|
--- |
|
license: mit |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: slide_name |
|
dtype: string |
|
- name: x |
|
dtype: int64 |
|
- name: y |
|
dtype: int64 |
|
- name: level |
|
dtype: int64 |
|
- name: patch_size |
|
sequence: int64 |
|
- name: resize |
|
sequence: int64 |
|
- name: embedding_vector |
|
sequence: |
|
sequence: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 4289155572.625 |
|
num_examples: 40115 |
|
download_size: 4289233317 |
|
dataset_size: 4289155572.625 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
# Dataset Card for Histopathology Dataset |
|
|
|
## Dataset Summary |
|
This dataset contains 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model. |
|
|
|
 |
|
|
|
## Thumbnail of Main Slide |
|
|
|
 |
|
|
|
## Usage |
|
|
|
- [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset: |
|
* `test_001.tif` |
|
* `test_002.tif` |
|
* `test_003.tif` |
|
* `test_004.tif` |
|
* `test_005.tif` |
|
* `test_006.tif` |
|
* `test_007.tif` |
|
* `test_008.tif` |
|
* `test_009.tif` |
|
* `test_010.tif` |
|
* `test_011.tif` |
|
* `test_012.tif` |
|
* `test_013.tif` |
|
* `test_014.tif` |
|
* `test_015.tif` |
|
* `test_016.tif` |
|
* `test_017.tif` |
|
* `test_018.tif` |
|
* `test_019.tif` |
|
* `test_020.tif` |
|
|
|
* Create a folder named ***wsi*** and download the images given in the list. Then: |
|
|
|
```python |
|
from datasets import load_dataset |
|
import openslide as ops |
|
|
|
|
|
dataset = load_dataset("Cilem/histopathology-1024") |
|
slide_name = dataset['train'][0]['slide_name'] |
|
resize = dataset['train'][0]['resize'] |
|
path = os.path.join('wsi', slide_name) |
|
slide = ops.OpenSlide(path) |
|
patch = slide.read_region((x, y), 0, patch_size) |
|
patch = patch.resize(resize) |
|
display(patch) |
|
``` |
|
|
|
|
|
## Supported Tasks |
|
Machine learning applications that can be performed using this dataset: |
|
* Classification |
|
* Segmentation |
|
* Image generation |
|
|
|
## Languages |
|
* English |
|
|
|
## Dataset Structure |
|
### Data Fields |
|
- `image`: Patch image. |
|
- `slide_name`: Main slide name of the patch. |
|
- `x`: X coordinate of the patch. |
|
- `y`: Y coordinate of the patch. |
|
- `level`: Level of the main slide. |
|
- `patch_size`: Size of the patch. |
|
- `resize`: Image size used to obtain embedding vector with Path foundation model. |
|
- `embedding_vector`: Embedding vector of the patch extracted using Path foundation model. |
|
|
|
## Dataset Creation |
|
### Source Data |
|
- **Original Sources** |
|
- [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset: |
|
* `test_001.tif` |
|
* `test_002.tif` |
|
* `test_003.tif` |
|
* `test_004.tif` |
|
* `test_005.tif` |
|
* `test_006.tif` |
|
* `test_007.tif` |
|
* `test_008.tif` |
|
* `test_009.tif` |
|
* `test_010.tif` |
|
* `test_011.tif` |
|
* `test_012.tif` |
|
* `test_013.tif` |
|
* `test_014.tif` |
|
* `test_015.tif` |
|
* `test_016.tif` |
|
* `test_017.tif` |
|
* `test_018.tif` |
|
* `test_019.tif` |
|
* `test_020.tif` |
|
- [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model. |
|
|
|
## Considerations for Using the Data |
|
### Social Impact and Bias |
|
Attention should be paid to the Path Foundation model licenses provided by Google. |