CordwainerSmith
commited on
Commit
โข
b7006f9
1
Parent(s):
880890f
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,285 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# GolemGuard: Hebrew Privacy Information Detection Corpus
|
6 |
+
|
7 |
+
## Dataset Summary
|
8 |
+
|
9 |
+
GolemGuard is a comprehensive Hebrew language dataset specifically designed for training and evaluating models for Personal Identifiable Information (PII) detection and masking. The dataset contains ~600MB of synthetic text data representing various document types and communication formats commonly found in Israeli professional and administrative contexts.
|
10 |
+
|
11 |
+
## Source Data
|
12 |
+
### Initial Data Collection and Normalization
|
13 |
+
|
14 |
+
The dataset combines synthetic data generated from multiple authoritative sources:
|
15 |
+
|
16 |
+
1. Names:
|
17 |
+
- Israeli government open data portal (data.gov.il) for first names
|
18 |
+
- Hebrew Wikipedia category for family names
|
19 |
+
- Faker library
|
20 |
+
- Additional curated sources
|
21 |
+
|
22 |
+
2. Addresses:
|
23 |
+
- Israeli government datasets for cities
|
24 |
+
- Israeli government street names datasets
|
25 |
+
|
26 |
+
3. Synthetic Identifiers:
|
27 |
+
- ID numbers: Generated following Israeli ID number format and checksum rules
|
28 |
+
- Bank accounts: Generated following Israeli bank account number formats
|
29 |
+
- Postal codes: Based on valid Israeli postal code ranges
|
30 |
+
- Credit cards: Generated following valid card number algorithms
|
31 |
+
- Email addresses: Constructed using collected names and top Israeli email providers
|
32 |
+
|
33 |
+
### Entity Types:
|
34 |
+
|
35 |
+
| PII Entity Type | Description | Count |
|
36 |
+
|----------------|-------------|-------|
|
37 |
+
| FIRST_NAME | First names | 131,192 |
|
38 |
+
| LAST_NAME | Last names | 115,020 |
|
39 |
+
| ID_NUM | Israeli ID numbers | 77,902 |
|
40 |
+
| PHONE_NUM | Phone numbers (both mobile and landlines) | 142,795 |
|
41 |
+
| DATE | Dates | 77,042 |
|
42 |
+
| STREET | Street addresses | 105,381 |
|
43 |
+
| CITY | City names | 105,874 |
|
44 |
+
| EMAIL | Email addresses | 90,080 |
|
45 |
+
| POSTAL_CODE | Israeli postal codes (Mikud) | 93,748 |
|
46 |
+
| BANK_ACCOUNT_NUM | Bank account numbers | 31,046 |
|
47 |
+
| CC_NUM | Credit card numbers | 1,751 |
|
48 |
+
| CC_PROVIDER | Credit card providers | 1,679 |
|
49 |
+
|
50 |
+
### Template Diversity
|
51 |
+
|
52 |
+
The dataset includes 2,607 unique document templates. Here are the top document types by instance count:
|
53 |
+
|
54 |
+
| Template Type | Instance Count |
|
55 |
+
|--------------|----------------|
|
56 |
+
| meeting_summary | 21,983 |
|
57 |
+
| appointment_confirmation | 4,420 |
|
58 |
+
| job_application_confirmation | 3,611 |
|
59 |
+
| job_application | 3,306 |
|
60 |
+
| medical_appointment_confirmation | 2,359 |
|
61 |
+
| loan_application_received | 1,988 |
|
62 |
+
| job_application_received | 1,832 |
|
63 |
+
| bank_account_update | 1,609 |
|
64 |
+
| appointment_reminder | 1,567 |
|
65 |
+
| medical_appointment_reminder | 1,335 |
|
66 |
+
|
67 |
+
### Dataset Size
|
68 |
+
- Total Size: ~600MB
|
69 |
+
- Number of Examples: 115,453
|
70 |
+
- Format: JSONL
|
71 |
+
|
72 |
+
### Data Splits
|
73 |
+
|
74 |
+
| Split | Number of Instances |
