File size: 3,488 Bytes
733532b 6ddc99e 733532b 6ddc99e 733532b 6ddc99e 733532b 1f221ed 733532b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: mit
dataset_info:
features:
- name: image
dtype: image
- name: slide_name
dtype: string
- name: x
dtype: int64
- name: y
dtype: int64
- name: level
dtype: int64
- name: patch_size
sequence: int64
- name: resize
sequence: int64
- name: embedding_vector
sequence:
sequence: float64
splits:
- name: train
num_bytes: 4289155572.625
num_examples: 40115
download_size: 4289233317
dataset_size: 4289155572.625
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for Histopathology Dataset
## Dataset Summary
This dataset contains 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model.

## Thumbnail of Main Slide

## Usage
- [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
* `test_001.tif`
* `test_002.tif`
* `test_003.tif`
* `test_004.tif`
* `test_005.tif`
* `test_006.tif`
* `test_007.tif`
* `test_008.tif`
* `test_009.tif`
* `test_010.tif`
* `test_011.tif`
* `test_012.tif`
* `test_013.tif`
* `test_014.tif`
* `test_015.tif`
* `test_016.tif`
* `test_017.tif`
* `test_018.tif`
* `test_019.tif`
* `test_020.tif`
* Create a folder named ***wsi*** and download the images given in the list. Then:
```python
from datasets import load_dataset
import openslide as ops
dataset = load_dataset("Cilem/histopathology-1024")
slide_name = dataset['train'][0]['slide_name']
resize = dataset['train'][0]['resize']
path = os.path.join('wsi', slide_name)
slide = ops.OpenSlide(path)
patch = slide.read_region((x, y), 0, patch_size)
patch = patch.resize(resize)
display(patch)
```
## Supported Tasks
Machine learning applications that can be performed using this dataset:
* Classification
* Segmentation
* Image generation
## Languages
* English
## Dataset Structure
### Data Fields
- `image`: Patch image.
- `slide_name`: Main slide name of the patch.
- `x`: X coordinate of the patch.
- `y`: Y coordinate of the patch.
- `level`: Level of the main slide.
- `patch_size`: Size of the patch.
- `resize`: Image size used to obtain embedding vector with Path foundation model.
- `embedding_vector`: Embedding vector of the patch extracted using Path foundation model.
## Dataset Creation
### Source Data
- **Original Sources**
- [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
* `test_001.tif`
* `test_002.tif`
* `test_003.tif`
* `test_004.tif`
* `test_005.tif`
* `test_006.tif`
* `test_007.tif`
* `test_008.tif`
* `test_009.tif`
* `test_010.tif`
* `test_011.tif`
* `test_012.tif`
* `test_013.tif`
* `test_014.tif`
* `test_015.tif`
* `test_016.tif`
* `test_017.tif`
* `test_018.tif`
* `test_019.tif`
* `test_020.tif`
- [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model.
## Considerations for Using the Data
### Social Impact and Bias
Attention should be paid to the Path Foundation model licenses provided by Google. |