Update chess_ground-targz.py
Browse files- chess_ground-targz.py +24 -37
chess_ground-targz.py
CHANGED
@@ -2,27 +2,11 @@ import os
|
|
2 |
import json
|
3 |
import tarfile
|
4 |
import datasets
|
5 |
-
|
6 |
-
# Description of the dataset
|
7 |
-
_DESCRIPTION = """\
|
8 |
-
Dataset for extracting notations from chess scoresheets, integrating both image and text data.
|
9 |
-
"""
|
10 |
-
|
11 |
-
# BibTeX citation for the dataset
|
12 |
-
_CITATION = """\
|
13 |
-
@InProceedings{huggingface:dataset,
|
14 |
-
title = {A great new dataset},
|
15 |
-
author={huggingface, Inc.},
|
16 |
-
year={2020}
|
17 |
-
}
|
18 |
-
"""
|
19 |
-
|
20 |
-
# License of the dataset
|
21 |
-
_LICENSE = "Creative Commons Attribution 3.0"
|
22 |
|
23 |
class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
|
24 |
-
"""Dataset for linking chess scoresheet images with ground truth
|
25 |
-
|
26 |
def _info(self):
|
27 |
# Define the features of your dataset (images + text)
|
28 |
features = datasets.Features(
|
@@ -44,12 +28,9 @@ class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
|
|
44 |
|
45 |
def _split_generators(self, dl_manager):
|
46 |
"""Define the splits of the dataset."""
|
47 |
-
|
48 |
-
# Load the image dataset (tar.gz file)
|
49 |
image_dataset_url = "https://huggingface.co/datasets/Chesscorner/chess-images/resolve/main/flat_images.tar.gz"
|
50 |
extracted_image_path = dl_manager.download(image_dataset_url)
|
51 |
|
52 |
-
# Load the text dataset (ground truths)
|
53 |
text_dataset_url = "https://huggingface.co/datasets/Chesscorner/jsonl-chess-dataset/resolve/main/train.jsonl/train.jsonl"
|
54 |
text_filepath = dl_manager.download(text_dataset_url)
|
55 |
|
@@ -64,12 +45,14 @@ class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
|
|
64 |
]
|
65 |
|
66 |
def _generate_examples(self, image_tar_path, text_filepath):
|
67 |
-
"""Generate examples by linking images
|
68 |
idx = 0
|
69 |
-
|
70 |
# Extract and map text IDs to their corresponding images
|
71 |
image_mapping = self._extract_images_from_tar(image_tar_path)
|
72 |
|
|
|
|
|
|
|
73 |
# Load the text dataset (ground truths) from the JSONL file
|
74 |
with open(text_filepath, encoding="utf-8") as fp:
|
75 |
for line in fp:
|
@@ -79,19 +62,24 @@ class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
|
|
79 |
# Extract the text ID (assuming text ID matches image filename)
|
80 |
text_id = text[:5] # Adjust this based on the actual pattern of text IDs
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
94 |
idx += 1
|
|
|
|
|
95 |
|
96 |
def _extract_images_from_tar(self, tar_path):
|
97 |
"""Extracts the images from the tar.gz archive and returns a mapping of image filenames to file paths."""
|
@@ -116,4 +104,3 @@ class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
|
|
116 |
image_mapping[image_filename] = extracted_image_path
|
117 |
|
118 |
return image_mapping
|
119 |
-
|
|
|
2 |
import json
|
3 |
import tarfile
|
4 |
import datasets
|
5 |
+
from collections import defaultdict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
class ChessImageTextDataset(datasets.GeneratorBasedBuilder):
|
8 |
+
"""Dataset for linking chess scoresheet images with multiple ground truth texts."""
|
9 |
+
|
10 |
def _info(self):
|
11 |
# Define the features of your dataset (images + text)
|
12 |
features = datasets.Features(
|
|
|
28 |
|
29 |
def _split_generators(self, dl_manager):
|
30 |
"""Define the splits of the dataset."""
|
|
|
|
|
31 |
image_dataset_url = "https://huggingface.co/datasets/Chesscorner/chess-images/resolve/main/flat_images.tar.gz"
|
32 |
extracted_image_path = dl_manager.download(image_dataset_url)
|
33 |
|
|
|
34 |
text_dataset_url = "https://huggingface.co/datasets/Chesscorner/jsonl-chess-dataset/resolve/main/train.jsonl/train.jsonl"
|
35 |
text_filepath = dl_manager.download(text_dataset_url)
|
36 |
|
|
|
45 |
]
|
46 |
|
47 |
def _generate_examples(self, image_tar_path, text_filepath):
|
48 |
+
"""Generate examples by linking images with multiple related texts."""
|
49 |
idx = 0
|
|
|
50 |
# Extract and map text IDs to their corresponding images
|
51 |
image_mapping = self._extract_images_from_tar(image_tar_path)
|
52 |
|
53 |
+
# Dictionary to hold multiple texts for each image ID
|
54 |
+
grouped_texts = defaultdict(list)
|
55 |
+
|
56 |
# Load the text dataset (ground truths) from the JSONL file
|
57 |
with open(text_filepath, encoding="utf-8") as fp:
|
58 |
for line in fp:
|
|
|
62 |
# Extract the text ID (assuming text ID matches image filename)
|
63 |
text_id = text[:5] # Adjust this based on the actual pattern of text IDs
|
64 |
|
65 |
+
# Group texts by their text_id (which corresponds to the image)
|
66 |
+
grouped_texts[text_id].append(text)
|
67 |
+
|
68 |
+
# Now generate examples, linking each image to its grouped texts
|
69 |
+
for text_id, texts in grouped_texts.items():
|
70 |
+
image_file = image_mapping.get(f"{text_id}.png") # Adjust file extension if necessary
|
71 |
+
|
72 |
+
# Ensure the image exists and yield the example
|
73 |
+
if image_file:
|
74 |
+
# Join the texts related to the same image
|
75 |
+
combined_text = " ".join(texts)
|
76 |
+
yield idx, {
|
77 |
+
"image": image_file,
|
78 |
+
"text": combined_text, # Link all related texts together
|
79 |
+
}
|
80 |
idx += 1
|
81 |
+
else:
|
82 |
+
print(f"Image not found for ID: {text_id}")
|
83 |
|
84 |
def _extract_images_from_tar(self, tar_path):
|
85 |
"""Extracts the images from the tar.gz archive and returns a mapping of image filenames to file paths."""
|
|
|
104 |
image_mapping[image_filename] = extracted_image_path
|
105 |
|
106 |
return image_mapping
|
|