File size: 4,041 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "name": "48_Stock_Trading_Simulation_PPO_HistoricalData_RL",
    "query": "Hey! I'm interested in developing a stock trading agent using the Proximal Policy Optimization (PPO) algorithm. The idea is to use historical market data for training and testing. A stock trading simulation environment should be implemented in `src/env.py`. The Proximal Policy Optimization (PPO) algorithm should be implemented in `src/train.py`. Please save the trained agent under `models/saved_models/`. Record all the trade decisions in `results/trade_decisions.txt` and save the total profit in `results/metrics/total_profit.txt`. Visualize the profit curve and save it as `results/figures/profit_curve.png`. Generate a report that covers the trading strategy, profit, and risk analysis, and save it as `results/trading_strategy_report.md`. Implement an interactive tool using Streamlit in `src/visualize.py` that allows users to try different parameters and run simulations.",
    "tags": [
        "Financial Analysis",
        "Reinforcement Learning"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "A stock trading simulation environment is implemented in `src/env.py`.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Historical market data is used for training and testing.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [],
            "criteria": "The \"Proximal Policy Optimization (PPO)\" algorithm is implemented in `src/train.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [
                1,
                2
            ],
            "criteria": "Trade decisions are recorded and saved as `results/trade_decisions.txt`.",
            "category": "Other",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                3
            ],
            "criteria": "Total profit is saved as `results/metrics/total_profit.txt`.",
            "category": "Other",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                4
            ],
            "criteria": "The profit curve is visualized and saved as `results/figures/profit_curve.png`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                4
            ],
            "criteria": "A report containing trading strategy, profit, and risk analysis is generated and saved as `results/trading_strategy_report.md`.",
            "category": "Other",
            "satisfied": null
        },
        {
            "requirement_id": 7,
            "prerequisites": [
                1,
                2
            ],
            "criteria": "An interactive tool allowing users to try different parameters and run simulations using \"Streamlit\" is implemented in `src/visualize.py`.",
            "category": "Human Computer Interaction",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The profit curve visualization should highlight significant trades or events that impacted performance.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "The report should include insights on how parameter tuning affects the trading outcome.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": false
}