File size: 3,851 Bytes
6822471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
{
    "name": "22_Sentiment_Analysis_LSTM_IMDb_DL",
    "query": "Could you help me set up a sentiment analysis project using an LSTM model and the IMDb dataset? Please implement data cleaning in `src/data_loader.py`, including the removal of stop words and punctuation. Use word embeddings to convert the text to a numerical format and save these embeddings under `models/saved_models/`. Then use these embeddings as input of an LSTM model, which should be implemented in `src/model.py`. Save the classification report to `results/metrics/classification_report.txt`. Create a Jupyter Notebook saved as `results/report.ipynb` with the model architecture and training process visualized. Also, save the training loss and accuracy curves to `results/figures/training_curves.png`. Pre-trained embeddings (e.g., Word2Vec or GloVe) are preferred to enhance model performance.",
    "tags": [
        "Natural Language Processing",
        "Supervised Learning"
    ],
    "requirements": [
        {
            "requirement_id": 0,
            "prerequisites": [],
            "criteria": "The \"IMDb\" movie reviews dataset is used.",
            "category": "Dataset or Environment",
            "satisfied": null
        },
        {
            "requirement_id": 1,
            "prerequisites": [
                0
            ],
            "criteria": "Data cleaning is implemented  in `src/data_loader.py`, including the removal of stop words and punctuation.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 2,
            "prerequisites": [
                0,
                1
            ],
            "criteria": "Word embeddings are used to convert text to numerical format and saved under `models/saved_models/`.",
            "category": "Data preprocessing and postprocessing",
            "satisfied": null
        },
        {
            "requirement_id": 3,
            "prerequisites": [],
            "criteria": "An \"LSTM\" model is used for sentiment analysis and should be implemented in `src/model.py`.",
            "category": "Machine Learning Method",
            "satisfied": null
        },
        {
            "requirement_id": 4,
            "prerequisites": [
                2,
                3
            ],
            "criteria": "A classification report is saved as `results/metrics/classification_report.txt`.",
            "category": "Performance Metrics",
            "satisfied": null
        },
        {
            "requirement_id": 5,
            "prerequisites": [
                2,
                3
            ],
            "criteria": "A Jupyter Notebook containing the model architecture and training process visualization is generated and saved as `results/report.ipynb`.",
            "category": "Visualization",
            "satisfied": null
        },
        {
            "requirement_id": 6,
            "prerequisites": [
                2,
                3
            ],
            "criteria": "Training loss and accuracy curves are generated and saved as `results/figures/training_curves.png`.",
            "category": "Visualization",
            "satisfied": null
        }
    ],
    "preferences": [
        {
            "preference_id": 0,
            "criteria": "The word embeddings should be pre-trained (e.g., Word2Vec or GloVe) to leverage existing semantic knowledge.",
            "satisfied": null
        },
        {
            "preference_id": 1,
            "criteria": "The Jupyter Notebook should be well-documented, making it easy for others to understand the model architecture and training process.",
            "satisfied": null
        }
    ],
    "is_kaggle_api_needed": false,
    "is_training_needed": true,
    "is_web_navigation_needed": false
}