zhuqi commited on
Commit
316449f
1 Parent(s): 8df50a5

Upload database.py

Browse files
Files changed (1) hide show
  1. database.py +110 -0
database.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import random
4
+ from fuzzywuzzy import fuzz
5
+ from itertools import chain
6
+ from zipfile import ZipFile
7
+ from copy import deepcopy
8
+ from convlab.util.unified_datasets_util import BaseDatabase
9
+
10
+
11
+ class Database(BaseDatabase):
12
+ def __init__(self):
13
+ """extract data.zip and load the database."""
14
+ archive = ZipFile(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data.zip'))
15
+ self.domains = ['restaurant', 'hotel', 'attraction', 'train', 'hospital', 'police']
16
+ self.dbs = {}
17
+ for domain in self.domains:
18
+ with archive.open('data/{}_db.json'.format(domain)) as f:
19
+ self.dbs[domain] = json.loads(f.read())
20
+ # add some missing information
21
+ self.dbs['taxi'] = {
22
+ "taxi_colors": ["black","white","red","yellow","blue","grey"],
23
+ "taxi_types": ["toyota","skoda","bmw","honda","ford","audi","lexus","volvo","volkswagen","tesla"],
24
+ "taxi_phone": ["^[0-9]{10}$"]
25
+ }
26
+ self.dbs['police'][0]['postcode'] = "cb11jg"
27
+ for entity in self.dbs['hospital']:
28
+ entity['postcode'] = "cb20qq"
29
+ entity['address'] = "Hills Rd, Cambridge"
30
+
31
+ self.slot2dbattr = {
32
+ 'open hours': 'openhours',
33
+ 'price range': 'pricerange',
34
+ 'arrive by': 'arriveBy',
35
+ 'leave at': 'leaveAt',
36
+ 'train id': 'trainID'
37
+ }
38
+
39
+ def query(self, domain: str, state: dict, topk: int, ignore_open=False, soft_contraints=(), fuzzy_match_ratio=60) -> list:
40
+ """return a list of topk entities (dict containing slot-value pairs) for a given domain based on the dialogue state."""
41
+ # query the db
42
+ if domain == 'taxi':
43
+ return [{'taxi_colors': random.choice(self.dbs[domain]['taxi_colors']),
44
+ 'taxi_types': random.choice(self.dbs[domain]['taxi_types']),
45
+ 'taxi_phone': ''.join([str(random.randint(1, 9)) for _ in range(11)])}]
46
+ if domain == 'police':
47
+ return deepcopy(self.dbs['police'])
48
+ if domain == 'hospital':
49
+ department = None
50
+ for key, val in state:
51
+ if key == 'department':
52
+ department = val
53
+ if not department:
54
+ return deepcopy(self.dbs['hospital'])
55
+ else:
56
+ return [deepcopy(x) for x in self.dbs['hospital'] if x['department'].lower() == department.strip().lower()]
57
+ state = list(map(lambda ele: (self.slot2dbattr.get(ele[0], ele[0]), ele[1]) if not(ele[0] == 'area' and ele[1] == 'center') else ('area', 'centre'), state))
58
+
59
+ found = []
60
+ for i, record in enumerate(self.dbs[domain]):
61
+ constraints_iterator = zip(state, [False] * len(state))
62
+ soft_contraints_iterator = zip(soft_contraints, [True] * len(soft_contraints))
63
+ for (key, val), fuzzy_match in chain(constraints_iterator, soft_contraints_iterator):
64
+ if val in ["", "dont care", 'not mentioned', "don't care", "dontcare", "do n't care"]:
65
+ pass
66
+ else:
67
+ try:
68
+ if key not in record:
69
+ continue
70
+ if key == 'leaveAt':
71
+ val1 = int(val.split(':')[0]) * 100 + int(val.split(':')[1])
72
+ val2 = int(record['leaveAt'].split(':')[0]) * 100 + int(record['leaveAt'].split(':')[1])
73
+ if val1 > val2:
74
+ break
75
+ elif key == 'arriveBy':
76
+ val1 = int(val.split(':')[0]) * 100 + int(val.split(':')[1])
77
+ val2 = int(record['arriveBy'].split(':')[0]) * 100 + int(record['arriveBy'].split(':')[1])
78
+ if val1 < val2:
79
+ break
80
+ # elif ignore_open and key in ['destination', 'departure', 'name']:
81
+ elif ignore_open and key in ['destination', 'departure']:
82
+ continue
83
+ elif record[key].strip() == '?':
84
+ # '?' matches any constraint
85
+ continue
86
+ else:
87
+ if not fuzzy_match:
88
+ if val.strip().lower() != record[key].strip().lower():
89
+ break
90
+ else:
91
+ if fuzz.partial_ratio(val.strip().lower(), record[key].strip().lower()) < fuzzy_match_ratio:
92
+ break
93
+ except:
94
+ continue
95
+ else:
96
+ res = deepcopy(record)
97
+ res['Ref'] = '{0:08d}'.format(i)
98
+ found.append(res)
99
+ if len(found) == topk:
100
+ return found
101
+ return found
102
+
103
+
104
+ if __name__ == '__main__':
105
+ db = Database()
106
+ assert issubclass(Database, BaseDatabase)
107
+ assert isinstance(db, BaseDatabase)
108
+ res = db.query("restaurant", [['price range', 'expensive']], topk=3)
109
+ print(res, len(res))
110
+ # print(db.query("hotel", [['price range', 'moderate'], ['stars','4'], ['type', 'guesthouse'], ['internet', 'yes'], ['parking', 'no'], ['area', 'east']]))