|
75 |
+
|-------|-------------------|
|
76 |
+
| Training | 97,453 |
|
77 |
+
| Test | 18,000 |
|
78 |
+
| **Total** | **115,453** |
|
79 |
+
|
80 |
+
|
81 |
+
## Languages
|
82 |
+
|
83 |
+
- Hebrew (he)
|
84 |
+
- Locale: Israel (IL)
|
85 |
+
|
86 |
+
## Supported Tasks
|
87 |
+
|
88 |
+
- Token Classification
|
89 |
+
- Named Entity Recognition (NER)
|
90 |
+
- PII Detection
|
91 |
+
- Text Masking
|
92 |
+
- Privacy-Preserving Text Processing
|
93 |
+
|
94 |
+
## Dataset Structure
|
95 |
+
|
96 |
+
### Data Instances
|
97 |
+
|
98 |
+
Each instance in the dataset contains:
|
99 |
+
|
100 |
+
```json
|
101 |
+
{
|
102 |
+
"id": "String", // Unique identifier
|
103 |
+
"source_text": "String", // Original text with PII
|
104 |
+
"masked_text": "String", // Text with PII entities masked
|
105 |
+
"locale": "String", // Always "IL"
|
106 |
+
"language": "String", // Always "he"
|
107 |
+
"split": "String", // "train" or "test"
|
108 |
+
"privacy_mask": [ // List of PII entities with positions
|
109 |
+
{
|
110 |
+
"label": "String", // Entity type
|
111 |
+
"start": "Integer", // Start position
|
112 |
+
"end": "Integer", // End position
|
113 |
+
"value": "String", // Original value
|
114 |
+
"label_index": "Integer" // Index for multiple entities of same type
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"span_labels": "List", // Entity spans in [start, end, label] format
|
118 |
+
"tokens": "List", // Tokenized text
|
119 |
+
"token_classes": "List", // Token-level BIO tags
|
120 |
+
"input_ids": "List", // Model input token IDs
|
121 |
+
"attention_mask": "List", // Attention mask for padding
|
122 |
+
"offset_mapping": "List", // Character offsets for tokens
|
123 |
+
"template_type": "String" // Document type/template
|
124 |
+
}
|
125 |
+
```
|
126 |
+
### Sample
|
127 |
+
```json
|
128 |
+
{"id": "entry_000256", "source_text": "ืืฉืชืชืฃ: ืืืื ืฉื ืืื\nืชืืจืื ืืืื: 28.08.97\nืืชืืืช: ืกืืจืื ืืื 158, ืงืจืืืช ืื, 2676389\nืืืืืื: [email protected]\nืืืคืื: +972-58-2892208\n\nืกืืืื ืืคืืืฉื: ืืคืืืฉื ืื ื ืืื ื ืืฉืืืืช ืฉืืคืืจ ืืชืงืฉืืจืช ืืคื ืืืืช ืืื ืืฆืืืชืื. ืืืืื ืืืฆืข ืกืื ืืืช ืืืืฉืจื ื ืืกืคืช ืืฉืืืข ืืื.", "masked_text": "ืืฉืชืชืฃ: [FIRST_NAME_1] [LAST_NAME_1]\nืชืืจืื ืืืื: [DATE_1]\nืืชืืืช: [STREET_1], [CITY_1], [POSTAL_CODE_1]\nืืืืืื: [EMAIL_1]\nืืืคืื: [PHONE_NUM_1]\n\nืกืืืื ืืคืืืฉื: ืืคืืืฉื ืื ื ืืื ื ืืฉืืืืช ืฉืืคืืจ ืืชืงืฉืืจืช ืืคื ืืืืช ืืื ืืฆืืืชืื. ืืืืื ืืืฆืข ืกืื ืืืช ืืืืฉ๏ฟฝ๏ฟฝื ื ืืกืคืช ืืฉืืืข ืืื.", "locale": "IL", "language": "he", "split": "train", "privacy_mask": [{"label": "FIRST_NAME", "start": 7, "end": 11, "value": "ืืืื", "label_index": 1}, {"label": "LAST_NAME", "start": 12, "end": 18, "value": "ืฉื ืืื", "label_index": 1}, {"label": "DATE", "start": 31, "end": 39, "value": "28.08.97", "label_index": 1}, {"label": "STREET", "start": 47, "end": 60, "value": "ืกืืจืื ืืื 158", "label_index": 1}, {"label": "CITY", "start": 62, "end": 70, "value": "ืงืจืืืช ืื", "label_index": 1}, {"label": "POSTAL_CODE", "start": 72, "end": 79, "value": "2676389", "label_index": 1}, {"label": "EMAIL", "start": 88, "end": 111, "value": "[email protected]", "label_index": 1}, {"label": "PHONE_NUM", "start": 119, "end": 134, "value": "+972-58-2892208", "label_index": 1}], "span_labels": [[7, 