints\n meta.img = img\n meta.mask = mask\n meta.aug_center = aug_center\n meta.aug_joints = aug_joints\n aug_center = meta.center.copy()\n aug_joints = joints_to_point8(meta.all_joints)\n if idx % 2 == 1:\n o_meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n o_meta.all_joints = all_joints\n o_meta.img = img\n o_meta.mask = mask\n o_meta.aug_center = aug_center\n o_meta.aug_joints = aug_joints\n o_aug_center = o_meta.center.copy()\n o_aug_joints = joints_to_point8(o_meta.all_joints)\n o_trans = augmentors[4].get_transform(AugImgMetadata(img=o_meta.img,\n mask=o_meta.mask, center=o_aug_center, scale=o_meta.scale))\n o_img, o_mask = o_trans.apply_image(o_meta)\n o_aug_joints = o_trans.apply_coords(o_aug_joints)\n o_meta.aug_joints = point8_to_joints(o_aug_joints)\n return [o_img, o_meta.aug_joints]\n else:\n for aug in augmentors:\n transformation = aug.get_transform(AugImgMetadata(img=meta.img,\n mask=meta.mask, center=aug_center, scale=meta.scale))\n im, mask = transformation.apply_image(meta)\n aug_joints = transformation.apply_coords(aug_joints)\n if isinstance(transformation, FlipTransform):\n aug_joints = transformation.recover_left_right(aug_joints)\n aug_center = transformation.apply_coords(aug_center)\n meta.img = im\n meta.mask = mask\n meta.aug_joints = point8_to_joints(aug_joints)\n meta.aug_center = aug_center\n back_img = meta.img\n back_aug_joints = meta.aug_joints\n return [back_img, back_aug_joints]\n\n\ndef apply_mask(components):\n \"\"\"\n Applies the mask (if exists) to the image.\n\n :param components: components\n :return: updated components\n \"\"\"\n img = components[10]\n mask = components[11]\n if mask is not None:\n img[:, :, 0] = img[:, :, 0] * mask\n img[:, :, 1] = img[:, :, 1] * mask\n img[:, :, 2] = img[:, :, 2] * mask\n img[img == 0] = 128\n return components\n\n\ndef create_all_mask(mask, num, stride):\n \"\"\"\n Helper function to create a stack of scaled down mask.\n\n :param mask: mask image\n :param num: number of layers\n :param stride: parameter used to scale down the mask image because it has\n the same size as orginal image. We need the size of network output.\n :return:\n \"\"\"\n scale_factor = 1.0 / stride\n small_mask = cv2.resize(mask, (0, 0), fx=scale_factor, fy=scale_factor,\n interpolation=cv2.INTER_CUBIC)\n small_mask = small_mask[:, :, np.newaxis]\n return np.repeat(small_mask, num, axis=2)\n", "step-4": "import cv2\nimport numpy as np\nfrom pycocotools.coco import maskUtils\nfrom dataset.augmentors import FlipTransform, joints_to_point8, point8_to_joints, AugImgMetadata\nfrom dataset.base_dataflow import Meta\n\n\ndef read_img(components):\n \"\"\"\n Loads image from meta.img_path. Assigns the image to\n the field img of the same meta instance.\n\n :param components: components\n :return: updated components\n \"\"\"\n img_buf = open(components[0], 'rb').read()\n if not img_buf:\n raise Exception('image not read, path=%s' % components[0])\n arr = np.fromstring(img_buf, np.uint8)\n img = cv2.imdecode(arr, cv2.IMREAD_COLOR)\n components[1], components[2] = img.shape[:2]\n components[10] = img\n return components\n\n\ndef gen_mask(components):\n \"\"\"\n Generate masks based on the coco mask polygons.\n\n :param components: components\n :return: updated components\n \"\"\"\n masks_segments = components[7]\n hh = components[1]\n ww = components[2]\n if masks_segments:\n mask_miss = np.ones((hh, ww), dtype=np.uint8)\n for seg in masks_segments:\n bin_mask = maskUtils.decode(seg)\n bin_mask = np.logical_not(bin_mask)\n mask_miss = np.bitwise_and(mask_miss, bin_mask)\n components[11] = mask_miss\n return components\n\n\ndef augment(components, augmentors, use_o=False):\n \"\"\"\n Augmenting of images.\n\n :param components: components\n :return: updated components.\n \"\"\"\n img_path = components[0]\n height = components[1]\n width = components[2]\n center = components[3]\n bbox = components[4]\n area = components[5]\n num_keypoints = components[6]\n masks_segments = components[7]\n scale = components[8]\n all_joints = components[9]\n img = components[10]\n mask = components[11]\n aug_center = components[12]\n aug_joints = components[13]\n idx = components[14]\n meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n meta.masks_segments = masks_segments\n meta.all_joints = all_joints\n meta.img = img\n meta.mask = mask\n meta.aug_center = aug_center\n meta.aug_joints = aug_joints\n aug_center = meta.center.copy()\n aug_joints = joints_to_point8(meta.all_joints)\n if idx % 2 == 1:\n o_meta = Meta(img_path, height, width, center, bbox, area, scale,\n num_keypoints)\n o_meta.all_joints = all_joints\n o_meta.img = img\n o_meta.mask = mask\n o_meta.aug_center = aug_center\n o_meta.aug_joints = aug_joints\n o_aug_center = o_meta.center.copy()\n o_aug_joints = joints_to_point8(o_meta.all_joints)\n o_trans = augmentors[4].get_transform(AugImgMetadata(img=o_meta.img,\n mask=o_meta.mask, center=o_aug_center, scale=o_meta.scale))\n o_img, o_mask = o_trans.apply_image(o_meta)\n o_aug_joints = o_trans.apply_coords(o_aug_joints)\n o_meta.aug_joints = point8_to_joints(o_aug_joints)\n return [o_img, o_meta.aug_joints]\n else:\n for aug in augmentors:\n transformation = aug.get_transform(AugImgMetadata(img=meta.img,\n mask=meta.mask, center=aug_center, scale=meta.scale))\n im, mask = transformation.apply_image(meta)\n aug_joints = transformation.apply_coords(aug_joints)\n if isinstance(transformation, FlipTransform):\n aug_joints = transformation.recover_left_right(aug_joints)\n aug_center = transformation.apply_coords(aug_center)\n meta.img = im\n meta.mask = mask\n meta.aug_joints = point8_to_joints(aug_joints)\n meta.aug_center = aug_center\n back_img = meta.img\n back_aug_joints = meta.aug_joints\n return [back_img, back_aug_joints]\n\n\ndef apply_mask(components):\n \"\"\"\n Applies the mask (if exists) to the image.\n\n :param components: components\n :return: updated components\n \"\"\"\n img = components[10]\n mask = components[11]\n if mask is not None:\n img[:, :, 0] = img[:, :, 0] * mask\n img[:, :, 1] = img[:, :, 1] * mask\n img[:, :, 2] = img[:, :, 2] * mask\n img[img == 0] = 128\n return components\n\n\ndef create_all_mask(mask, num, stride):\n \"\"\"\n Helper function to create a stack of scaled down mask.\n\n :param mask: mask image\n :param num: number of layers\n :param stride: parameter used to scale down the mask image because it has\n the same size as orginal image. We need the size of network output.\n :return:\n \"\"\"\n scale_factor = 1.0 / stride\n small_mask = cv2.resize(mask, (0, 0), fx=scale_factor, fy=scale_factor,\n interpolation=cv2.INTER_CUBIC)\n small_mask = small_mask[:, :, np.newaxis]\n return np.repeat(small_mask, num, axis=2)\n", "step-5": "import cv2\nimport numpy as np\n\nfrom pycocotools.coco import maskUtils\n\n# from dataset.augmentors import FlipTransform, joints_to_point8, point8_to_joints, AugImgMetadata\n\n# from dataset.base_dataflow import Meta\n\nfrom dataset.augmentors import FlipTransform, joints_to_point8, point8_to_joints, AugImgMetadata\n\nfrom dataset.base_dataflow import Meta\n\ndef read_img(components):\n \"\"\"\n Loads image from meta.img_path. Assigns the image to\n the field img of the same meta instance.\n\n :param components: components\n :return: updated components\n \"\"\"\n\n img_buf = open(components[0], 'rb').read()\n\n if not img_buf:\n raise Exception('image not read, path=%s' % components[0])\n\n arr = np.fromstring(img_buf, np.uint8)\n img = cv2.imdecode(arr, cv2.IMREAD_COLOR)\n components[1], components[2] = img.shape[:2]\n components[10] = img\n\n return components\n\n\ndef gen_mask(components):\n \"\"\"\n Generate masks based on the coco mask polygons.\n\n :param components: components\n :return: updated components\n \"\"\"\n masks_segments = components[7]\n hh = components[1]\n ww = components[2]\n\n if masks_segments:\n mask_miss = np.ones((hh, ww), dtype=np.uint8)\n for seg in masks_segments:\n bin_mask = maskUtils.decode(seg)\n bin_mask = np.logical_not(bin_mask)\n mask_miss = np.bitwise_and(mask_miss, bin_mask)\n\n components[11] = mask_miss\n\n return components\n\n\n# components == df\n# seems params' type is list\ndef augment(components, augmentors,use_o=False):\n \"\"\"\n Augmenting of images.\n\n :param components: components\n :return: updated components.\n \"\"\"\n \n img_path = components[0]\n height = components[1]\n width = components[2]\n center = components[3]\n bbox = components[4]\n area = components[5]\n num_keypoints = components[6]\n masks_segments = components[7]\n scale = components[8]\n all_joints = components[9]\n img = components[10]\n mask = components[11]\n aug_center = components[12]\n aug_joints = components[13]\n idx = components[14]\n\n meta = Meta(img_path, height, width, center, bbox,\n area, scale, num_keypoints)\n meta.masks_segments = masks_segments\n meta.all_joints = all_joints\n meta.img = img\n meta.mask = mask\n meta.aug_center = aug_center\n meta.aug_joints = aug_joints\n\n aug_center = meta.center.copy()\n aug_joints = joints_to_point8(meta.all_joints)\n\n if idx % 2 == 1:\n # print(f\"ori: {idx//2}, {idx}\")\n o_meta= Meta(img_path, height, width, center, bbox,\n area, scale, num_keypoints)\n o_meta.all_joints=all_joints\n o_meta.img=img\n o_meta.mask=mask\n o_meta.aug_center=aug_center\n o_meta.aug_joints=aug_joints\n \n o_aug_center=o_meta.center.copy()\n o_aug_joints=joints_to_point8(o_meta.all_joints)\n \n o_trans=augmentors[4].get_transform(AugImgMetadata(\n img=o_meta.img,\n mask = o_meta.mask,\n center=o_aug_center,\n scale=o_meta.scale\n ))\n \n o_img,o_mask=o_trans.apply_image(o_meta)\n o_aug_joints = o_trans.apply_coords(o_aug_joints)\n # o_aug_center = o_trans.apply_coords(o_aug_center)\n # o_meta.img=o_img\n # o_meta.mask=mask\n o_meta.aug_joints=point8_to_joints(o_aug_joints)\n # o_meta.aug_center=o_aug_center\n return [o_img,o_meta.aug_joints]\n \n else:\n\n for aug in augmentors:\n transformation = aug.get_transform(\n AugImgMetadata(img=meta.img,\n mask=meta.mask,\n center=aug_center,\n scale=meta.scale))\n im, mask = transformation.apply_image(meta)\n\n # augment joints\n aug_joints = transformation.apply_coords(aug_joints)\n\n # after flipping horizontaly the left side joints and right side joints are also\n # flipped so we need to recover their orginal orientation.\n if isinstance(transformation, FlipTransform):\n aug_joints = transformation.recover_left_right(aug_joints)\n\n # augment center position\n aug_center = transformation.apply_coords(aug_center)\n\n meta.img = im\n meta.mask = mask\n\n meta.aug_joints = point8_to_joints(aug_joints)\n meta.aug_center = aug_center\n\n back_img=meta.img\n back_aug_joints = meta.aug_joints\n # del meta\n\n # return [[back_img,back_aug_joints],\n # [o_meta.img,o_meta.aug_joints]]\n\n return [back_img,back_aug_joints]\n\n\ndef apply_mask(components):\n \"\"\"\n Applies the mask (if exists) to the image.\n\n :param components: components\n :return: updated components\n \"\"\"\n img = components[10]\n mask = components[11]\n if mask is not None:\n img[:, :, 0] = img[:, :, 0] * mask\n img[:, :, 1] = img[:, :, 1] * mask\n img[:, :, 2] = img[:, :, 2] * mask\n img[img == 0] = 128\n return components\n\n\ndef create_all_mask(mask, num, stride):\n \"\"\"\n Helper function to create a stack of scaled down mask.\n\n :param mask: mask image\n :param num: number of layers\n :param stride: parameter used to scale down the mask image because it has\n the same size as orginal image. We need the size of network output.\n :return:\n \"\"\"\n scale_factor = 1.0 / stride\n small_mask = cv2.resize(mask, (0, 0), fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC)\n small_mask = small_mask[:, :, np.newaxis]\n return np.repeat(small_mask, num, axis=2)\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
from django.test import TestCase from ..models import FearConditioningData, FearConditioningModule from ..registry import DataViewsetRegistry, ModuleRegistry class ModuleRegistryTest(TestCase): def test_register_module_create_view(self) -> None: registry = ModuleRegistry() registry.register(FearConditioningModule) self.assertEqual( registry.urls[0].pattern._route, "projects/<int:project_pk>/experiments/<int:experiment_pk>/modules/" "fear-conditioning/add/", ) self.assertEqual( registry.urls[0].callback, registry.views["fear_conditioning_create"] ) self.assertEqual(registry.urls[0].name, "fear_conditioning_create") self.assertEqual(registry.modules, [FearConditioningModule]) class DataViewsetRegistryTest(TestCase): def test_register_data_model(self) -> None: registry = DataViewsetRegistry() registry.register(FearConditioningData) self.assertEqual(registry.data_models, [FearConditioningData]) # List view self.assertEqual( registry.urls[0].pattern._route, "projects/<int:project_pk>/experiments/<int:experiment_pk>/data/" "fear-conditioning/", ) self.assertEqual( registry.urls[0].callback, registry.views["fear_conditioning_data_list"] ) self.assertEqual(registry.urls[0].name, "fear_conditioning_data_list") # Detail view self.assertEqual( registry.urls[1].pattern._route, "projects/<int:project_pk>/experiments/<int:experiment_pk>/data/" "fear-conditioning/<int:data_pk>/", ) self.assertEqual( registry.urls[1].callback, registry.views["fear_conditioning_data_detail"] ) self.assertEqual(registry.urls[1].name, "fear_conditioning_data_detail")
