File size: 3,897 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
{
    "name": "33_Object_Detection_YOLOv3_COCO_DL",
    "query": "Help me develop an object detection system using the YOLOv3 model and the COCO dataset. Download the dataset and preprocess the images by resizing and normalization in `src/data_loader.py`. Implement the YOLOv3 model and use Non-Maximum Suppression (NMS) to refine the results in `src/model.py`. Save the detected objects to `results/figures/`, and create an interactive Streamlit web page in `src/app.py` to display the detection results. Finally, evaluate the model's performance, including metrics such as mAP and inference time, and save the evaluation results to `results/metrics/model_performance.txt`. The system should properly manage the launch and termination of the Streamlit application to prevent unnecessary resource usage.",
    "tags": [
        "Computer Vision"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "The \"COCO\" dataset downloading is implemented in `src/data_loader.py`.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Data preprocessing, including resizing and normalization of images, is performed in `src/data_loader.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [],
            "criteria": "The \"YOLOv3\" model is implemented in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [
                1,
                2
            ],
            "criteria": "\"Non-Maximum Suppression\" (NMS) is applied to refine detection results. Please implement this in `src/model.py`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                2,
                3
            ],
            "criteria": "Detection results are saved to the specified folder `results/figures/`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                2,
                3,
                4
            ],
            "criteria": "An interactive web page in `src/app.py` using \"Streamlit\" is created to display detection results saved in `results/figures/`.",
            "category": "Human Computer Interaction",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                2,
                3
            ],
            "criteria": "Model performance evaluation results are saved in `results/metrics/model_performance.txt`.",
            "category": "Performance Metrics",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The \"Streamlit\" web page should be user-friendly, allowing users to easily upload and view new images for detection.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "The performence evalution includes mAP and inference time as metrics.",
            "satisfied": null
        },
        {
            "preference_id": 2,
            "criteria": " The system should properly manage the launch and termination of the Streamlit application.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": false
}