11, "FIRST_NAME"], [12, 18, "LAST_NAME"], [31, 39, "DATE"], [47, 60, "STREET"], [62, 70, "CITY"], [72, 79, "POSTAL_CODE"], [88, 111, "EMAIL"], [119, 134, "PHONE_NUM"]], "tokens": ["<s>", "โื", "ืฉืชืชืฃ", ":", "โืื", "ืื", "โืฉื", "โืืื", "โ", "ืชืืจืื", "โ", "ืืืื", ":", "โ28.", "08.", "97", "โืืชืืืช", ":", "โ", "ืกืืจ", "ืื", "โืืื", "โ158", ",", "โืงืจื", "ืืช", "โ", "ืื", ",", "โ26", "76", "389", "โืืืืืื", ":", "โsa", "git", "ben", "dor", "760", "@", "live", ".", "com", "โืืืคืื", ":", "โ+", "97", "2-", "58", "-28", "92", "208", "โ", "ืกืืืื", "โืืค", "ืืืฉื", ":", "โืืค", "ืืืฉื", "โืื", "โ", "ื ื", "ืื ื", "โ", "ืืฉืืืืช", "โ", "ืฉืืคืืจ", "โืืชืงืฉืืจืช", "โืืคื ืืื", "ืช", "โืืื", "โืืฆืืืช", "ืื", ".", "โื", "ืื", "ืื", "โืืืฆืข", "โ", "ืกืื ืืืช", "โื", "ืืืฉืจื", "โื ืืกืคืช", "โืืฉืืืข", "โืืื", ".", "</s>"], "token_classes": ["O", "O", "O", "O", "B-FIRST_NAME", "I-FIRST_NAME", "B-LAST_NAME", "I-LAST_NAME", "O", "O", "O", "O", "O", "B-DATE", "I-DATE", "I-DATE", "O", "O", "B-STREET", "I-STREET", "I-STREET", "I-STREET", "I-STREET", "O", "B-CITY", "I-CITY", "I-CITY", "I-CITY", "O", "B-POSTAL_CODE", "I-POSTAL_CODE", "I-POSTAL_CODE", "O", "O", "B-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "I-EMAIL", "O", "O", "B-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "I-PHONE_NUM", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"], "input_ids": [0, 874, 177834, 12, 18133, 22849, 16804, 19767, 6, 174081, 6, 119583, 12, 12511, 17331, 14773, 86185, 12, 6, 214797, 18340, 67512, 78373, 4, 46050, 2754, 6, 448, 4, 1381, 11835, 119861, 194921, 12, 57, 15769, 776, 1846, 110216, 981, 24056, 5, 277, 167153, 12, 997, 14773, 18504, 10057, 48590, 12231, 154782, 6, 186708, 18338, 58366, 12, 65412, 58366, 8248, 6, 16747, 15703, 6, 148055, 6, 154997, 185983, 214547, 609, 7501, 192819, 448, 5, 364, 15662, 21295, 107543, 6, 199930, 657, 226909, 122485, 132299, 54641, 5, 2], "attention_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "offset_mapping": [[0, 0], [0, 1], [1, 5], [5, 6], [7, 9], [9, 11], [12, 14], [15, 18], [19, 20], [19, 24], [25, 26], [25, 29], [29, 30], [31, 34], [34, 37], [37, 39], [40, 45], [45, 46], [47, 48], [47, 50], [50, 52], [53, 56], [57, 60], [60, 61], [62, 65], [65, 67], [68, 69], [68, 70], [70, 71], [72, 74], [74, 76], [76, 79], [80, 86], [86, 87], [88, 90], [90, 93], [93, 96], [96, 99], [99, 102], [102, 103], [103, 107], [107, 108], [108, 111], [112, 117], [117, 118], [119, 120], [120, 122], [122, 124], [124, 126], [126, 129], [129, 131], [131, 134], [136, 137], [136, 141], [142, 144], [144, 148], [148, 149], [150, 152], [152, 156], [157, 159], [160, 161], [160, 162], [162, 165], [166, 167], [166, 172], [173, 174], [173, 178], [179, 186], [187, 193], [193, 194], [195, 198], [199, 204], [204, 206], [206, 207], [208, 209], [209, 211], [211, 213], [214, 218], [219, 220], [219, 225], [226, 227], [227, 232], [233, 238], [239, 244], [245, 248], [248, 249], [0, 0]], "template_type": "meeting_summary"}
|
129 |
+
```
|
130 |
+
|
131 |
+
## Considerations for Using the Data
|
132 |
+
|
133 |
+
### Social Impact of Dataset
|
134 |
+
|
135 |
+
The dataset aims to improve privacy protection in Hebrew text processing by enabling better PII detection and masking. This has important applications in:
|
136 |
+
|
137 |
+
| Application Area | Description |
