metadata
license: mit
dataset_info:
features:
- name: image
dtype: image
- name: slide_name
dtype: string
- name: x
dtype: int64
- name: 'y'
dtype: int64
- name: level
dtype: int64
- name: patch_size
sequence: int64
- name: resize
sequence: int64
- name: embedding_vector
sequence:
sequence: float64
splits:
- name: train
num_bytes: 4289155572.625
num_examples: 40115
download_size: 4289233317
dataset_size: 4289155572.625
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Dataset Card for Histopathology Dataset
Dataset Summary
This dataset contains 1024x1024 patches of a group of histopathology images taken from the CAMELYON16 dataset and embedding vectors extracted from these patches using the Google Path Foundation model.
Thumbnail of Main Slide
Usage
- CAMELYON16: List of images taken from CAMELYON16 dataset:
test_001.tif
test_002.tif
test_003.tif
test_004.tif
test_005.tif
test_006.tif
test_007.tif
test_008.tif
test_009.tif
test_010.tif
test_011.tif
test_012.tif
test_013.tif
test_014.tif
test_015.tif
test_016.tif
test_017.tif
test_018.tif
test_019.tif
test_020.tif
- Create a folder named wsi and download the images given in the list. Then:
from datasets import load_dataset
import openslide as ops
dataset = load_dataset("Cilem/histopathology-1024")
slide_name = dataset['train'][0]['slide_name']
resize = dataset['train'][0]['resize']
path = os.path.join('wsi', slide_name)
slide = ops.OpenSlide(path)
patch = slide.read_region((x, y), 0, patch_size)
patch = patch.resize(resize)
display(patch)
Supported Tasks
Machine learning applications that can be performed using this dataset:
- Classification
- Segmentation
- Image generation
Languages
- English
Dataset Structure
Data Fields
image
: Patch image.slide_name
: Main slide name of the patch.x
: X coordinate of the patch.y
: Y coordinate of the patch.level
: Level of the main slide.patch_size
: Size of the patch.resize
: Image size used to obtain embedding vector with Path foundation model.embedding_vector
: Embedding vector of the patch extracted using Path foundation model.
Dataset Creation
Source Data
- Original Sources
- CAMELYON16: List of images taken from CAMELYON16 dataset:
test_001.tif
test_002.tif
test_003.tif
test_004.tif
test_005.tif
test_006.tif
test_007.tif
test_008.tif
test_009.tif
test_010.tif
test_011.tif
test_012.tif
test_013.tif
test_014.tif
test_015.tif
test_016.tif
test_017.tif
test_018.tif
test_019.tif
test_020.tif
- Google Path Foundation: Embedding vectors extracted from the patches using the Path Foundation model.
- CAMELYON16: List of images taken from CAMELYON16 dataset:
Considerations for Using the Data
Social Impact and Bias
Attention should be paid to the Path Foundation model licenses provided by Google.