File size: 5,558 Bytes
0ddd089 15215da 57e3c93 faf1c03 57e3c93 a2018aa 15215da c84a10b 1e4a3c3 10671a9 c84a10b 1e4a3c3 afb39e3 1e4a3c3 25b4095 c84a10b 57e3c93 a2018aa 25b4095 a2018aa c84a10b a2018aa c84a10b a2018aa 57e3c93 25b4095 db2e0d0 9ec309f c84a10b fa485be c84a10b fa485be c84a10b fa485be c84a10b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
language:
- en
tags:
- climate
- policy
- legal
size_categories:
- 1M<n<10M
license: cc
---
# Global Stocktake Open Data
This repo contains the data for the first [UNFCCC Global Stocktake](https://unfccc.int/topics/global-stocktake). The data consists of document metadata from sources relevant to the Global Stocktake process, as well as full text parsed from the majority of the documents.
The files in this dataset are as follows:
- `metadata.csv`: a CSV containing document metadata for each document we have collected. **This metadata may not be the same as what's stored in the source databases** – we have cleaned and added metadata where it's corrupted or missing.
- `full_text.parquet`: a parquet file containing the full text of each document we have parsed. Each row is a text block (paragraph) with all the associated text block and document metadata.
A research tool you can use to view this data and the results of some classifiers run on it is at [gst1.org](https://gst1.org).
This data is licensed according to CC BY 4.0, which is a license that represents the terms at the source repositories.
**Contents**
- [Sources and data completeness](#sources-and-data-completeness)
- [Field descriptions](#field-descriptions)
- [Known issues](#known-issues)
- [Usage in Python](#usage-in-python)
- [Loading metadata CSV](#loading-metadata-csv)
- [Loading text block data](#loading-text-block-data)
---
## Sources and data completeness
This dataset contains documents from the following sources:
* [Global Stocktake Information Portal](https://unfccc.int/topics/global-stocktake/information-portal)
* [NDC Registry](https://unfccc.int/NDCREG)
* [Adaptation Communications Registry](https://unfccc.int/ACR)
* [Fast-Start Finance Country Reports](https://unfccc.int/climatefinance?submissions)
* [IPCC Reports](https://www.ipcc.ch/reports/)
The following Global Stocktake relevant data sources are not yet in this dataset:
* [National Adaptation Plan Central Portal](https://napcentral.org/submitted-naps)
* [TNA Country Reports](https://unfccc.int/ttclear/tna/reports.html)
### Data completeness
The last refresh of the data was on **2023-07-25**.
We currently only parse text out of PDFs. Any non-PDF file will only be referenced in `metadata.csv`, and not be referenced in `full_text.parquet`.
We have yet to process approximately 150 documents of the 1700 documents due to formatting issues. We are working on resolving this issue as soon as possible. [See the document list here](https://labs.climatepolicyradar.org/global-stocktake/UNPROCESSED_DOCUMENTS.html).
## Data model
This dataset contains individual documents that are grouped into 'document families'.
The way to think of is as follows:
* Each row in the dataset is a physical document. A physical document is a single document, in any format.
* All physical documents belong to document families. A document family is one or more physical documents, centred around a main document, which jointly contain all relevant information about the main document. For example, where a document has a translation, amendments or annexes, those files are stored together as a family.
### Getting unique text blocks
> TODO
## Field descriptions
- `author`: document author (str)
- `author_is_party`: whether the author is a Party (national government) or not (bool)
- `block_index`: the index of a text block in a document. Starts from 0 (int)
- `coords`: coordinates of the text block on the page
- `date`: publication date of the document
- `document_content_type`: file type. We have only parsed text from PDFs.
- `document_id`: unique identifier for a document
- `document_family_id`: see *data model* section above
- `document_family_slug`: see *data model* section above
- `document_md5_sum`: md5sum of the document's content
- `document_name`: document title
- `document_source_url`: URL for document
- `document_variant`: used to identify translations. In `[nan, 'Translation', 'Original Language']`
- `has_valid_text`: our heuristic about whether text is valid or not in the document based on the parser
- `language`: language of the text block. Either `en` or `nan` - see known issues
- `page_number`: page number of text block (0-indexed)
- `text`: text in text block
- `text_block_id`: identifier for a text block which is unique per document
- `translated`: whether we have machine-translated the document to English. Where we have translated documents, both the original and translated exist.
- `type`: type of text block. In `["Text", "Title", "List", "Table", "Figure","Ambiguous"]`
- `type_confidence`: confidence from that the text block is of the labelled type
- `types`: list of document types e.g. Nationally Determined Contribution, National Adaptation Plan (list[str])
- `version`: in `['MAIN', 'ANNEX', 'SUMMARY', 'AMENDMENT', 'SUPPORTING DOCUMENTATION', 'PREVIOUS VERSION']`
## Known issues
* Author names are sometimes corrupted
* Text block languages are sometimes missing or marked as `nan`
## Usage in Python
The easiest way to access this data via the terminal is to run `git clone <this-url>`.
### Loading metadata CSV
``` py
metadata = pd.read_csv("metadata.csv")
```
### Loading text block data
Once loaded into a Huggingface Dataset or Pandas DataFrame object the parquet file can be converted to other formats, e.g. Excel, CSV or JSON.
``` py
# Using huggingface (easiest)
dataset = load_dataset("ClimatePolicyRadar/global-stocktake-documents")
# Using pandas
text_blocks = pd.read_parquet("full_text.parquet")
``` |