normal
{ "blob_id": "14cc048f517efd3dad9960f35fff66a78f68fb45", "index": 8975, "step-1": "<mask token>\n\n\nclass DataViewsetRegistryTest(TestCase):\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DataViewsetRegistryTest(TestCase):\n\n def test_register_data_model(self) ->None:\n registry = DataViewsetRegistry()\n registry.register(FearConditioningData)\n self.assertEqual(registry.data_models, [FearConditioningData])\n self.assertEqual(registry.urls[0].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/data/fear-conditioning/'\n )\n self.assertEqual(registry.urls[0].callback, registry.views[\n 'fear_conditioning_data_list'])\n self.assertEqual(registry.urls[0].name, 'fear_conditioning_data_list')\n self.assertEqual(registry.urls[1].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/data/fear-conditioning/<int:data_pk>/'\n )\n self.assertEqual(registry.urls[1].callback, registry.views[\n 'fear_conditioning_data_detail'])\n self.assertEqual(registry.urls[1].name, 'fear_conditioning_data_detail'\n )\n", "step-3": "<mask token>\n\n\nclass ModuleRegistryTest(TestCase):\n\n def test_register_module_create_view(self) ->None:\n registry = ModuleRegistry()\n registry.register(FearConditioningModule)\n self.assertEqual(registry.urls[0].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/modules/fear-conditioning/add/'\n )\n self.assertEqual(registry.urls[0].callback, registry.views[\n 'fear_conditioning_create'])\n self.assertEqual(registry.urls[0].name, 'fear_conditioning_create')\n self.assertEqual(registry.modules, [FearConditioningModule])\n\n\nclass DataViewsetRegistryTest(TestCase):\n\n def test_register_data_model(self) ->None:\n registry = DataViewsetRegistry()\n registry.register(FearConditioningData)\n self.assertEqual(registry.data_models, [FearConditioningData])\n self.assertEqual(registry.urls[0].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/data/fear-conditioning/'\n )\n self.assertEqual(registry.urls[0].callback, registry.views[\n 'fear_conditioning_data_list'])\n self.assertEqual(registry.urls[0].name, 'fear_conditioning_data_list')\n self.assertEqual(registry.urls[1].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/data/fear-conditioning/<int:data_pk>/'\n )\n self.assertEqual(registry.urls[1].callback, registry.views[\n 'fear_conditioning_data_detail'])\n self.assertEqual(registry.urls[1].name, 'fear_conditioning_data_detail'\n )\n", "step-4": "from django.test import TestCase\nfrom ..models import FearConditioningData, FearConditioningModule\nfrom ..registry import DataViewsetRegistry, ModuleRegistry\n\n\nclass ModuleRegistryTest(TestCase):\n\n def test_register_module_create_view(self) ->None:\n registry = ModuleRegistry()\n registry.register(FearConditioningModule)\n self.assertEqual(registry.urls[0].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/modules/fear-conditioning/add/'\n )\n self.assertEqual(registry.urls[0].callback, registry.views[\n 'fear_conditioning_create'])\n self.assertEqual(registry.urls[0].name, 'fear_conditioning_create')\n self.assertEqual(registry.modules, [FearConditioningModule])\n\n\nclass DataViewsetRegistryTest(TestCase):\n\n def test_register_data_model(self) ->None:\n registry = DataViewsetRegistry()\n registry.register(FearConditioningData)\n self.assertEqual(registry.data_models, [FearConditioningData])\n self.assertEqual(registry.urls[0].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/data/fear-conditioning/'\n )\n self.assertEqual(registry.urls[0].callback, registry.views[\n 'fear_conditioning_data_list'])\n self.assertEqual(registry.urls[0].name, 'fear_conditioning_data_list')\n self.assertEqual(registry.urls[1].pattern._route,\n 'projects/<int:project_pk>/experiments/<int:experiment_pk>/data/fear-conditioning/<int:data_pk>/'\n )\n self.assertEqual(registry.urls[1].callback, registry.views[\n 'fear_conditioning_data_detail'])\n self.assertEqual(registry.urls[1].name, 'fear_conditioning_data_detail'\n )\n", "step-5": "from django.test import TestCase\n\nfrom ..models import FearConditioningData, FearConditioningModule\nfrom ..registry import DataViewsetRegistry, ModuleRegistry\n\n\nclass ModuleRegistryTest(TestCase):\n def test_register_module_create_view(self) -> None:\n registry = ModuleRegistry()\n\n registry.register(FearConditioningModule)\n\n self.assertEqual(\n registry.urls[0].pattern._route,\n \"projects/<int:project_pk>/experiments/<int:experiment_pk>/modules/\"\n \"fear-conditioning/add/\",\n )\n self.assertEqual(\n registry.urls[0].callback, registry.views[\"fear_conditioning_create\"]\n )\n self.assertEqual(registry.urls[0].name, \"fear_conditioning_create\")\n self.assertEqual(registry.modules, [FearConditioningModule])\n\n\nclass DataViewsetRegistryTest(TestCase):\n def test_register_data_model(self) -> None:\n registry = DataViewsetRegistry()\n\n registry.register(FearConditioningData)\n\n self.assertEqual(registry.data_models, [FearConditioningData])\n\n # List view\n self.assertEqual(\n registry.urls[0].pattern._route,\n \"projects/<int:project_pk>/experiments/<int:experiment_pk>/data/\"\n \"fear-conditioning/\",\n )\n self.assertEqual(\n registry.urls[0].callback, registry.views[\"fear_conditioning_data_list\"]\n )\n self.assertEqual(registry.urls[0].name, \"fear_conditioning_data_list\")\n\n # Detail view\n self.assertEqual(\n registry.urls[1].pattern._route,\n \"projects/<int:project_pk>/experiments/<int:experiment_pk>/data/\"\n \"fear-conditioning/<int:data_pk>/\",\n )\n self.assertEqual(\n registry.urls[1].callback, registry.views[\"fear_conditioning_data_detail\"]\n )\n self.assertEqual(registry.urls[1].name, \"fear_conditioning_data_detail\")\n", "step-ids": [ 1, 2, 4, 5, 6 ] }
[ 1, 2, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def truecase_is(string): """ -> lower/title/upper/other """ if string.islower(): return 'l' if string.istitle(): return 't' if string.isupper(): return 'u' return 'o' <|reserved_special_token_0|> def truecase_matching_is(str1, str2): """ -> f(ull-string)/s(ub-string)/n(one) """ if str1 == str2: return 'f' if str1 in str2: return 's' return 'n' def lowercase_matching_is(str1, str2): return truecase_matching_is(str1.lower(), str2.lower()) <|reserved_special_token_1|> <|reserved_special_token_0|> def truecase_is(string): """ -> lower/title/upper/other """ if string.islower(): return 'l' if string.istitle(): return 't' if string.isupper(): return 'u' return 'o' def alnum_is(string): """ -> alpha/digit/other """ if string.isalpha(): return 'a' if string.isdigit(): return 'd' return 'o' def truecase_matching_is(str1, str2): """ -> f(ull-string)/s(ub-string)/n(one) """ if str1 == str2: return 'f' if str1 in str2: return 's' return 'n' def lowercase_matching_is(str1, str2): return truecase_matching_is(str1.lower(), str2.lower()) <|reserved_special_token_1|> from __future__ import print_function, with_statement <|reserved_special_token_0|> def truecase_is(string): """ -> lower/title/upper/other """ if string.islower(): return 'l' if string.istitle(): return 't' if string.isupper(): return 'u' return 'o' def alnum_is(string): """ -> alpha/digit/other """ if string.isalpha(): return 'a' if string.isdigit(): return 'd' return 'o' def truecase_matching_is(str1, str2): """ -> f(ull-string)/s(ub-string)/n(one) """ if str1 == str2: return 'f' if str1 in str2: return 's' return 'n' def lowercase_matching_is(str1, str2): return truecase_matching_is(str1.lower(), str2.lower()) <|reserved_special_token_1|> #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function, with_statement """ cosi299a- Cinderella [email protected] """ def truecase_is(string): """ -> lower/title/upper/other """ if string.islower(): return 'l' if string.istitle(): return 't' if string.isupper(): return 'u' return 'o' def alnum_is(string): """ -> alpha/digit/other """ #assumption: only alnum strings analyzed if string.isalpha(): return 'a' if string.isdigit(): return 'd' return 'o' def truecase_matching_is(str1, str2): """ -> f(ull-string)/s(ub-string)/n(one) """ if str1==str2: return 'f' if str1 in str2: return 's' return 'n' def lowercase_matching_is(str1, str2): return truecase_matching_is(str1.lower(),str2.lower())
flexible
{ "blob_id": "75ddcdd4e80b962198ff9de1d996837927c3ac1a", "index": 824, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef truecase_is(string):\n \"\"\" -> lower/title/upper/other \"\"\"\n if string.islower():\n return 'l'\n if string.istitle():\n return 't'\n if string.isupper():\n return 'u'\n return 'o'\n\n\n<mask token>\n\n\ndef truecase_matching_is(str1, str2):\n \"\"\" -> f(ull-string)/s(ub-string)/n(one) \"\"\"\n if str1 == str2:\n return 'f'\n if str1 in str2:\n return 's'\n return 'n'\n\n\ndef lowercase_matching_is(str1, str2):\n return truecase_matching_is(str1.lower(), str2.lower())\n", "step-3": "<mask token>\n\n\ndef truecase_is(string):\n \"\"\" -> lower/title/upper/other \"\"\"\n if string.islower():\n return 'l'\n if string.istitle():\n return 't'\n if string.isupper():\n return 'u'\n return 'o'\n\n\ndef alnum_is(string):\n \"\"\" -> alpha/digit/other \"\"\"\n if string.isalpha():\n return 'a'\n if string.isdigit():\n return 'd'\n return 'o'\n\n\ndef truecase_matching_is(str1, str2):\n \"\"\" -> f(ull-string)/s(ub-string)/n(one) \"\"\"\n if str1 == str2:\n return 'f'\n if str1 in str2:\n return 's'\n return 'n'\n\n\ndef lowercase_matching_is(str1, str2):\n return truecase_matching_is(str1.lower(), str2.lower())\n", "step-4": "from __future__ import print_function, with_statement\n<mask token>\n\n\ndef truecase_is(string):\n \"\"\" -> lower/title/upper/other \"\"\"\n if string.islower():\n return 'l'\n if string.istitle():\n return 't'\n if string.isupper():\n return 'u'\n return 'o'\n\n\ndef alnum_is(string):\n \"\"\" -> alpha/digit/other \"\"\"\n if string.isalpha():\n return 'a'\n if string.isdigit():\n return 'd'\n return 'o'\n\n\ndef truecase_matching_is(str1, str2):\n \"\"\" -> f(ull-string)/s(ub-string)/n(one) \"\"\"\n if str1 == str2:\n return 'f'\n if str1 in str2:\n return 's'\n return 'n'\n\n\ndef lowercase_matching_is(str1, str2):\n return truecase_matching_is(str1.lower(), str2.lower())\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nfrom __future__ import print_function, with_statement\n\n\n\"\"\"\ncosi299a- Cinderella\[email protected]\n\"\"\"\n\ndef truecase_is(string):\n \"\"\" -> lower/title/upper/other \"\"\"\n if string.islower():\n return 'l'\n if string.istitle():\n return 't'\n if string.isupper():\n return 'u'\n return 'o'\n\ndef alnum_is(string):\n \"\"\" -> alpha/digit/other \"\"\" #assumption: only alnum strings analyzed\n if string.isalpha():\n return 'a'\n if string.isdigit():\n return 'd'\n return 'o'\n\ndef truecase_matching_is(str1, str2):\n \"\"\" -> f(ull-string)/s(ub-string)/n(one) \"\"\"\n if str1==str2:\n return 'f'\n if str1 in str2:\n return 's'\n return 'n'\n\ndef lowercase_matching_is(str1, str2):\n return truecase_matching_is(str1.lower(),str2.lower())\n", "step-ids": [ 0, 3, 4, 5, 6 ] }
[ 0, 3, 4, 5, 6 ]
from django.urls import path from . import views from django.contrib.auth import views as auth_views urlpatterns = [ path('',views.index,name='index'), path('sign',views.sign,name='sign'), # path('password_reset/',auth_views.PasswordResetView.as_view(),name='password_reset'), # path('password_reset/done/',auth_views.PasswordResetDoneView.as_view(),name='password_reset_done'), # path('reset/<uidb64>/<token>/',auth_views.PasswordResetConfirmView.as_view(),name='password_reset_confirm'), # path('reset/done/',auth_views.PasswordResetCompleteView.as_view(),name='password_reset_complete'), # path( # 'change-password', # auth_views.PasswordChangeView.as_view( # template_name='common/change-password.html', # success_url='/' # ), # name='change-password' # ), path('reset_password/', auth_views.PasswordResetView.as_view(template_name="password_reset.html"), name="password_reset" ), path('reset_password_sent/', auth_views.PasswordResetDoneView.as_view(template_name="password_reset_sent.html"), name='password_reset_done'), path('reset/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.as_view(template_name="password_reset_form.html"), name='password_reset_confirm'), path('reset_password_complete/', auth_views.PasswordResetCompleteView.as_view(template_name="password_reset_done.html"), name='password_reset_complete'), ]
normal
