File size: 4,709 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
{
    "name": "17_Heart_Disease_Prediction_XGBoost_UCI_ML",
    "query": "Create a project to predict heart disease using an XGBoost model with the UCI Heart Disease dataset, which can be downloaded from [this link](https://archive.ics.uci.edu/dataset/45/heart+disease). Load the dataset in `src/data_loader.py`. Implement feature selection and data standardization in `src/data_loader.py`. Use SHAP values to explain the feature importance, and save the results as `results/figures/shap_importance.png`. Implement the XGBoost model in `src/model.py`. Then, use SHAP values to explain the feature importance, and save the results as `results/shap_importance.png`. Save the ROC curve to `results/figures/roc_curve.png`. Finally, generate an HTML report containing all the results and visualizations, and save it as `results/report.html`. Ensure the SHAP visualizations clearly highlight the most impactful features. Include a performance comparison with another model, such as Logistic Regression, to validate the robustness of the XGBoost model. Save the XGBoost model under `models/saved_models/`.",
    "tags": [
        "Classification",
        "Medical Analysis",
        "Supervised Learning"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "The \"UCI Heart Disease\" dataset is used, potentially being downloaded from [this link](https://archive.ics.uci.edu/dataset/45/heart+disease). Load the dataset in `src/data_loader.py`.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Feature selection is implemented in `src/data_loader.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [
                0
            ],
            "criteria": "Data standardization which ensures feature values are within the same range is implemented in `src/data_loader.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [],
            "criteria": "The \"XGBoost\" model is implemented in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                0,
                1,
                2,
                3
            ],
            "criteria": "\"SHAP\" values are used for feature importance explanation, with results saved as `results/figures/shap_importance.png`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                0,
                1,
                2,
                3
            ],
            "criteria": "The ROC curve saved as `results/figures/roc_curve.png`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                0,
                1,
                2,
                3,
                4,
                5
            ],
            "criteria": "An HTML report containing results and visualizations is generated, saved as `results/report.html`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 7,
            "prerequisites": [
                1,
                2,
                3
            ],
            "criteria": "A performance comparison with another model (e.g., Logistic Regression) is included to validate the robustness of the XGBoost model.",
            "category": "Other",
            "satisfied": null
        },
        {
            "requirement_id": 8,
            "prerequisites": [
                1,
                2,
                3
            ],
            "criteria": "A XGBoost model is saved under `models/saved_models/`.",
            "category": "Save Trained Model",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The SHAP visualizations should be clear and highlight the most impactful features, making the results easy to interpret.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": true
}