|
138 |
+
|-----------------|-------------|
|
139 |
+
| Regulatory Compliance | Support for GDPR and PPLA requirements |
|
140 |
+
| Document Processing | Privacy-preserving text analysis and storage |
|
141 |
+
| Information Security | Automated PII detection and protection |
|
142 |
+
| Data Loss Prevention | Real-time PII identification and masking |
|
143 |
+
|
144 |
+
### Discussion of Biases
|
145 |
+
|
146 |
+
1. Geographic Bias
|
147 |
+
- Dataset focuses on Israeli context and formats
|
148 |
+
|
149 |
+
2. Name Distribution
|
150 |
+
- While effort was made to include diverse names, distribution may not perfectly match population demographics
|
151 |
+
|
152 |
+
|
153 |
+
## Additional Information
|
154 |
+
|
155 |
+
### Dataset Curators
|
156 |
+
|
157 |
+
Dataset was curated by ([Liran Baba](https://huggingface.co/CordwainerSmith)).
|
158 |
+
|
159 |
+
|
160 |
+
### Model Training
|
161 |
+
|
162 |
+
Dataset was curated for training the [GolemPII-xlm-roberta-v1][model-link] model by Liran Baba (CordwainerSmith), model, demonstrating its effectiveness for PII detection and masking tasks in Hebrew text.
|
163 |
+
|
164 |
+
[model-link]: https://huggingface.co/CordwainerSmith/GolemPII-xlm-roberta-v1
|
165 |
+
|
166 |
+
### Recommended Uses
|
167 |
+
|
168 |
+
| Use Case | Description |
|
169 |
+
|----------|-------------|
|
170 |
+
| Privacy Protection | Identifying and masking PII in Hebrew documents |
|
171 |
+
| Compliance Checking | Automated PII detection for regulatory compliance |
|
172 |
+
| Data Sanitization | Cleaning sensitive information from text data |
|
173 |
+
| Information Security | Supporting data loss prevention systems |
|
174 |
+
|
175 |
+
### Quick Start
|
176 |
+
```python
|
177 |
+
from datasets import load_dataset
|
178 |
+
|
179 |
+
# Load dataset
|
180 |
+
dataset = load_dataset("GolemGuard")
|
181 |
+
|
182 |
+
# Example usage
|
183 |
+
sample = dataset['train'][0]
|
184 |
+
print(f"Original text: {sample['source_text']}")
|
185 |
+
print(f"Masked text: {sample['masked_text']}")
|
186 |
+
```
|
187 |
+
### Versioning
|
188 |
+
|
189 |
+
This is the initial release of the dataset. Future versions may include:
|
190 |
+
- Additional template types
|
191 |
+
- Expanded entity coverage
|
192 |
+
- Enhanced demographic representation
|
193 |
+
- Additional language variants
|
194 |
+
|
195 |
+
## Citation and Usage Information
|
196 |
+
|
197 |
+
If you use this dataset in your research or project, please include the following information:
|
198 |
+
|
199 |
+
```
|
200 |
+
Dataset: GolemGuard
|
201 |
+
Author: Liran Baba (CordwainerSmith)
|
202 |
+
URL: https://huggingface.co/datasets/GolemGuard
|
203 |
+
Related Model: https://huggingface.co/CordwainerSmith/GolemPII-xlm-roberta-v1
|
204 |
+
Version: 1.0.0
|
205 |
+
Release Date: Oct 2024
|
206 |
+
```
|
207 |
+
|
208 |
+
You can cite this dataset as:
|
209 |
+
|
210 |
+
> GolemGuard (2024) by Liran Baba. A comprehensive Hebrew PII detection dataset containing ~600MB of synthetic text data. Available at: https://huggingface.co/datasets/GolemGuard
|
211 |
+
|
212 |
+
For academic papers, you might reference both the dataset and model:
|
213 |
+
|
214 |
+
> We utilized the GolemGuard dataset and GolemPII-xlm-roberta-v1 model (Baba, 2024) for Hebrew PII detection and masking tasks.