{ "blob_id": "7e35c35c8ef443155c45bdbff4ce9ad07b99f144", "index": 9983, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('', views.index, name='index'), path('sign', views.sign,\n name='sign'), path('reset_password/', auth_views.PasswordResetView.\n as_view(template_name='password_reset.html'), name='password_reset'),\n path('reset_password_sent/', auth_views.PasswordResetDoneView.as_view(\n template_name='password_reset_sent.html'), name='password_reset_done'),\n path('reset/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.\n as_view(template_name='password_reset_form.html'), name=\n 'password_reset_confirm'), path('reset_password_complete/', auth_views.\n PasswordResetCompleteView.as_view(template_name=\n 'password_reset_done.html'), name='password_reset_complete')]\n", "step-3": "from django.urls import path\nfrom . import views\nfrom django.contrib.auth import views as auth_views\nurlpatterns = [path('', views.index, name='index'), path('sign', views.sign,\n name='sign'), path('reset_password/', auth_views.PasswordResetView.\n as_view(template_name='password_reset.html'), name='password_reset'),\n path('reset_password_sent/', auth_views.PasswordResetDoneView.as_view(\n template_name='password_reset_sent.html'), name='password_reset_done'),\n path('reset/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.\n as_view(template_name='password_reset_form.html'), name=\n 'password_reset_confirm'), path('reset_password_complete/', auth_views.\n PasswordResetCompleteView.as_view(template_name=\n 'password_reset_done.html'), name='password_reset_complete')]\n", "step-4": "from django.urls import path\nfrom . import views\nfrom django.contrib.auth import views as auth_views \n\nurlpatterns = [\n path('',views.index,name='index'),\n path('sign',views.sign,name='sign'),\n # path('password_reset/',auth_views.PasswordResetView.as_view(),name='password_reset'),\n # path('password_reset/done/',auth_views.PasswordResetDoneView.as_view(),name='password_reset_done'),\n # path('reset/<uidb64>/<token>/',auth_views.PasswordResetConfirmView.as_view(),name='password_reset_confirm'),\n # path('reset/done/',auth_views.PasswordResetCompleteView.as_view(),name='password_reset_complete'),\n\n # path(\n # 'change-password',\n # auth_views.PasswordChangeView.as_view(\n # template_name='common/change-password.html',\n # success_url='/'\n # ),\n # name='change-password'\n # ),\n\n path('reset_password/',\n auth_views.PasswordResetView.as_view(template_name=\"password_reset.html\"),\n name=\"password_reset\" ),\n \n path('reset_password_sent/',\n auth_views.PasswordResetDoneView.as_view(template_name=\"password_reset_sent.html\"),\n name='password_reset_done'),\n\n path('reset/<uidb64>/<token>/',\n auth_views.PasswordResetConfirmView.as_view(template_name=\"password_reset_form.html\"),\n name='password_reset_confirm'),\n \n path('reset_password_complete/',\n auth_views.PasswordResetCompleteView.as_view(template_name=\"password_reset_done.html\"),\n name='password_reset_complete'),\n\n\n \n\n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# from django.shortcuts import render # from django.http import HttpResponse from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.views import generic from django.urls import reverse_lazy from django.shortcuts import render, redirect, get_object_or_404 from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.views.decorators.http import require_POST from django.views.decorators.csrf import csrf_exempt import json from . import models from django.utils import timezone from questions.forms import UserRegistrationForm, UserLoginForm, UserSettingsForm, AskForm, AnswerForm, UserForm # from .models import Post # Create your views here. def index(request): return render(request, 'new_questions.html', { 'title': 'Вопросы', 'questions': paginate(request, models.Question.objects.all()), 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'page_objects' : paginate(request, models.Question.objects.all()), }) def top(request): return render(request, 'new_questions.html', { 'title': 'Топ вопросов', 'questions': paginate(request, models.Question.objects.get_hot()), 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'page_objects' : paginate(request, models.Question.objects.get_hot()), }) def new(request): return render(request, 'new_questions.html', { 'title': 'Новые', 'questions': paginate(request, models.Question.objects.get_new()), 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'page_objects' : paginate(request, models.Question.objects.get_new()), }) def hot(request, id=1): """docstring for Main_menu""" return render(request, "hot.html", { 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'tags' : paginate(request, models.Tag.objects.hottest())[:10], "questions" : paginate(request, objects_list = models.Question.objects.get_hot()), "page_objects" : paginate(request, objects_list = models.Question.objects.get_hot()), }) def profile(request, id): return render(request, "user_settings.html", { 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'tags' : paginate(request, models.Tag.objects.hottest())[:10], "profile": get_object_or_404(models.CustomUser, pk=id), }) def user_questions(request, id): #Переделай вид страницы! не красиво! """docstring for Main_menu""" return render(request, "user_question.html", { 'questions': paginate(request, models.Question.objects.get_by_user(user_id=id)), 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'page_objects' : paginate(request, models.Question.objects.get_by_user(user_id=id)), }) def question_page(request, id): return render(request, "questions.html", { 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'tags' : paginate(request, models.Tag.objects.hottest())[:10], "question": get_object_or_404(models.Question, pk=id) , "answers": paginate(request, objects_list = models.Answer.objects.get_hot_for_answer(id)), "page_objects": paginate(request, objects_list = models.Answer.objects.get_hot_for_answer(id)), }) def tag(request, id): return render(request, 'tag_find.html', { 'users' : paginate(request, models.CustomUser.objects.by_rating())[0:10], 'tags' : paginate(request, models.Tag.objects.hottest())[0:10], 'tag' : get_object_or_404(models.Tag, pk=id) , 'questions': paginate(request, models.Question.objects.get_by_tag(tag_id=id)), "page_objects": paginate(request, objects_list = models.Question.objects.get_by_tag(tag_id=id)), }) def edit(request): user = get_object_or_404(models.CustomUser, username=request.user) if request.method == 'POST': form = UserSettingsForm(instance=user, data=request.POST, files=request.FILES ) if form.is_valid(): form.save() return profile(request, user.id) else: form = UserSettingsForm(instance=user) return render(request, 'edit.html', { 'form': form, 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], }) @login_required(login_url='/log_in/') def new_answer(request, id): if models.Question.objects.filter(id=id).exists(): if request.method == 'POST': form = AnswerForm(request.POST) if form.is_valid(): #answeredQuestion = Question.objects.get_by_id(id)[0] answeredQuestion = get_object_or_404(models.Question, pk=id) answer = models.Answer.objects.create(author=request.user, create_date=timezone.now(), text=form.cleaned_data['text'], question_id=answeredQuestion.id) answer.save() return redirect('/question/{}/add_answer/'.format(id)) else: form = AnswerForm() #return render(request, 'question/new_answer.html', {'form': form}) return render(request, 'questions.html', { 'form': form, 'question': get_object_or_404(models.Question, pk=id), 'answers' : paginate(request, models.Answer.objects.get_hot_for_answer(id)), 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], 'page_objects' : paginate(request, models.Answer.objects.get_hot_for_answer(id)), }) else: raise Http404 @login_required(login_url='/log_in/') def ask(request): error = True if request.method == 'POST': firstly = False form = AskForm(request.POST) if form.is_valid(): ques = models.Question.objects.create(author=request.user, create_date=timezone.now(), is_active=True, title=form.cleaned_data['title'], text=form.cleaned_data['text']) ques.save() for tagTitle in form.cleaned_data['tags'].split(): tag = models.Tag.objects.get_or_create(title=tagTitle)[0] ques.tags.add(tag) ques.save() #return question(request, ques.id) return redirect('/question/{}/'.format(ques.id)) else: error = False else: form = AskForm() firstly = True return render(request, 'new_ask.html', { 'firstly': firstly, 'error': error, 'form': form, 'tags' : paginate(request, models.Tag.objects.hottest())[:10], 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10], }) def signin(request): last_page = request.GET['next'] if last_page == '/logout' or last_page == '/login': last_page = '/' error = False if request.method == 'POST': user = authenticate(username=request.POST['nickname'], password=request.POST['password']) if user is not None: login(request, user) # Авторизуем пользователя return redirect(last_page) else: error = True return render(request, 'login.html', {'error': error, 'last_page': last_page, 'tags' : paginate(request, models.Tag.objects.hottest()), 'users' : paginate(request, models.CustomUser.objects.by_rating()), }) def registration(request): if request.method == 'POST': user_form = UserRegistrationForm(request.POST, request.FILES) print(user_form) if user_form.is_valid(): user = user_form.save() user.set_password(user.password) user.save() login(request, user) return redirect(request.GET.get('next') if request.GET.get('next') != '' else '/') else: print(user_form.errors) else: user_form = UserRegistrationForm() return render(request,'registration.html', {'form':user_form,}) def signout(request): if not request.user.is_authenticated: raise Http404 logout(request) #return redirect(request.GET['from']) return redirect('/') def paginate(request, objects_list): paginator = Paginator(objects_list, 30) page = request.GET.get('page') try: objects = paginator.page(page) except PageNotAnInteger: objects = paginator.page(1) except EmptyPage: objects = paginator.page(paginator.num_pages) return objects @require_POST def like_question(request): question_id = request.POST.get('question_id', '') like_type = request.POST.get('like_type', '') question =get_object_or_404(Question, pk=question_id) if not question: return JsonResponse({"status": "error"}) if (like_type == 'like'): question.rating += 1 elif (like_type == 'dislike'): question.rating -= 1 question.save() return JsonResponse({"status": "ok"}) @require_POST def like_answer(request): answer_id = request.POST.get('answer_id', '') like_type = request.POST.get('like_type', '') answer =get_object_or_404(Answer, pk=answer_id) if not answer: return JsonResponse({"status": "error"}) if (like_type == 'like'): answer.rating += 1 elif (like_type == 'dislike'): answer.rating -= 1 answer.save() return JsonResponse({"status": "ok"}) @require_POST def approve_answer(request): answer_id = request.POST.get('answer_id', '') answer =get_object_or_404(Answer, pk=answer_id) if not answer: return JsonResponse({"status": "error"}) answer.approved = not answer.approved answer.save() return JsonResponse({"status": "ok"})
normal
