Datasets:
Tasks:
Question Answering
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MC-TACO Dataset.""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import datasets | |
_CITATION = """\ | |
@inproceedings{ZKNR19, | |
author = {Ben Zhou, Daniel Khashabi, Qiang Ning and Dan Roth}, | |
title = {“Going on a vacation” takes longer than “Going for a walk”: A Study of Temporal Commonsense Understanding }, | |
booktitle = {EMNLP}, | |
year = {2019}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer | |
pairs that require temporal commonsense comprehension. A system receives a sentence | |
providing context information, a question designed to require temporal commonsense | |
knowledge, and multiple candidate answers. More than one candidate answer can be plausible. | |
The task is framed as binary classification: givent he context, the question, | |
and the candidate answer, the task is to determine whether the candidate | |
answer is plausible ("yes") or not ("no").""" | |
_LICENSE = "Unknown" | |
_URLs = { | |
"dev": "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/dev_3783.tsv", | |
"test": "https://raw.githubusercontent.com/CogComp/MCTACO/master/dataset/test_9442.tsv", | |
} | |
class McTaco(datasets.GeneratorBasedBuilder): | |
"""MC-TACO Dataset: temporal commonsense knowledge.""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="plain_text", | |
description="Plain text", | |
version=VERSION, | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"label": datasets.ClassLabel(names=["no", "yes"]), | |
"category": datasets.ClassLabel( | |
names=["Event Duration", "Event Ordering", "Frequency", "Typical Time", "Stationarity"] | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://cogcomp.seas.upenn.edu/page/resource_view/125", | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir["test"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": data_dir["dev"], | |
}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
""" Yields examples. """ | |
with open(filepath, encoding="utf-8") as csv_file: | |
csv_reader = csv.reader( | |
csv_file, | |
delimiter="\t", | |
) | |
for id_, row in enumerate(csv_reader): | |
yield id_, { | |
"sentence": row[0], | |
"question": row[1], | |
"answer": row[2], | |
"label": row[3], | |
"category": row[4], | |
} | |