|
215 |
+
|
216 |
+
|
217 |
+
## License
|
218 |
+
|
219 |
+
The GolemGuard dataset is released under MIT License with the following additional terms:
|
220 |
+
|
221 |
+
```
|
222 |
+
MIT License
|
223 |
+
|
224 |
+
Copyright (c) 2024 Liran Baba
|
225 |
+
|
226 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
227 |
+
of this dataset and associated documentation files (the "Dataset"), to deal
|
228 |
+
in the Dataset without restriction, including without limitation the rights
|
229 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
230 |
+
copies of the Dataset, and to permit persons to whom the Dataset is
|
231 |
+
furnished to do so, subject to the following conditions:
|
232 |
+
|
233 |
+
1. The above copyright notice and this permission notice shall be included in all
|
234 |
+
copies or substantial portions of the Dataset.
|
235 |
+
|
236 |
+
2. Any academic or professional work that uses this Dataset must include an
|
237 |
+
appropriate citation as specified below.
|
238 |
+
|
239 |
+
THE DATASET IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
240 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
241 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
242 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
243 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
244 |
+
OUT OF OR IN CONNECTION WITH THE DATASET OR THE USE OR OTHER DEALINGS IN THE
|
245 |
+
DATASET.
|
246 |
+
```
|
247 |
+
|
248 |
+
### How to Cite
|
249 |
+
|
250 |
+
If you use this dataset in your research, project, or application, please include the following citation:
|
251 |
+
|
252 |
+
For informal usage (e.g., blog posts, documentation):
|
253 |
+
```
|
254 |
+
GolemGuard Dataset by Liran Baba (https://huggingface.co/datasets/GolemGuard)
|
255 |
+
```
|
256 |
+
|
257 |
+
For academic or professional publications:
|
258 |
+
```
|
259 |
+
Baba, L. (2024). GolemGuard: A Professional Hebrew PII Detection Dataset.
|
260 |
+
Retrieved from https://huggingface.co/datasets/GolemGuard
|
261 |
+
|
262 |
+
Related model: GolemPII-xlm-roberta-v1 (https://huggingface.co/CordwainerSmith/GolemPII-xlm-roberta-v1)
|
263 |
+
```
|
264 |
+
|
265 |
+
### Usage Examples
|
266 |
+
|
267 |
+
When referencing in your code:
|
268 |
+
```python
|
269 |
+
"""
|
270 |
+
This code uses the GolemGuard dataset by Liran Baba
|
271 |
+
(https://huggingface.co/datasets/GolemGuard)
|
272 |
+
"""
|
273 |
+
|
274 |
+
from datasets import load_dataset
|
275 |
+
dataset = load_dataset("GolemGuard")
|
276 |
+
```
|
277 |
+
|
278 |
+
When referencing in your model card:
|
279 |
+
```yaml
|
280 |
+
dataset_info:
|
281 |
+
- name: GolemGuard
|
282 |
+
author: Liran Baba
|
283 |
+
url: https://huggingface.co/datasets/GolemGuard
|
284 |
+
year: 2024
|
285 |
+
```
|