File size: 3,488 Bytes
733532b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ddc99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733532b
 
6ddc99e
 
733532b
 
6ddc99e
 
 
 
 
 
 
733532b
 
 
 
 
 
 
 
 
 
 
 
 
 
1f221ed
733532b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: mit
dataset_info:
  features:
  - name: image
    dtype: image
  - name: slide_name
    dtype: string
  - name: x
    dtype: int64
  - name: y
    dtype: int64
  - name: level
    dtype: int64
  - name: patch_size
    sequence: int64
  - name: resize
    sequence: int64
  - name: embedding_vector
    sequence:
      sequence: float64
  splits:
  - name: train
    num_bytes: 4289155572.625
    num_examples: 40115
  download_size: 4289233317
  dataset_size: 4289155572.625
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for Histopathology Dataset

## Dataset Summary
This dataset contains 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model.

![Data Processing](data_processing.png)

## Thumbnail of Main Slide

![Main Slide Thumbnail](test_001.png)

## Usage

- [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
    * `test_001.tif`
    * `test_002.tif`
    * `test_003.tif`
    * `test_004.tif`
    * `test_005.tif`
    * `test_006.tif`
    * `test_007.tif`
    * `test_008.tif`
    * `test_009.tif`
    * `test_010.tif`
    * `test_011.tif`
    * `test_012.tif`
    * `test_013.tif`
    * `test_014.tif`
    * `test_015.tif`
    * `test_016.tif`
    * `test_017.tif`
    * `test_018.tif`
    * `test_019.tif`
    * `test_020.tif`

* Create a folder named ***wsi*** and download the images given in the list. Then:

```python
from datasets import load_dataset
import openslide as ops


dataset = load_dataset("Cilem/histopathology-1024")
slide_name = dataset['train'][0]['slide_name']
resize = dataset['train'][0]['resize']
path = os.path.join('wsi', slide_name)
slide = ops.OpenSlide(path)
patch = slide.read_region((x, y), 0, patch_size)
patch = patch.resize(resize)
display(patch)
```


## Supported Tasks
Machine learning applications that can be performed using this dataset:
* Classification
* Segmentation
* Image generation

## Languages
* English

## Dataset Structure
### Data Fields
- `image`: Patch image.
- `slide_name`: Main slide name of the patch.
- `x`: X coordinate of the patch.
- `y`: Y coordinate of the patch.
- `level`: Level of the main slide.
- `patch_size`: Size of the patch.
- `resize`: Image size used to obtain embedding vector with Path foundation model.
- `embedding_vector`: Embedding vector of the patch extracted using Path foundation model.

## Dataset Creation
### Source Data
- **Original Sources**
  - [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset:
    * `test_001.tif`
    * `test_002.tif`
    * `test_003.tif`
    * `test_004.tif`
    * `test_005.tif`
    * `test_006.tif`
    * `test_007.tif`
    * `test_008.tif`
    * `test_009.tif`
    * `test_010.tif`
    * `test_011.tif`
    * `test_012.tif`
    * `test_013.tif`
    * `test_014.tif`
    * `test_015.tif`
    * `test_016.tif`
    * `test_017.tif`
    * `test_018.tif`
    * `test_019.tif`
    * `test_020.tif`
  - [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model.

## Considerations for Using the Data
### Social Impact and Bias
Attention should be paid to the Path Foundation model licenses provided by Google.