{ "blob_id": "c4b4585501319fd8a8106c91751bb1408912827a", "index": 3180, "step-1": "<mask token>\n\n\ndef top(request):\n return render(request, 'new_questions.html', {'title': 'Топ вопросов',\n 'questions': paginate(request, models.Question.objects.get_hot()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_hot())})\n\n\n<mask token>\n\n\ndef hot(request, id=1):\n \"\"\"docstring for Main_menu\"\"\"\n return render(request, 'hot.html', {'users': paginate(request, models.\n CustomUser.objects.by_rating())[:10], 'tags': paginate(request,\n models.Tag.objects.hottest())[:10], 'questions': paginate(request,\n objects_list=models.Question.objects.get_hot()), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_hot())})\n\n\n<mask token>\n\n\ndef question_page(request, id):\n return render(request, 'questions.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, objects_list=models.Answer.objects.get_hot_for_answer(id)),\n 'page_objects': paginate(request, objects_list=models.Answer.\n objects.get_hot_for_answer(id))})\n\n\ndef tag(request, id):\n return render(request, 'tag_find.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[0:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[0:10], 'tag':\n get_object_or_404(models.Tag, pk=id), 'questions': paginate(request,\n models.Question.objects.get_by_tag(tag_id=id)), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_by_tag(\n tag_id=id))})\n\n\n<mask token>\n\n\n@login_required(login_url='/log_in/')\ndef ask(request):\n error = True\n if request.method == 'POST':\n firstly = False\n form = AskForm(request.POST)\n if form.is_valid():\n ques = models.Question.objects.create(author=request.user,\n create_date=timezone.now(), is_active=True, title=form.\n cleaned_data['title'], text=form.cleaned_data['text'])\n ques.save()\n for tagTitle in form.cleaned_data['tags'].split():\n tag = models.Tag.objects.get_or_create(title=tagTitle)[0]\n ques.tags.add(tag)\n ques.save()\n return redirect('/question/{}/'.format(ques.id))\n else:\n error = False\n else:\n form = AskForm()\n firstly = True\n return render(request, 'new_ask.html', {'firstly': firstly, 'error':\n error, 'form': form, 'tags': paginate(request, models.Tag.objects.\n hottest())[:10], 'users': paginate(request, models.CustomUser.\n objects.by_rating())[:10]})\n\n\ndef signin(request):\n last_page = request.GET['next']\n if last_page == '/logout' or last_page == '/login':\n last_page = '/'\n error = False\n if request.method == 'POST':\n user = authenticate(username=request.POST['nickname'], password=\n request.POST['password'])\n if user is not None:\n login(request, user)\n return redirect(last_page)\n else:\n error = True\n return render(request, 'login.html', {'error': error, 'last_page':\n last_page, 'tags': paginate(request, models.Tag.objects.hottest()),\n 'users': paginate(request, models.CustomUser.objects.by_rating())})\n\n\n<mask token>\n\n\ndef signout(request):\n if not request.user.is_authenticated:\n raise Http404\n logout(request)\n return redirect('/')\n\n\n<mask token>\n\n\n@require_POST\ndef like_question(request):\n question_id = request.POST.get('question_id', '')\n like_type = request.POST.get('like_type', '')\n question = get_object_or_404(Question, pk=question_id)\n if not question:\n return JsonResponse({'status': 'error'})\n if like_type == 'like':\n question.rating += 1\n elif like_type == 'dislike':\n question.rating -= 1\n question.save()\n return JsonResponse({'status': 'ok'})\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef top(request):\n return render(request, 'new_questions.html', {'title': 'Топ вопросов',\n 'questions': paginate(request, models.Question.objects.get_hot()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_hot())})\n\n\ndef new(request):\n return render(request, 'new_questions.html', {'title': 'Новые',\n 'questions': paginate(request, models.Question.objects.get_new()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_new())})\n\n\ndef hot(request, id=1):\n \"\"\"docstring for Main_menu\"\"\"\n return render(request, 'hot.html', {'users': paginate(request, models.\n CustomUser.objects.by_rating())[:10], 'tags': paginate(request,\n models.Tag.objects.hottest())[:10], 'questions': paginate(request,\n objects_list=models.Question.objects.get_hot()), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_hot())})\n\n\ndef profile(request, id):\n return render(request, 'user_settings.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'profile':\n get_object_or_404(models.CustomUser, pk=id)})\n\n\n<mask token>\n\n\ndef question_page(request, id):\n return render(request, 'questions.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, objects_list=models.Answer.objects.get_hot_for_answer(id)),\n 'page_objects': paginate(request, objects_list=models.Answer.\n objects.get_hot_for_answer(id))})\n\n\ndef tag(request, id):\n return render(request, 'tag_find.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[0:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[0:10], 'tag':\n get_object_or_404(models.Tag, pk=id), 'questions': paginate(request,\n models.Question.objects.get_by_tag(tag_id=id)), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_by_tag(\n tag_id=id))})\n\n\n<mask token>\n\n\n@login_required(login_url='/log_in/')\ndef new_answer(request, id):\n if models.Question.objects.filter(id=id).exists():\n if request.method == 'POST':\n form = AnswerForm(request.POST)\n if form.is_valid():\n answeredQuestion = get_object_or_404(models.Question, pk=id)\n answer = models.Answer.objects.create(author=request.user,\n create_date=timezone.now(), text=form.cleaned_data[\n 'text'], question_id=answeredQuestion.id)\n answer.save()\n return redirect('/question/{}/add_answer/'.format(id))\n else:\n form = AnswerForm()\n return render(request, 'questions.html', {'form': form, 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, models.Answer.objects.get_hot_for_answer(id)), 'tags':\n paginate(request, models.Tag.objects.hottest())[:10], 'users':\n paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects': paginate(request, models.Answer.objects.\n get_hot_for_answer(id))})\n else:\n raise Http404\n\n\n@login_required(login_url='/log_in/')\ndef ask(request):\n error = True\n if request.method == 'POST':\n firstly = False\n form = AskForm(request.POST)\n if form.is_valid():\n ques = models.Question.objects.create(author=request.user,\n create_date=timezone.now(), is_active=True, title=form.\n cleaned_data['title'], text=form.cleaned_data['text'])\n ques.save()\n for tagTitle in form.cleaned_data['tags'].split():\n tag = models.Tag.objects.get_or_create(title=tagTitle)[0]\n ques.tags.add(tag)\n ques.save()\n return redirect('/question/{}/'.format(ques.id))\n else:\n error = False\n else:\n form = AskForm()\n firstly = True\n return render(request, 'new_ask.html', {'firstly': firstly, 'error':\n error, 'form': form, 'tags': paginate(request, models.Tag.objects.\n hottest())[:10], 'users': paginate(request, models.CustomUser.\n objects.by_rating())[:10]})\n\n\ndef signin(request):\n last_page = request.GET['next']\n if last_page == '/logout' or last_page == '/login':\n last_page = '/'\n error = False\n if request.method == 'POST':\n user = authenticate(username=request.POST['nickname'], password=\n request.POST['password'])\n if user is not None:\n login(request, user)\n return redirect(last_page)\n else:\n error = True\n return render(request, 'login.html', {'error': error, 'last_page':\n last_page, 'tags': paginate(request, models.Tag.objects.hottest()),\n 'users': paginate(request, models.CustomUser.objects.by_rating())})\n\n\ndef registration(request):\n if request.method == 'POST':\n user_form = UserRegistrationForm(request.POST, request.FILES)\n print(user_form)\n if user_form.is_valid():\n user = user_form.save()\n user.set_password(user.password)\n user.save()\n login(request, user)\n return redirect(request.GET.get('next') if request.GET.get(\n 'next') != '' else '/')\n else:\n print(user_form.errors)\n else:\n user_form = UserRegistrationForm()\n return render(request, 'registration.html', {'form': user_form})\n\n\ndef signout(request):\n if not request.user.is_authenticated:\n raise Http404\n logout(request)\n return redirect('/')\n\n\n<mask token>\n\n\n@require_POST\ndef like_question(request):\n question_id = request.POST.get('question_id', '')\n like_type = request.POST.get('like_type', '')\n question = get_object_or_404(Question, pk=question_id)\n if not question:\n return JsonResponse({'status': 'error'})\n if like_type == 'like':\n question.rating += 1\n elif like_type == 'dislike':\n question.rating -= 1\n question.save()\n return JsonResponse({'status': 'ok'})\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef top(request):\n return render(request, 'new_questions.html', {'title': 'Топ вопросов',\n 'questions': paginate(request, models.Question.objects.get_hot()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_hot())})\n\n\ndef new(request):\n return render(request, 'new_questions.html', {'title': 'Новые',\n 'questions': paginate(request, models.Question.objects.get_new()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_new())})\n\n\ndef hot(request, id=1):\n \"\"\"docstring for Main_menu\"\"\"\n return render(request, 'hot.html', {'users': paginate(request, models.\n CustomUser.objects.by_rating())[:10], 'tags': paginate(request,\n models.Tag.objects.hottest())[:10], 'questions': paginate(request,\n objects_list=models.Question.objects.get_hot()), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_hot())})\n\n\ndef profile(request, id):\n return render(request, 'user_settings.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'profile':\n get_object_or_404(models.CustomUser, pk=id)})\n\n\ndef user_questions(request, id):\n \"\"\"docstring for Main_menu\"\"\"\n return render(request, 'user_question.html', {'questions': paginate(\n request, models.Question.objects.get_by_user(user_id=id)), 'tags':\n paginate(request, models.Tag.objects.hottest())[:10], 'users':\n paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects': paginate(request, models.Question.objects.\n get_by_user(user_id=id))})\n\n\ndef question_page(request, id):\n return render(request, 'questions.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, objects_list=models.Answer.objects.get_hot_for_answer(id)),\n 'page_objects': paginate(request, objects_list=models.Answer.\n objects.get_hot_for_answer(id))})\n\n\ndef tag(request, id):\n return render(request, 'tag_find.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[0:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[0:10], 'tag':\n get_object_or_404(models.Tag, pk=id), 'questions': paginate(request,\n models.Question.objects.get_by_tag(tag_id=id)), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_by_tag(\n tag_id=id))})\n\n\n<mask token>\n\n\n@login_required(login_url='/log_in/')\ndef new_answer(request, id):\n if models.Question.objects.filter(id=id).exists():\n if request.method == 'POST':\n form = AnswerForm(request.POST)\n if form.is_valid():\n answeredQuestion = get_object_or_404(models.Question, pk=id)\n answer = models.Answer.objects.create(author=request.user,\n create_date=timezone.now(), text=form.cleaned_data[\n 'text'], question_id=answeredQuestion.id)\n answer.save()\n return redirect('/question/{}/add_answer/'.format(id))\n else:\n form = AnswerForm()\n return render(request, 'questions.html', {'form': form, 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, models.Answer.objects.get_hot_for_answer(id)), 'tags':\n paginate(request, models.Tag.objects.hottest())[:10], 'users':\n paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects': paginate(request, models.Answer.objects.\n get_hot_for_answer(id))})\n else:\n raise Http404\n\n\n@login_required(login_url='/log_in/')\ndef ask(request):\n error = True\n if request.method == 'POST':\n firstly = False\n form = AskForm(request.POST)\n if form.is_valid():\n ques = models.Question.objects.create(author=request.user,\n create_date=timezone.now(), is_active=True, title=form.\n cleaned_data['title'], text=form.cleaned_data['text'])\n ques.save()\n for tagTitle in form.cleaned_data['tags'].split():\n tag = models.Tag.objects.get_or_create(title=tagTitle)[0]\n ques.tags.add(tag)\n ques.save()\n return redirect('/question/{}/'.format(ques.id))\n else:\n error = False\n else:\n form = AskForm()\n firstly = True\n return render(request, 'new_ask.html', {'firstly': firstly, 'error':\n error, 'form': form, 'tags': paginate(request, models.Tag.objects.\n hottest())[:10], 'users': paginate(request, models.CustomUser.\n objects.by_rating())[:10]})\n\n\ndef signin(request):\n last_page = request.GET['next']\n if last_page == '/logout' or last_page == '/login':\n last_page = '/'\n error = False\n if request.method == 'POST':\n user = authenticate(username=request.POST['nickname'], password=\n request.POST['password'])\n if user is not None:\n login(request, user)\n return redirect(last_page)\n else:\n error = True\n return render(request, 'login.html', {'error': error, 'last_page':\n last_page, 'tags': paginate(request, models.Tag.objects.hottest()),\n 'users': paginate(request, models.CustomUser.objects.by_rating())})\n\n\ndef registration(request):\n if request.method == 'POST':\n user_form = UserRegistrationForm(request.POST, request.FILES)\n print(user_form)\n if user_form.is_valid():\n user = user_form.save()\n user.set_password(user.password)\n user.save()\n login(request, user)\n return redirect(request.GET.get('next') if request.GET.get(\n 'next') != '' else '/')\n else:\n print(user_form.errors)\n else:\n user_form = UserRegistrationForm()\n return render(request, 'registration.html', {'form': user_form})\n\n\ndef signout(request):\n if not request.user.is_authenticated:\n raise Http404\n logout(request)\n return redirect('/')\n\n\n<mask token>\n\n\n@require_POST\ndef like_question(request):\n question_id = request.POST.get('question_id', '')\n like_type = request.POST.get('like_type', '')\n question = get_object_or_404(Question, pk=question_id)\n if not question:\n return JsonResponse({'status': 'error'})\n if like_type == 'like':\n question.rating += 1\n elif like_type == 'dislike':\n question.rating -= 1\n question.save()\n return JsonResponse({'status': 'ok'})\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef index(request):\n return render(request, 'new_questions.html', {'title': 'Вопросы',\n 'questions': paginate(request, models.Question.objects.all()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.all())})\n\n\ndef top(request):\n return render(request, 'new_questions.html', {'title': 'Топ вопросов',\n 'questions': paginate(request, models.Question.objects.get_hot()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_hot())})\n\n\ndef new(request):\n return render(request, 'new_questions.html', {'title': 'Новые',\n 'questions': paginate(request, models.Question.objects.get_new()),\n 'tags': paginate(request, models.Tag.objects.hottest())[:10],\n 'users': paginate(request, models.CustomUser.objects.by_rating())[:\n 10], 'page_objects': paginate(request, models.Question.objects.