File size: 1,695 Bytes
5b7b13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from typing import List

import numpy as np


try:
    import tinyBenchmarks as tb
except ModuleNotFoundError:
    raise ModuleNotFoundError(
        "`tinyBenchmarks` is required for tinyBenchmarks task metric calculation, install via \
`pip install git+https://github.com/felipemaiapolo/tinyBenchmarks`"
    )


def agg_pirt(items: List[float], benchmark: str) -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["pirt"]


def agg_gpirt_arc(items: List[float], benchmark: str = "arc") -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["gpirt"]


def agg_gpirt_gsm8k(items: List[float], benchmark: str = "gsm8k") -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["gpirt"]


def agg_gpirt_hellaswag(items: List[float], benchmark: str = "hellaswag") -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["gpirt"]


def agg_gpirt_mmlu(items: List[float], benchmark: str = "mmlu") -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["gpirt"]


def agg_gpirt_truthfulqa(items: List[float], benchmark: str = "truthfulqa") -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["gpirt"]


def agg_gpirt_winogrande(items: List[float], benchmark: str = "winogrande") -> float:
    items = np.array(items)
    predictions = tb.evaluate(items, benchmark)
    return predictions[benchmark]["gpirt"]