File size: 4,845 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
{
    "name": "50_Math_Problem_Solving_Transformer_DeepMindMath_DL",
    "query": "Hi! I need help with a project that uses a Transformer model to solve math problems from the DeepMind Mathematics dataset. Please load the dataset and preprocessing it in `src/data_loader.py`. The preprocessing should parse and standardize the math expressions in a syntactically consistent way so the model can easily process them. Implement the Transformer in `src/model.py`. Also, tune the hyperparameters such as the learning rate and the batch size in `src/train.py`, and save the training loss curve to `results/figures/training_loss_curve.png`. Sample and save some Transformer generated solutions in `results/sample_solutions.txt`. Using your model, create a simple interactive tool with Gradio or Streamlit in `src/interface.py` that can solve various user given math problems. Lastly, generate a report on how the model performs with different types of problems, including model accuracy, error analysis, and future improvement suggestions. Save it as `results/metrics/model_report.md`. Thanks in advance!",
    "tags": [
        "Natural Language Processing"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "DeepMind Mathematics dataset is loaded in `src/data_loader.py`.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Data preprocessing is performed including parsing and standardizing mathematical expressions in `src/data_loader.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [],
            "criteria": "A \"Transformer\" model is implemented in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [
                0,
                1,
                2
            ],
            "criteria": "Hyperparameters such as learning rate and batch size are tuned in `src/train.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                0,
                1,
                2,
                3
            ],
            "criteria": "Model training loss curve is saved as `results/figures/training_loss_curve.png`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                0,
                1,
                2,
                3
            ],
            "criteria": "Some Transformer generated solutions are saved in `results/sample_solutions.txt`.",
            "category": "Other",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                0,
                1,
                2,
                3
            ],
            "criteria": "An interactive tool is created allowing users to input mathematical problems and receive solutions using \"Gradio\" or \"Streamlit\" in `src/interface.py`.",
            "category": "Human Computer Interaction",
            "satisfied": null
        },
        {
            "requirement_id": 7,
            "prerequisites": [
                0,
                1,
                2,
                3,
                4
            ],
            "criteria": "A report is generated containing model accuracy, error analysis, and future improvement suggestions, and saved as `results/metrics/model_report.md`.",
            "category": "Other",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The preprocessing step should ensure that the mathematical expressions are standardized in a way that makes them easily processed by the model.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "The interactive tool should be capable of handling a wide variety of mathematical problem types.",
            "satisfied": null
        },
        {
            "preference_id": 2,
            "criteria": "The report should provide insights into how the model handles different types of mathematical problems, identifying specific strengths and areas for improvement.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": false
}