\n get_new())})\n\n\ndef hot(request, id=1):\n \"\"\"docstring for Main_menu\"\"\"\n return render(request, 'hot.html', {'users': paginate(request, models.\n CustomUser.objects.by_rating())[:10], 'tags': paginate(request,\n models.Tag.objects.hottest())[:10], 'questions': paginate(request,\n objects_list=models.Question.objects.get_hot()), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_hot())})\n\n\ndef profile(request, id):\n return render(request, 'user_settings.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'profile':\n get_object_or_404(models.CustomUser, pk=id)})\n\n\ndef user_questions(request, id):\n \"\"\"docstring for Main_menu\"\"\"\n return render(request, 'user_question.html', {'questions': paginate(\n request, models.Question.objects.get_by_user(user_id=id)), 'tags':\n paginate(request, models.Tag.objects.hottest())[:10], 'users':\n paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects': paginate(request, models.Question.objects.\n get_by_user(user_id=id))})\n\n\ndef question_page(request, id):\n return render(request, 'questions.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, objects_list=models.Answer.objects.get_hot_for_answer(id)),\n 'page_objects': paginate(request, objects_list=models.Answer.\n objects.get_hot_for_answer(id))})\n\n\ndef tag(request, id):\n return render(request, 'tag_find.html', {'users': paginate(request,\n models.CustomUser.objects.by_rating())[0:10], 'tags': paginate(\n request, models.Tag.objects.hottest())[0:10], 'tag':\n get_object_or_404(models.Tag, pk=id), 'questions': paginate(request,\n models.Question.objects.get_by_tag(tag_id=id)), 'page_objects':\n paginate(request, objects_list=models.Question.objects.get_by_tag(\n tag_id=id))})\n\n\ndef edit(request):\n user = get_object_or_404(models.CustomUser, username=request.user)\n if request.method == 'POST':\n form = UserSettingsForm(instance=user, data=request.POST, files=\n request.FILES)\n if form.is_valid():\n form.save()\n return profile(request, user.id)\n else:\n form = UserSettingsForm(instance=user)\n return render(request, 'edit.html', {'form': form, 'tags': paginate(\n request, models.Tag.objects.hottest())[:10], 'users': paginate(\n request, models.CustomUser.objects.by_rating())[:10]})\n\n\n@login_required(login_url='/log_in/')\ndef new_answer(request, id):\n if models.Question.objects.filter(id=id).exists():\n if request.method == 'POST':\n form = AnswerForm(request.POST)\n if form.is_valid():\n answeredQuestion = get_object_or_404(models.Question, pk=id)\n answer = models.Answer.objects.create(author=request.user,\n create_date=timezone.now(), text=form.cleaned_data[\n 'text'], question_id=answeredQuestion.id)\n answer.save()\n return redirect('/question/{}/add_answer/'.format(id))\n else:\n form = AnswerForm()\n return render(request, 'questions.html', {'form': form, 'question':\n get_object_or_404(models.Question, pk=id), 'answers': paginate(\n request, models.Answer.objects.get_hot_for_answer(id)), 'tags':\n paginate(request, models.Tag.objects.hottest())[:10], 'users':\n paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects': paginate(request, models.Answer.objects.\n get_hot_for_answer(id))})\n else:\n raise Http404\n\n\n@login_required(login_url='/log_in/')\ndef ask(request):\n error = True\n if request.method == 'POST':\n firstly = False\n form = AskForm(request.POST)\n if form.is_valid():\n ques = models.Question.objects.create(author=request.user,\n create_date=timezone.now(), is_active=True, title=form.\n cleaned_data['title'], text=form.cleaned_data['text'])\n ques.save()\n for tagTitle in form.cleaned_data['tags'].split():\n tag = models.Tag.objects.get_or_create(title=tagTitle)[0]\n ques.tags.add(tag)\n ques.save()\n return redirect('/question/{}/'.format(ques.id))\n else:\n error = False\n else:\n form = AskForm()\n firstly = True\n return render(request, 'new_ask.html', {'firstly': firstly, 'error':\n error, 'form': form, 'tags': paginate(request, models.Tag.objects.\n hottest())[:10], 'users': paginate(request, models.CustomUser.\n objects.by_rating())[:10]})\n\n\ndef signin(request):\n last_page = request.GET['next']\n if last_page == '/logout' or last_page == '/login':\n last_page = '/'\n error = False\n if request.method == 'POST':\n user = authenticate(username=request.POST['nickname'], password=\n request.POST['password'])\n if user is not None:\n login(request, user)\n return redirect(last_page)\n else:\n error = True\n return render(request, 'login.html', {'error': error, 'last_page':\n last_page, 'tags': paginate(request, models.Tag.objects.hottest()),\n 'users': paginate(request, models.CustomUser.objects.by_rating())})\n\n\ndef registration(request):\n if request.method == 'POST':\n user_form = UserRegistrationForm(request.POST, request.FILES)\n print(user_form)\n if user_form.is_valid():\n user = user_form.save()\n user.set_password(user.password)\n user.save()\n login(request, user)\n return redirect(request.GET.get('next') if request.GET.get(\n 'next') != '' else '/')\n else:\n print(user_form.errors)\n else:\n user_form = UserRegistrationForm()\n return render(request, 'registration.html', {'form': user_form})\n\n\ndef signout(request):\n if not request.user.is_authenticated:\n raise Http404\n logout(request)\n return redirect('/')\n\n\ndef paginate(request, objects_list):\n paginator = Paginator(objects_list, 30)\n page = request.GET.get('page')\n try:\n objects = paginator.page(page)\n except PageNotAnInteger:\n objects = paginator.page(1)\n except EmptyPage:\n objects = paginator.page(paginator.num_pages)\n return objects\n\n\n@require_POST\ndef like_question(request):\n question_id = request.POST.get('question_id', '')\n like_type = request.POST.get('like_type', '')\n question = get_object_or_404(Question, pk=question_id)\n if not question:\n return JsonResponse({'status': 'error'})\n if like_type == 'like':\n question.rating += 1\n elif like_type == 'dislike':\n question.rating -= 1\n question.save()\n return JsonResponse({'status': 'ok'})\n\n\n@require_POST\ndef like_answer(request):\n answer_id = request.POST.get('answer_id', '')\n like_type = request.POST.get('like_type', '')\n answer = get_object_or_404(Answer, pk=answer_id)\n if not answer:\n return JsonResponse({'status': 'error'})\n if like_type == 'like':\n answer.rating += 1\n elif like_type == 'dislike':\n answer.rating -= 1\n answer.save()\n return JsonResponse({'status': 'ok'})\n\n\n@require_POST\ndef approve_answer(request):\n answer_id = request.POST.get('answer_id', '')\n answer = get_object_or_404(Answer, pk=answer_id)\n if not answer:\n return JsonResponse({'status': 'error'})\n answer.approved = not answer.approved\n answer.save()\n return JsonResponse({'status': 'ok'})\n", "step-5": "# from django.shortcuts import render\n# from django.http import HttpResponse\nfrom django.core.paginator import Paginator, PageNotAnInteger, EmptyPage\nfrom django.views import generic\nfrom django.urls import reverse_lazy\nfrom django.shortcuts import render, redirect, get_object_or_404\nfrom django.contrib.auth import authenticate, login, logout\nfrom django.contrib.auth.decorators import login_required\nfrom django.views.decorators.http import require_POST\nfrom django.views.decorators.csrf import csrf_exempt\nimport json\nfrom . import models\nfrom django.utils import timezone\nfrom questions.forms import UserRegistrationForm, UserLoginForm, UserSettingsForm, AskForm, AnswerForm, UserForm\n\n# from .models import Post \n\n# Create your views here.\n\t\t\ndef index(request):\n return render(request, 'new_questions.html', {\n 'title': 'Вопросы',\n 'questions': paginate(request, models.Question.objects.all()),\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects' : paginate(request, models.Question.objects.all()),\n })\n\ndef top(request):\n return render(request, 'new_questions.html', {\n 'title': 'Топ вопросов',\n 'questions': paginate(request, models.Question.objects.get_hot()),\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects' : paginate(request, models.Question.objects.get_hot()),\n })\n\ndef new(request):\n return render(request, 'new_questions.html', {\n 'title': 'Новые',\n 'questions': paginate(request, models.Question.objects.get_new()),\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects' : paginate(request, models.Question.objects.get_new()),\n })\n\n\ndef hot(request, id=1):\n\t\"\"\"docstring for Main_menu\"\"\"\n\treturn render(request, \"hot.html\", {\n\t\t'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n\t\t'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n\t\t\"questions\" : paginate(request, objects_list = models.Question.objects.get_hot()),\n\t\t\"page_objects\" : paginate(request, objects_list = models.Question.objects.get_hot()),\n\t\t})\ndef profile(request, id):\n\treturn render(request, \"user_settings.html\", {\n\t\t'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n\t\t'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n\t\t\"profile\": get_object_or_404(models.CustomUser, pk=id),\n\t\t})\n\ndef user_questions(request, id):\t#Переделай вид страницы! не красиво!\n\t\"\"\"docstring for Main_menu\"\"\"\n\treturn render(request, \"user_question.html\", {\n\t\t'questions': paginate(request, models.Question.objects.get_by_user(user_id=id)),\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects' : paginate(request, models.Question.objects.get_by_user(user_id=id)),\n\t\t})\n\ndef question_page(request, id):\n\treturn render(request, \"questions.html\", {\n\t\t'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n\t\t'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n\t\t\"question\": get_object_or_404(models.Question, pk=id) ,\n\t\t\"answers\": paginate(request, objects_list = models.Answer.objects.get_hot_for_answer(id)),\n\t\t\"page_objects\": paginate(request, objects_list = models.Answer.objects.get_hot_for_answer(id)),\n\t\t})\n\ndef tag(request, id):\n return render(request, 'tag_find.html', {\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[0:10],\n 'tags' : paginate(request, models.Tag.objects.hottest())[0:10],\n 'tag' : get_object_or_404(models.Tag, pk=id) ,\n 'questions': paginate(request, models.Question.objects.get_by_tag(tag_id=id)),\n \"page_objects\": paginate(request, objects_list = models.Question.objects.get_by_tag(tag_id=id)),\n })\n\n\ndef edit(request):\n user = get_object_or_404(models.CustomUser, username=request.user)\n\n if request.method == 'POST':\n form = UserSettingsForm(instance=user,\n data=request.POST,\n files=request.FILES\n )\n if form.is_valid():\n form.save()\n return profile(request, user.id)\n else:\n form = UserSettingsForm(instance=user)\n\n return render(request, 'edit.html', {\n 'form': form,\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n })\n\n@login_required(login_url='/log_in/')\ndef new_answer(request, id):\n if models.Question.objects.filter(id=id).exists():\n if request.method == 'POST':\n form = AnswerForm(request.POST)\n if form.is_valid():\n #answeredQuestion = Question.objects.get_by_id(id)[0]\n answeredQuestion = get_object_or_404(models.Question, pk=id)\n answer = models.Answer.objects.create(author=request.user,\n create_date=timezone.now(),\n text=form.cleaned_data['text'],\n question_id=answeredQuestion.id)\n answer.save()\n return redirect('/question/{}/add_answer/'.format(id))\n else:\n form = AnswerForm()\n #return render(request, 'question/new_answer.html', {'form': form})\n return render(request, 'questions.html', {\n 'form': form,\n 'question': get_object_or_404(models.Question, pk=id),\n 'answers' : paginate(request, models.Answer.objects.get_hot_for_answer(id)),\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n 'page_objects' : paginate(request, models.Answer.objects.get_hot_for_answer(id)),\n })\n else:\n raise Http404\n\n@login_required(login_url='/log_in/')\ndef ask(request):\n error = True\n if request.method == 'POST':\n firstly = False\n form = AskForm(request.POST)\n if form.is_valid():\n ques = models.Question.objects.create(author=request.user,\n create_date=timezone.now(),\n is_active=True,\n title=form.cleaned_data['title'],\n text=form.cleaned_data['text'])\n ques.save()\n\n for tagTitle in form.cleaned_data['tags'].split():\n tag = models.Tag.objects.get_or_create(title=tagTitle)[0]\n ques.tags.add(tag)\n ques.save()\n #return question(request, ques.id)\n return redirect('/question/{}/'.format(ques.id))\n else:\n error = False\n else:\n form = AskForm()\n firstly = True\n return render(request, 'new_ask.html', {\n 'firstly': firstly,\n 'error': error,\n 'form': form,\n 'tags' : paginate(request, models.Tag.objects.hottest())[:10],\n 'users' : paginate(request, models.CustomUser.objects.by_rating())[:10],\n })\n\ndef signin(request):\n last_page = request.GET['next']\n if last_page == '/logout' or last_page == '/login':\n last_page = '/'\n error = False\n if request.method == 'POST':\n user = authenticate(username=request.POST['nickname'], password=request.POST['password'])\n if user is not None:\n login(request, user) # Авторизуем пользователя\n return redirect(last_page)\n else:\n error = True\n return render(request, 'login.html',\n {'error': error,\n 'last_page': last_page,\n 'tags' : paginate(request, models.Tag.objects.hottest()),\n 'users' : paginate(request, models.CustomUser.objects.by_rating()),\n })\n\ndef registration(request):\n if request.method == 'POST':\n user_form = UserRegistrationForm(request.POST, request.FILES)\n print(user_form)\n if user_form.is_valid():\n user = user_form.save()\n user.set_password(user.password)\n user.save()\n login(request, user)\n return redirect(request.GET.get('next') if request.GET.get('next') != '' else '/')\n else:\n print(user_form.errors)\n else:\n user_form = UserRegistrationForm()\n return render(request,'registration.html',\n {'form':user_form,})\n\ndef signout(request):\n if not request.user.is_authenticated:\n raise Http404\n logout(request)\n #return redirect(request.GET['from'])\n return redirect('/')\n\n\ndef paginate(request, objects_list):\n paginator = Paginator(objects_list, 30)\n page = request.GET.get('page')\n try:\n objects = paginator.page(page)\n except PageNotAnInteger:\n objects = paginator.page(1)\n except EmptyPage:\n objects = paginator.page(paginator.num_pages)\n\n return objects\n\n@require_POST\ndef like_question(request):\n question_id = request.POST.get('question_id', '')\n like_type = request.POST.get('like_type', '')\n question =get_object_or_404(Question, pk=question_id)\n if not question:\n return JsonResponse({\"status\": \"error\"})\n\n if (like_type == 'like'):\n question.rating += 1\n elif (like_type == 'dislike'):\n question.rating -= 1\n question.save()\n\n return JsonResponse({\"status\": \"ok\"})\n\n@require_POST\ndef like_answer(request):\n answer_id = request.POST.get('answer_id', '')\n like_type = request.POST.get('like_type', '')\n answer =get_object_or_404(Answer, pk=answer_id)\n if not answer:\n return JsonResponse({\"status\": \"error\"})\n\n if (like_type == 'like'):\n answer.rating += 1\n elif (like_type == 'dislike'):\n answer.rating -= 1\n answer.save()\n\n return JsonResponse({\"status\": \"ok\"})\n\n\n@require_POST\ndef approve_answer(request):\n answer_id = request.POST.get('answer_id', '')\n answer =get_object_or_404(Answer, pk=answer_id)\n if not answer:\n return JsonResponse({\"status\": \"error\"})\n\n answer.approved = not answer.approved\n answer.save()\n\n return JsonResponse({\"status\": \"ok\"})", "step-ids": [ 8, 12, 13, 18, 20 ] }
[ 8, 12, 13, 18, 20 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> with open('mykey.key', 'rb') as mykey: key = mykey.read() <|reserved_special_token_0|> with open('encryptedpassword.txt', 'rb') as encrypted_password_file: encrypte_file = encrypted_password_file.read() <|reserved_special_token_0|> with open('decryptedpassword.txt', 'wb') as decrypted_password_file: decrypted_file = decrypted_password_file.write(decrypt) <|reserved_special_token_1|> <|reserved_special_token_0|> with open('mykey.key', 'rb') as mykey: key = mykey.read() f = Fernet(key) with open('encryptedpassword.txt', 'rb') as encrypted_password_file: encrypte_file = encrypted_password_file.read() decrypt = f.decrypt(encrypte_file) with open('decryptedpassword.txt', 'wb') as decrypted_password_file: decrypted_file = decrypted_password_file.write(decrypt) <|reserved_special_token_1|> from os import read from cryptography.fernet import Fernet with open('mykey.key', 'rb') as mykey: key = mykey.read() f = Fernet(key) with open('encryptedpassword.txt', 'rb') as encrypted_password_file: encrypte_file = encrypted_password_file.read() decrypt = f.decrypt(encrypte_file) with open('decryptedpassword.txt', 'wb') as decrypted_password_file: decrypted_file = decrypted_password_file.write(decrypt) <|reserved_special_token_1|> from os import read from cryptography.fernet import Fernet #create a key # key = Fernet.generate_key() #When every we run this code we will create a new key # with open('mykey.key','wb') as mykey: # mykey.write(key) #To avoid create a new key and reuse the same key with open('mykey.key','rb') as mykey: key = mykey.read() #print(key) # f = Fernet(key) # with open('Mailing Client/password.txt','rb') as original_file: # original = original_file.read() # #encrypt the data # encrypted = f.encrypt(original) # with open('encryptedpassword.txt','wb') as encrypted_password_file: # encrypted_file = encrypted_password_file.write(encrypted) #Decrypt Part f = Fernet(key) with open('encryptedpassword.txt','rb') as encrypted_password_file: encrypte_file = encrypted_password_file.read() decrypt = f.decrypt(encrypte_file) with open('decryptedpassword.txt','wb') as decrypted_password_file: decrypted_file = decrypted_password_file.write(decrypt)
flexible
{ "blob_id": "df828344b81a40b7101adcc6759780ea84f2c6b4", "index": 4698, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('mykey.key', 'rb') as mykey:\n key = mykey.read()\n<mask token>\nwith open('encryptedpassword.txt', 'rb') as encrypted_password_file:\n encrypte_file = encrypted_password_file.read()\n<mask token>\nwith open('decryptedpassword.txt', 'wb') as decrypted_password_file:\n decrypted_file = decrypted_password_file.write(decrypt)\n", "step-3": "<mask token>\nwith open('mykey.key', 'rb') as mykey:\n key = mykey.read()\nf = Fernet(key)\nwith open('encryptedpassword.txt', 'rb') as encrypted_password_file:\n encrypte_file = encrypted_password_file.read()\ndecrypt = f.decrypt(encrypte_file)\nwith open('decryptedpassword.txt', 'wb') as decrypted_password_file:\n decrypted_file = decrypted_password_file.write(decrypt)\n", "step-4": "from os import read\nfrom cryptography.fernet import Fernet\nwith open('mykey.key', 'rb') as mykey:\n key = mykey.read()\nf = Fernet(key)\nwith open('encryptedpassword.txt', 'rb') as encrypted_password_file:\n encrypte_file = encrypted_password_file.read()\ndecrypt = f.decrypt(encrypte_file)\nwith open('decryptedpassword.txt', 'wb') as decrypted_password_file:\n decrypted_file = decrypted_password_file.write(decrypt)\n", "step-5": "from os import read\r\nfrom cryptography.fernet import Fernet\r\n #create a key\r\n# key = Fernet.generate_key()\r\n\r\n#When every we run this code we will create a new key \r\n# with open('mykey.key','wb') as mykey:\r\n# mykey.write(key)\r\n\r\n#To avoid create a new key and reuse the same key\r\n\r\nwith open('mykey.key','rb') as mykey:\r\n key = mykey.read()\r\n\r\n#print(key)\r\n\r\n# f = Fernet(key)\r\n\r\n# with open('Mailing Client/password.txt','rb') as original_file:\r\n# original = original_file.read()\r\n\r\n# #encrypt the data\r\n\r\n# encrypted = f.encrypt(original)\r\n\r\n# with open('encryptedpassword.txt','wb') as encrypted_password_file:\r\n# encrypted_file = encrypted_password_file.write(encrypted)\r\n\r\n#Decrypt Part\r\n\r\nf = Fernet(key)\r\n\r\nwith open('encryptedpassword.txt','rb') as encrypted_password_file:\r\n encrypte_file = encrypted_password_file.read()\r\n\r\ndecrypt = f.decrypt(encrypte_file)\r\n\r\nwith open('decryptedpassword.txt','wb') as decrypted_password_file:\r\n decrypted_file = decrypted_password_file.write(decrypt)\r\n\r\n\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_sequential(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) <|reserved_special_token_0|> def test_mkdir_p_success(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) <|reserved_special_token_0|> def test_mkdir_p_failure_permission(tmpdir): with pytest.raises(OSError): utils.mkdir_p('/asdf') @pytest.mark.parametrize(('dtypes', 'ans'), [((np.uint8, np.int16), np. int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np. uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np. float32, np.float64), np.float64)]) def test_np_promote_all_types(dtypes, ans): test_ans = utils.np_promote_all_types(*dtypes) assert test_ans == ans <|reserved_special_token_1|> <|reserved_special_token_0|> @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_sequential(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(700, 1)]) def test_distribute_jobs_sequential_onejob(nrow, njob): with pytest.raises(ValueError): utils.distribute_jobs(nrow, nrow, njob, interlaced=False) def test_mkdir_p_success(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_succcess_exists(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_failure_permission(tmpdir): with pytest.raises(OSError): utils.mkdir_p('/asdf') @pytest.mark.parametrize(('dtypes', 'ans'), [((np.uint8, np.int16), np. int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np. uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np. float32, np.float64), np.float64)]) def test_np_promote_all_types(dtypes, ans): test_ans = utils.np_promote_all_types(*dtypes) assert test_ans == ans <|reserved_special_token_1|> <|reserved_special_token_0|> @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_interlaced(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=True)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_sequential(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(700, 1)]) def test_distribute_jobs_sequential_onejob(nrow, njob): with pytest.raises(ValueError): utils.distribute_jobs(nrow, nrow, njob, interlaced=False) def test_mkdir_p_success(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_succcess_exists(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_failure_permission(tmpdir): with pytest.raises(OSError): utils.mkdir_p('/asdf') @pytest.mark.parametrize(('dtypes', 'ans'), [((np.uint8, np.int16), np. int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np. uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np. float32, np.float64), np.float64)]) def test_np_promote_all_types(dtypes, ans): test_ans = utils.np_promote_all_types(*dtypes) assert test_ans == ans <|reserved_special_token_1|> <|reserved_special_token_0|> import numpy as np import pytest from yatsm import utils @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_interlaced(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=True)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_sequential(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(700, 1)]) def test_distribute_jobs_sequential_onejob(nrow, njob): with pytest.raises(ValueError): utils.distribute_jobs(nrow, nrow, njob, interlaced=False) def test_mkdir_p_success(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_succcess_exists(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_failure_permission(tmpdir): with pytest.raises(OSError): utils.mkdir_p('/asdf') @pytest.mark.parametrize(('dtypes', 'ans'), [((np.uint8, np.int16), np. int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np. uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np. float32, np.float64), np.float64)]) def test_np_promote_all_types(dtypes, ans): test_ans = utils.np_promote_all_types(*dtypes) assert test_ans == ans <|reserved_special_token_1|> """ Tests for `yatsm.utils` """ import numpy as np import pytest from yatsm import utils @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_interlaced(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=True)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(793, 13), (700, 1), (700, 700)]) def test_distribute_jobs_sequential(nrow, njob): assigned = [] for i in range(njob): assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False)) assigned = np.sort(np.asarray(assigned)) all_rows = np.arange(0, nrow) np.testing.assert_equal(assigned, all_rows) @pytest.mark.parametrize('nrow,njob', [(700, 1)]) def test_distribute_jobs_sequential_onejob(nrow, njob): with pytest.raises(ValueError): utils.distribute_jobs(nrow, nrow, njob, interlaced=False) # mkdir_p def test_mkdir_p_success(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_succcess_exists(tmpdir): utils.mkdir_p(tmpdir.join('test').strpath) utils.mkdir_p(tmpdir.join('test').strpath) def test_mkdir_p_failure_permission(tmpdir): with pytest.raises(OSError): utils.mkdir_p('/asdf') # np_promote_all_types @pytest.mark.parametrize(('dtypes', 'ans'), [ ((np.uint8, np.int16), np.int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np.uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np.float32, np.float64), np.float64), ]) def test_np_promote_all_types(dtypes, ans): test_ans = utils.np_promote_all_types(*dtypes) assert test_ans == ans
flexible
{ "blob_id": "a513dfd84b5d9267b7e96fedc88e5b6dabeea19e", "index": 640, "step-1": "<mask token>\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_sequential(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False))\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\n<mask token>\n\n\ndef test_mkdir_p_success(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\n<mask token>\n\n\ndef test_mkdir_p_failure_permission(tmpdir):\n with pytest.raises(OSError):\n utils.mkdir_p('/asdf')\n\n\[email protected](('dtypes', 'ans'), [((np.uint8, np.int16), np.\n int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np.\n uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np.\n float32, np.float64), np.float64)])\ndef test_np_promote_all_types(dtypes, ans):\n test_ans = utils.np_promote_all_types(*dtypes)\n assert test_ans == ans\n", "step-2": "<mask token>\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_sequential(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False))\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(700, 1)])\ndef test_distribute_jobs_sequential_onejob(nrow, njob):\n with pytest.raises(ValueError):\n utils.distribute_jobs(nrow, nrow, njob, interlaced=False)\n\n\ndef test_mkdir_p_success(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_succcess_exists(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_failure_permission(tmpdir):\n with pytest.raises(OSError):\n utils.mkdir_p('/asdf')\n\n\[email protected](('dtypes', 'ans'), [((np.uint8, np.int16), np.\n int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np.\n uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np.\n float32, np.float64), np.float64)])\ndef test_np_promote_all_types(dtypes, ans):\n test_ans = utils.np_promote_all_types(*dtypes)\n assert test_ans == ans\n", "step-3": "<mask token>\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_interlaced(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=True))\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_sequential(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False))\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(700, 1)])\ndef test_distribute_jobs_sequential_onejob(nrow, njob):\n with pytest.raises(ValueError):\n utils.distribute_jobs(nrow, nrow, njob, interlaced=False)\n\n\ndef test_mkdir_p_success(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_succcess_exists(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_failure_permission(tmpdir):\n with pytest.raises(OSError):\n utils.mkdir_p('/asdf')\n\n\[email protected](('dtypes', 'ans'), [((np.uint8, np.int16), np.\n int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np.\n uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np.\n float32, np.float64), np.float64)])\ndef test_np_promote_all_types(dtypes, ans):\n test_ans = utils.np_promote_all_types(*dtypes)\n assert test_ans == ans\n", "step-4": "<mask token>\nimport numpy as np\nimport pytest\nfrom yatsm import utils\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_interlaced(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=True))\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_sequential(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False))\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(700, 1)])\ndef test_distribute_jobs_sequential_onejob(nrow, njob):\n with pytest.raises(ValueError):\n utils.distribute_jobs(nrow, nrow, njob, interlaced=False)\n\n\ndef test_mkdir_p_success(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_succcess_exists(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_failure_permission(tmpdir):\n with pytest.raises(OSError):\n utils.mkdir_p('/asdf')\n\n\[email protected](('dtypes', 'ans'), [((np.uint8, np.int16), np.\n int16), ((np.uint8, np.uint16, np.int16), np.int32), ((np.uint8, np.\n uint16, np.int16, np.float), np.float), ((np.uint8, np.float16, np.\n float32, np.float64), np.float64)])\ndef test_np_promote_all_types(dtypes, ans):\n test_ans = utils.np_promote_all_types(*dtypes)\n assert test_ans == ans\n", "step-5": "\"\"\" Tests for `yatsm.utils`\n\"\"\"\nimport numpy as np\nimport pytest\n\nfrom yatsm import utils\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_interlaced(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=True))\n\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(793, 13), (700, 1), (700, 700)])\ndef test_distribute_jobs_sequential(nrow, njob):\n assigned = []\n for i in range(njob):\n assigned.extend(utils.distribute_jobs(i, njob, nrow, interlaced=False))\n\n assigned = np.sort(np.asarray(assigned))\n all_rows = np.arange(0, nrow)\n np.testing.assert_equal(assigned, all_rows)\n\n\[email protected]('nrow,njob', [(700, 1)])\ndef test_distribute_jobs_sequential_onejob(nrow, njob):\n with pytest.raises(ValueError):\n utils.distribute_jobs(nrow, nrow, njob, interlaced=False)\n\n\n# mkdir_p\ndef test_mkdir_p_success(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_succcess_exists(tmpdir):\n utils.mkdir_p(tmpdir.join('test').strpath)\n utils.mkdir_p(tmpdir.join('test').strpath)\n\n\ndef test_mkdir_p_failure_permission(tmpdir):\n with pytest.raises(OSError):\n utils.mkdir_p('/asdf')\n\n\n# np_promote_all_types\[email protected](('dtypes', 'ans'), [\n ((np.uint8, np.int16), np.int16),\n ((np.uint8, np.uint16, np.int16), np.int32),\n ((np.uint8, np.uint16, np.int16, np.float), np.float),\n ((np.uint8, np.float16, np.float32, np.float64), np.float64),\n])\ndef test_np_promote_all_types(dtypes, ans):\n test_ans = utils.np_promote_all_types(*dtypes)\n assert test_ans == ans\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
import numpy as np import scipy.io as sio import os import torch from torchvision.utils import save_image from tools import * def test(config, base, loaders, brief): compute_and_save_features(base, loaders) results = evalutate(config, base, brief) return results def evalutate(config, base, brief=False): results = {} for mode in config.modes: print(mode) for number_shot in config.number_shots: print(number_shot) cmc, map = evaluate_sysymm01(base.save_features_path, mode, number_shot) results['{},{}'.format(mode, number_shot)] = [cmc, map] if brief: break if brief: break return results def compute_and_save_features(base, loaders): def compute_features(images): images_f = fliplr(images) images = images.to(base.device) images_f = images_f.to(base.device) features = base.encoder(base.process_images_4_encoder(images, True, True)) features_f = base.encoder(base.process_images_4_encoder(images_f, True, True)) features, _, _, _ = base.embeder(features) features_f, _, _, _ = base.embeder(features_f) features = features + features_f if base.part_num == 1: features = torch.unsqueeze(features, -1) return features def normalize_and_resize_feature(features): # normlize norm = torch.norm(features, dim=1, keepdim=True) features = features / norm.repeat([1, features.size(1), 1]) # resize features = features.view(features.size(0), -1) return features class XX: def __init__(self): self.val = {} def update(self, key, value): if key not in self.val.keys(): self.val[key] = value else: self.val[key] = np.concatenate([self.val[key], value], axis=0) def get_val(self, key): if key in self.val.keys(): return self.val[key] else: return np.array([[]]) print('Time:{}. Start to compute features'.format(time_now())) # compute features # base._resume_model(test_step) base.set_eval() features_meter, pids_meter, cids_meter = CatMeter(), CatMeter(), CatMeter() with torch.no_grad(): for i, data in enumerate(loaders.rgb_all_loader): # load data images, pids, cids, _ = data images = base.G_rgb2ir(images.to(base.device)).data.cpu() # forward features = compute_features(images) # meter features_meter.update(features.data) pids_meter.update(pids.data) cids_meter.update(cids.data) for i, data in enumerate(loaders.ir_all_loader): # load data images, pids, cids, _ = data # forward features = compute_features(images) # meter features_meter.update(features.data) pids_meter.update(pids.data) cids_meter.update(cids.data) print('Time:{}. Start to normalize features.'.format(time_now())) # normalize features features = features_meter.get_val() features = normalize_and_resize_feature(features) features = features.data.cpu().numpy() pids = pids_meter.get_val_numpy() cids = cids_meter.get_val_numpy() print('Time: {}. Note: Start to save features as .mat file'.format(time_now())) # save features as .mat file results = {1: XX(), 2: XX(), 3: XX(), 4: XX(), 5: XX(), 6: XX()} for i in range(features.shape[0]): feature = features[i, :] feature = np.resize(feature, [1, feature.shape[0]]) cid, pid = cids[i], pids[i] results[cid].update(pid, feature) pid_num_of_cids = [333, 333, 533, 533, 533, 333] cids = [1, 2, 3, 4, 5, 6] for cid in cids: a_result = results[cid] xx = [] for pid in range(1, 1+ pid_num_of_cids[cid - 1]): xx.append([a_result.get_val(pid).astype(np.double)]) xx = np.array(xx) sio.savemat(os.path.join(base.save_features_path, 'feature_cam{}.mat'.format(cid)), {'feature': xx}) def save_images(base, current_step): #base.set_eval() with torch.no_grad(): fixed_fake_ir_images = base.G_rgb2ir(base.fixed_real_rgb_images).detach() xxxx = torch.cat([base.fixed_real_rgb_images, fixed_fake_ir_images, base.fixed_real_ir_images], dim=0) save_image((xxxx.data.cpu() + 1.0) / 2.0, os.path.join(base.save_images_path, 'image_{}.jpg'.format(current_step)), nrow=base.fixed_real_rgb_images.size(0), padding=0)
normal
{ "blob_id": "b21796a9e10314f80cac3151d1fdbb139966303f", "index": 5555, "step-1": "<mask token>\n\n\ndef test(config, base, loaders, brief):\n compute_and_save_features(base, loaders)\n results = evalutate(config, base, brief)\n return results\n\n\ndef evalutate(config, base, brief=False):\n results = {}\n for mode in config.modes:\n print(mode)\n for number_shot in config.number_shots:\n print(number_shot)\n cmc, map = evaluate_sysymm01(base.save_features_path, mode,\n number_shot)\n results['{},{}'.format(mode, number_shot)] = [cmc, map]\n if brief:\n break\n if brief:\n break\n return results\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test(config, base, loaders, brief):\n compute_and_save_features(base, loaders)\n results = evalutate(config, base, brief)\n return results\n\n\ndef evalutate(config, base, brief=False):\n results = {}\n for mode in config.modes:\n print(mode)\n for number_shot in config.number_shots:\n print(number_shot)\n cmc, map = evaluate_sysymm01(base.save_features_path, mode,\n number_shot)\n results['{},{}'.format(mode, number_shot)] = [cmc, map]\n if brief:\n break\n if brief:\n break\n return results\n\n\ndef compute_and_save_features(base, loaders):\n\n def compute_features(images):\n images_f = fliplr(images)\n images = images.to(base.device)\n images_f = images_f.to(base.device)\n features = base.encoder(base.process_images_4_encoder(images, True,\n True))\n features_f = base.encoder(base.process_images_4_encoder(images_f, \n True, True))\n features, _, _, _ = base.embeder(features)\n features_f, _, _, _ = base.embeder(features_f)\n features = features + features_f\n if base.part_num == 1:\n features = torch.unsqueeze(features, -1)\n return features\n\n def normalize_and_resize_feature(features):\n norm = torch.norm(features, dim=1, keepdim=True)\n features = features / norm.repeat([1, features.size(1), 1])\n features = features.view(features.size(0), -1)\n return features\n\n\n class XX:\n\n def __init__(self):\n self.val = {}\n\n def update(self, key, value):\n if key not in self.val.keys():\n self.val[key] = value\n else:\n self.val[key] = np.concatenate([self.val[key], value], axis=0)\n\n def get_val(self, key):\n if key in self.val.keys():\n return self.val[key]\n else:\n return np.array([[]])\n print('Time:{}. Start to compute features'.format(time_now()))\n base.set_eval()\n features_meter, pids_meter, cids_meter = CatMeter(), CatMeter(), CatMeter()\n with torch.no_grad():\n for i, data in enumerate(loaders.rgb_all_loader):\n images, pids, cids, _ = data\n images = base.G_rgb2ir(images.to(base.device)).data.cpu()\n features = compute_features(images)\n features_meter.update(features.data)\n pids_meter.update(pids.data)\n cids_meter.update(cids.data)\n for i, data in enumerate(loaders.ir_all_loader):\n images, pids, cids, _ = data\n features = compute_features(images)\n features_meter.update(features.data)\n pids_meter.update(pids.data)\n cids_meter.update(cids.data)\n print('Time:{}. Start to normalize features.'.format(time_now()))\n features = features_meter.get_val()\n features = normalize_and_resize_feature(features)\n features = features.data.cpu().numpy()\n pids = pids_meter.get_val_numpy()\n cids = cids_meter.get_val_numpy()\n print('Time: {}. Note: Start to save features as .mat file'.format(\n time_now()))\n results = {(1): XX(), (2): XX(), (3): XX(), (4): XX(), (5): XX(), (6): XX()\n }\n for i in range(features.shape[0]):\n feature = features[i, :]\n feature = np.resize(feature, [1, feature.shape[0]])\n cid, pid = cids[i], pids[i]\n results[cid].update(pid, feature)\n pid_num_of_cids = [333, 333, 533, 533, 533, 333]\n cids = [1, 2, 3, 4, 5, 6]\n for cid in cids:\n a_result = results[cid]\n xx = []\n for pid in range(1, 1 + pid_num_of_cids[cid - 1]):\n xx.append([a_result.get_val(pid).astype(np.double)])\n xx = np.array(xx)\n sio.savemat(os.path.join(base.save_features_path,\n 'feature_cam{}.mat'.format(cid)), {'feature': xx})\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef test(config, base, loaders, brief):\n compute_and_save_features(base, loaders)\n results = evalutate(config, base, brief)\n return results\n\n\ndef evalutate(config, base, brief=False):\n results = {}\n for mode in config.modes:\n print(mode)\n for number_shot in config.number_shots:\n print(number_shot)\n cmc, map = evaluate_sysymm01(base.save_features_path, mode,\n number_shot)\n results['{},{}'.format(mode, number_shot)] = [cmc, map]\n if brief:\n break\n if brief:\n break\n return results\n\n\ndef compute_and_save_features(base, loaders):\n\n def compute_features(images):\n images_f = fliplr(images)\n images = images.to(base.device)\n images_f = images_f.to(base.device)\n features = base.encoder(base.process_images_4_encoder(images, True,\n True))\n features_f = base.encoder(base.process_images_4_encoder(images_f, \n True, True))\n features, _, _, _ = base.embeder(features)\n features_f, _, _, _ = base.embeder(features_f)\n features = features + features_f\n if base.part_num == 1:\n features = torch.unsqueeze(features, -1)\n return features\n\n def normalize_and_resize_feature(features):\n norm = torch.norm(features, dim=1, keepdim=True)\n features = features / norm.repeat([1, features.size(1), 1])\n features = features.view(features.size(0), -1)\n return features\n\n\n class XX:\n\n def __init__(self):\n self.val = {}\n\n def update(self, key, value):\n if key not in self.val.keys():\n self.val[key] = value\n else:\n self.val[key] = np.concatenate([self.val[key], value], axis=0)\n\n def get_val(self, key):\n if key in self.val.keys():\n return self.val[key]\n else:\n return np.array([[]])\n print('Time:{}. Start to compute features'.format(time_now()))\n base.set_eval()\n features_meter, pids_meter, cids_meter = CatMeter(), CatMeter(), CatMeter()\n with torch.no_grad():\n for i, data in enumerate(loaders.rgb_all_loader):\n images, pids, cids, _ = data\n images = base.G_rgb2ir(images.to(base.device)).data.cpu()\n features = compute_features(images)\n features_meter.update(features.data)\n pids_meter.update(pids.data)\n cids_meter.update(cids.data)\n for i, data in enumerate(loaders.ir_all_loader):\n images, pids, cids, _ = data\n features = compute_features(images)\n features_meter.update(features.data)\n pids_meter.update(pids.data)\n cids_meter.update(cids.data)\n print('Time:{}. Start to normalize features.'.format(time_now()))\n features = features_meter.get_val()\n features = normalize_and_resize_feature(features)\n features = features.data.cpu().numpy()\n pids = pids_meter.get_val_numpy()\n cids = cids_meter.get_val_numpy()\n print('Time: {}. Note: Start to save features as .mat file'.format(\n time_now()))\n results = {(1): XX(), (2): XX(), (3): XX(), (4): XX(), (5): XX(), (6): XX()\n }\n for i in range(features.shape[0]):\n feature = features[i, :]\n feature = np.resize(feature, [1, feature.shape[0]])\n cid, pid = cids[i], pids[i]\n results[cid].update(pid, feature)\n pid_num_of_cids = [333, 333, 533, 533, 533, 333]\n cids = [1, 2, 3, 4, 5, 6]\n for cid in cids:\n a_result = results[cid]\n xx = []\n for pid in range(1, 1 + pid_num_of_cids[cid - 1]):\n xx.append([a_result.get_val(pid).astype(np.double)])\n xx = np.array(xx)\n sio.savemat(os.path.join(base.save_features_path,\n 'feature_cam{}.mat'.format(cid)), {'feature': xx})\n\n\ndef save_images(base, current_step):\n with torch.no_grad():\n fixed_fake_ir_images = base.G_rgb2ir(base.fixed_real_rgb_images\n ).detach()\n xxxx = torch.cat([base.fixed_real_rgb_images, fixed_fake_ir_images,\n base.fixed_real_ir_images], dim=0)\n save_image((xxxx.data.cpu() + 1.0) / 2.0, os.path.join(base.\n save_images_path, 'image_{}.jpg'.format(current_step)), nrow=\n base.fixed_real_rgb_images.size(0), padding=0)\n", "step-4": "import numpy as np\nimport scipy.io as sio\nimport os\nimport torch\nfrom torchvision.utils import save_image\nfrom tools import *\n\n\ndef test(config, base, loaders, brief):\n compute_and_save_features(base, loaders)\n results = evalutate(config, base, brief)\n return results\n\n\ndef evalutate(config, base, brief=False):\n results = {}\n for mode in config.modes:\n print(mode)\n for number_shot in config.number_shots:\n print(number_shot)\n cmc, map = evaluate_sysymm01(base.save_features_path, mode,\n number_shot)\n results['{},{}'.format(mode, number_shot)] = [cmc, map]\n if brief:\n break\n if brief:\n break\n return results\n\n\ndef compute_and_save_features(base, loaders):\n\n def compute_features(images):\n images_f = fliplr(images)\n images = images.to(base.device)\n images_f = images_f.to(base.device)\n features = base.encoder(base.process_images_4_encoder(images, True,\n True))\n features_f = base.encoder(base.process_images_4_encoder(images_f, \n True, True))\n features, _, _, _ = base.embeder(features)\n features_f, _, _, _ = base.embeder(features_f)\n features = features + features_f\n if base.part_num == 1:\n features = torch.unsqueeze(features, -1)\n return features\n\n def normalize_and_resize_feature(features):\n norm = torch.norm(features, dim=1, keepdim=True)\n features = features / norm.repeat([1, features.size(1), 1])\n features = features.view(features.size(0), -1)\n return features\n\n\n class XX:\n\n def __init__(self):\n self.val = {}\n\n def update(self, key, value):\n if key not in self.val.keys():\n self.val[key] = value\n else:\n self.val[key] = np.concatenate([self.val[key], value], axis=0)\n\n def get_val(self, key):\n if key in self.val.keys():\n return self.val[key]\n else:\n return np.array([[]])\n print('Time:{}. Start to compute features'.format(time_now()))\n base.set_eval()\n features_meter, pids_meter, cids_meter = CatMeter(), CatMeter(), CatMeter()\n with torch.no_grad():\n for i, data in enumerate(loaders.rgb_all_loader):\n images, pids, cids, _ = data\n images = base.G_rgb2ir(images.to(base.device)).data.cpu()\n features = compute_features(images)\n features_meter.update(features.data)\n pids_meter.update(pids.data)\n cids_meter.update(cids.data)\n for i, data in enumerate(loaders.ir_all_loader):\n images, pids, cids, _ = data\n features = compute_features(images)\n features_meter.update(features.data)\n pids_meter.update(pids.data)\n cids_meter.update(cids.data)\n print('Time:{}. Start to normalize features.'.format(time_now()))\n features = features_meter.get_val()\n features = normalize_and_resize_feature(features)\n features = features.data.cpu().numpy()\n pids = pids_meter.get_val_numpy()\n cids = cids_meter.get_val_numpy()\n print('Time: {}. Note: Start to save features as .mat file'.format(\n time_now()))\n results = {(1): XX(), (2): XX(), (3): XX(), (4): XX(), (5): XX(), (6): XX()\n }\n for i in range(features.shape[0]):\n feature = features[i, :]\n feature = np.resize(feature, [1, feature.shape[0]])\n cid, pid = cids[i], pids[i]\n results[cid].update(pid, feature)\n pid_num_of_cids = [333, 333, 533, 533, 533, 333]\n cids = [1, 2, 3, 4, 5, 6]\n for cid in cids:\n a_result = results[cid]\n xx = []\n for pid in range(1, 1 + pid_num_of_cids[cid - 1]):\n xx.append([a_result.get_val(pid).astype(np.double)])\n xx = np.array(xx)\n sio.savemat(os.path.join(base.save_features_path,\n 'feature_cam{}.mat'.format(cid)), {'feature': xx})\n\n\ndef save_images(base, current_step):\n with torch.no_grad():\n fixed_fake_ir_images = base.G_rgb2ir(base.fixed_real_rgb_images\n ).detach()\n xxxx = torch.cat([base.fixed_real_rgb_images, fixed_fake_ir_images,\n base.fixed_real_ir_images], dim=0)\n save_image((xxxx.data.cpu() + 1.0) / 2.0, os.path.join(base.\n save_images_path, 'image_{}.jpg'.format(current_step)), nrow=\n base.fixed_real_rgb_images.size(0), padding=0)\n", "step-5": "import numpy as np\nimport scipy.io as sio\nimport os\n\nimport torch\nfrom torchvision.utils import save_image\n\nfrom tools import *\n\n\n\ndef test(config, base, loaders, brief):\n\n\tcompute_and_save_features(base, loaders)\n\tresults = evalutate(config, base, brief)\n\treturn results\n\n\ndef evalutate(config, base, brief=False):\n\n\tresults = {}\n\tfor mode in config.modes:\n\t\tprint(mode)\n\t\tfor number_shot in config.number_shots:\n\t\t\tprint(number_shot)\n\t\t\tcmc, map = evaluate_sysymm01(base.save_features_path, mode, number_shot)\n\t\t\tresults['{},{}'.format(mode, number_shot)] = [cmc, map]\n\t\t\tif brief: break\n\t\tif brief: break\n\n\treturn results\n\n\ndef compute_and_save_features(base, loaders):\n\n\tdef compute_features(images):\n\t\timages_f = fliplr(images)\n\t\timages = images.to(base.device)\n\t\timages_f = images_f.to(base.device)\n\t\tfeatures = base.encoder(base.process_images_4_encoder(images, True, True))\n\t\tfeatures_f = base.encoder(base.process_images_4_encoder(images_f, True, True))\n\t\tfeatures, _, _, _ = base.embeder(features)\n\t\tfeatures_f, _, _, _ = base.embeder(features_f)\n\t\tfeatures = features + features_f\n\t\tif base.part_num == 1:\n\t\t\tfeatures = torch.unsqueeze(features, -1)\n\t\treturn features\n\n\tdef normalize_and_resize_feature(features):\n\t\t# normlize\n\t\tnorm = torch.norm(features, dim=1, keepdim=True)\n\t\tfeatures = features / norm.repeat([1, features.size(1), 1])\n\t\t# resize\n\t\tfeatures = features.view(features.size(0), -1)\n\t\treturn features\n\n\tclass XX:\n\t\tdef __init__(self):\n\t\t\tself.val = {}\n\t\tdef update(self, key, value):\n\t\t\tif key not in self.val.keys():\n\t\t\t\tself.val[key] = value\n\t\t\telse:\n\t\t\t\tself.val[key] = np.concatenate([self.val[key], value], axis=0)\n\t\tdef get_val(self, key):\n\t\t\tif key in self.val.keys():\n\t\t\t\treturn self.val[key]\n\t\t\telse:\n\t\t\t\treturn np.array([[]])\n\n\n\tprint('Time:{}. Start to compute features'.format(time_now()))\n\t# compute features\n\t# base._resume_model(test_step)\n\tbase.set_eval()\n\tfeatures_meter, pids_meter, cids_meter = CatMeter(), CatMeter(), CatMeter()\n\n\twith torch.no_grad():\n\t\tfor i, data in enumerate(loaders.rgb_all_loader):\n\t\t\t# load data\n\t\t\timages, pids, cids, _ = data\n\t\t\timages = base.G_rgb2ir(images.to(base.device)).data.cpu()\n\t\t\t# forward\n\t\t\tfeatures = compute_features(images)\n\t\t\t# meter\n\t\t\tfeatures_meter.update(features.data)\n\t\t\tpids_meter.update(pids.data)\n\t\t\tcids_meter.update(cids.data)\n\n\t\tfor i, data in enumerate(loaders.ir_all_loader):\n\t\t\t# load data\n\t\t\timages, pids, cids, _ = data\n\t\t\t# forward\n\t\t\tfeatures = compute_features(images)\n\t\t\t# meter\n\t\t\tfeatures_meter.update(features.data)\n\t\t\tpids_meter.update(pids.data)\n\t\t\tcids_meter.update(cids.data)\n\n\tprint('Time:{}. Start to normalize features.'.format(time_now()))\n\t# normalize features\n\tfeatures = features_meter.get_val()\n\tfeatures = normalize_and_resize_feature(features)\n\tfeatures = features.data.cpu().numpy()\n\tpids = pids_meter.get_val_numpy()\n\tcids = cids_meter.get_val_numpy()\n\n\tprint('Time: {}. Note: Start to save features as .mat file'.format(time_now()))\n\t# save features as .mat file\n\tresults = {1: XX(), 2: XX(), 3: XX(), 4: XX(), 5: XX(), 6: XX()}\n\tfor i in range(features.shape[0]):\n\t\tfeature = features[i, :]\n\t\tfeature = np.resize(feature, [1, feature.shape[0]])\n\t\tcid, pid = cids[i], pids[i]\n\t\tresults[cid].update(pid, feature)\n\n\tpid_num_of_cids = [333, 333, 533, 533, 533, 333]\n\tcids = [1, 2, 3, 4, 5, 6]\n\tfor cid in cids:\n\t\ta_result = results[cid]\n\t\txx = []\n\t\tfor pid in range(1, 1+ pid_num_of_cids[cid - 1]):\n\t\t\txx.append([a_result.get_val(pid).astype(np.double)])\n\t\txx = np.array(xx)\n\t\tsio.savemat(os.path.join(base.save_features_path, 'feature_cam{}.mat'.format(cid)), {'feature': xx})\n\n\n\ndef save_images(base, current_step):\n\n\t#base.set_eval()\n\twith torch.no_grad():\n\t\tfixed_fake_ir_images = base.G_rgb2ir(base.fixed_real_rgb_images).detach()\n\t\txxxx = torch.cat([base.fixed_real_rgb_images, fixed_fake_ir_images, base.fixed_real_ir_images], dim=0)\n\t\tsave_image((xxxx.data.cpu() + 1.0) / 2.0,\n\t\t os.path.join(base.save_images_path, 'image_{}.jpg'.format(current_step)), nrow=base.fixed_real_rgb_images.size(0), padding=0)", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]